Abstract
Background: 1,2,4-triazoles scaffolds display significant biological activities due to hydrogen bonding, solubility, dipole character, and rigidity.
Objective: The core motif of 1,2,4-triazoles plays a vital role in clinical drugs such as Rizatriptan (antimigraine), Ribavirin (antiviral), anastrozole (anticancer), etizolam (anxiolytic), estazolam (anticonvulsant), alprazolam (anti-hypnotic), letrozole (aromatase inhibitor), loreclezole (anticonvulsant), trazadone (antidepressant) etc.
Methods: Epoxide ring opening of tert-butyl 6-oxa-3-azabicyclo [3.1.0] hexane-3-carboxylate followed by methylation under basic conditions and de-protection gave the corresponding trans 1-(4- methoxypyrrolidin-3-yl)-1H-1,2,4-triazole hydrochloride salt as the precursor. This precursor on reaction with substituted benzoyl chlorides and benzyl bromides gave the desired amide and amine products.
Results: A library of 14 N-substituted pyrrolidine derivatives i.e. trans3-methoxy-4-(1H-1,2,4-triazol- 1-yl) pyrrolidin-1-yl) (phenyl)methanone and trans 1-benzyl-4-methoxypyrrolidin-3-yl)-1H-1,2,4- triazole were prepared.
Conclusion: Eight novel amides (6a-h) and six amines (8a-f) derivatives were synthesized using 1-(4- methoxypyrrolidin-3-yl)-1H-1,2,4-triazole 4 salt with substituted benzoyl chlorides and benzyl bromides.
Keywords: Ring opening, epoxide, N-substituted pyrrolidine, trans-1-(4-methoxypyrrolidin-3-yl)-1H-1, 2, 4-triazole, trans 3- methoxy-4-(1H-1, 4-triazol-1-yl) pyrrolidin-1-yl) (phenyl) methanone, trans 1-(benzyl-4-methoxypyrrolidin-3-yl)-1H-1, 4- triazole.
Graphical Abstract
[http://dx.doi.org/10.2147/nedt.2006.2.3.247] [PMID: 19412472]
[http://dx.doi.org/10.4254/wjh.v8.i2.123] [PMID: 26807208]
[http://dx.doi.org/10.3892/mmr.2015.3427] [PMID: 25738971]
[http://dx.doi.org/10.4103/0253-7613.144943] [PMID: 25538342]
[http://dx.doi.org/10.1002/j.1552-4604.1992.tb05776.x] [PMID: 1640005]
[http://dx.doi.org/10.1097/ADM.0000000000000350] [PMID: 28777203]
[http://dx.doi.org/10.4103/0974-1208.117166] [PMID: 24082649]
[http://dx.doi.org/10.1016/S0028-3908(96)00138-4] [PMID: 9076754]
[PMID: 29552421]
[PMID: 26798851]
[http://dx.doi.org/10.1017/S0021859605004971]
[http://dx.doi.org/10.1021/jm031020p] [PMID: 15027873]
[http://dx.doi.org/10.1080/14756366.2020.1748026] [PMID: 32253957]
[http://dx.doi.org/10.1002/ardp.201300344] [PMID: 24532369]
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[http://dx.doi.org/10.2174/1389200215666140908101958] [PMID: 25204824]
[http://dx.doi.org/10.1016/j.ejmech.2017.08.057] [PMID: 28858766]
[http://dx.doi.org/10.1016/j.bmcl.2016.06.002] [PMID: 27289320]
[http://dx.doi.org/10.1016/j.ejmech.2020.112114] [PMID: 32061962]
[http://dx.doi.org/10.1007/s00044-018-2274-x]
[http://dx.doi.org/10.1016/j.molliq.2019.111909]
[http://dx.doi.org/10.1002/cctc.201100218]
[http://dx.doi.org/10.1016/S0040-4039(00)01704-4]
(b) Settipalli, P.C.; Reddy, Y.P.; Gudise, V.B.; Anwar, S. Knoeve-nagel-Friedel-Crafts-Hemiketalization Triple Cascade Reaction: A Diastereoselective Formal [1+2+3] Cyclization Towards Indenonaphthopyran Scaffolds. ChemistrySelect, 2021, 6, 47-51.
