Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Advances in the Synthesis of Benzothiazole and its Derivatives

Author(s): Tanzeela Qadir, Andleeb Amin, Alka Salhotra, Praveen Kumar Sharma*, Ishtiaq Jeelani and Hitoshi Abe

Volume 26, Issue 2, 2022

Published on: 31 January, 2022

Page: [189 - 214] Pages: 26

DOI: 10.2174/1385272826666211229144446

Price: $65

Abstract

Benzothiazoles have recognized pharmacophores in the field of research, predominantly in synthetic and medicinal chemistry, on account of their significant pharmaceutical properties. This important class of derivatives endows an extensive range of biological activities like anti-inflammatory, antidiabetic, anticancer, anticonvulsant, antibacterial, antiviral, antioxidant, antituberculosis, enzyme inhibitors, etc. Hence, various methodologies have been accomplished to synthesize benzothiazole compounds considering the purity, yield, and selectivity of the products. This review provides different reaction methods that are involved in the synthesis of a variety of benzothiazole derivatives.

Keywords: 2-aminothiophenol, cyclization, condensation, benzothiazoles, green chemistry, thioamides, aldehydes, nitriles.

Graphical Abstract

[1]
Zhilitskaya, L.V.; Shainyan, B.A.; Yarosh, N.O. Modern approaches to the synthesis and transformations of practically valuable benzothiazole derivatives. Molecules, 2021, 26(8), 2190.
[http://dx.doi.org/10.3390/molecules26082190] [PMID: 33920281]
[2]
Sumit; Kumar, A.; Mishra, A.K. Sumit; Kumar, A.; Mishra, K. A., Advancement in pharmacological activities of benzothiazole and its derivatives: An up to date review. Mini Rev. Med. Chem., 2021, 21(3), 314-335.
[http://dx.doi.org/10.2174/1389557520666200820133252] [PMID: 32819243]
[3]
El-Mahdy, A.F.M.; Mohamed, O.S.; El-Sherif, H.A.H.; Hozien, Z.A. An efficient one-pot synthesis of benzo[1,4]thiazines, benzo[1,3]thiazoles and benzo[1,5]thiazepines. Curr. Org. Chem., 2017, 14, 604-611.
[4]
Pise, A.S.; Ingale, A.P.; Dalvi, N.R. Ultrasound-assisted efficient and green synthesis of 2-substituted benzothiazoles under solvent-free condition using recyclable sulfated tungstate. Synth. Commun., 2021, 1-13.
[http://dx.doi.org/10.1080/00397911.2021.1986842]
[5]
Sharma, P.K. Antifungal, antibacterial and antioxidant activities of substituted morpholinylbenzothiazine. Pharm. Lett., 2016, 8, 140-142.
[6]
Wu, F-L.; Hussain, W.M.; Ross, B.P.; McGeary, R.P. 2-mercaptobenzothiazole and its derivatives: Syntheses, reactions and applications. Curr. Org. Chem., 2012, 16, 1555-1580.
[http://dx.doi.org/10.2174/138527212800840964]
[7]
Sharma, P.K.; Kumar, M. Synthesis of bioactive substituted pyrazolylbenzothiazinones. Res. Chem. Intermed., 2015, 41, 6141-