[http://dx.doi.org/10.1002/slct.202004619]
(c) Kumar, V.S.; Gudise, V.B.; Settipalli, P.C.; Reddy, E.K.; Basha, S.F.; Reddy, Y.P.; Srinivasadesikan, V.; Lee, S-L.; Anwar, S. Understanding the mechanism of SN2′ vs. SN2 in cascade reaction of β-naphthol and nitrostyrene derived MBH acetates. ChemistrySelect, 2020, 5, 3080-3081.
[http://dx.doi.org/10.1002/slct.201904618]
(d) Basha, S.F.; Prasad, T.N.; Gudise, V.B. kumar, V. S.; Mulakayala, N.; Anwar, S. An efficient, multicomponent, green protocol to access 4,7-dihydrotetrazolo [1,5-a] pyrimidines and 5,6,7,9-tetrahydrotetrazolo [5,1-b] quinazolin-8(4H)-ones using PEG-400 under microwave irradiation. Synth. Commun., 2019, 49, 3181-3190.
[http://dx.doi.org/10.1080/00397911.2019.1659973]
(e) Huang, W.Y.; Anwar, S.; Chen, K. Morita-Baylis-Hillman (MBH) Reaction derived nitroallylic alcohols, acetates and amines as synthons in organocatalysis and heterocycle synthesis. Chem. Rec., 2017, 17(3), 363-381.
[http://dx.doi.org/10.1002/tcr.201600075] [PMID: 27701816]
(f) Gudise, V.B.; Settipalli, P.C.; Reddy, E.K.; Anwar, S. Oxa-Michael Michael Reaction of MBH Alcohol and 2-Arylidene1,3-indanedione: regioselective formal [4+2] cycloaddition towards tetrahydrospiropyran scaffolds. Eur. J. Org. Chem., 2019, 2019, 2234-2242.
[http://dx.doi.org/10.1002/ejoc.201801709]
(g) Reddy, Y.P.; Gudise, V.B.; Settipalli, P.C.; Anwar, S. Synthesis of multisubstituted indanedione based spiropyrans via Oxa-Michael/michael cascade reaction. ChemistrySelect, 2021, 6, 4456-4460.
[http://dx.doi.org/10.1002/slct.202100915]
(h) Cheng, Y.S.; Anwar, S.; Chen, K. Organocatalytic synthesis of spirocarbocycles. Mini Rev. Org. Chem., 2018, 15, 364-373.
[http://dx.doi.org/10.2174/1570193X15666171228145726]
(i) Reddy, E.K.; Remya, C.; Sajith, A.M.; Dileep, K.V.; Sadsivan, C.; Anwar, S. Functionalised dihydroazo pyrimidine derivatives from Morita-Baylis-Hillman Acetates: synthesis and studies against acetylcholinesterase as its inhibitors. RSC Advances, 2016, 6, 77431-77439.
[http://dx.doi.org/10.1039/C6RA12507G]
(j) Reddy, E.K.; Remya, C.; Mantosh, K.; Sajith, A.M.; Omkumar, R.V.; Sadasivan, C.; Anwar, S. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 139, 367-377.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.013] [PMID: 28810188]
(k) Prasad, T.N.; Reddy, E.K.; Gudise, V.B.; Basha, S.F.; Anwar, S. Design, synthesis and biological evaluation of substituted 2-amino-1,3-thiazine derivatives as antituberculosis and anti-cancer agents. Synth. Commun., 2019, 49, 1277-1285.
[http://dx.doi.org/10.1080/00397911.2019.1597125]
(l) Reddy, E.K.; Battula, S.; Anwar, S.; Sajith, A.M. Drug Re-purposing Approach and potential therapeutic strategies to treat COVID-19. Mini Rev. Med. Chem., 2021, 21(6), 704-723.
[http://dx.doi.org/10.2174/1389557520666201113105940] [PMID: 33185159]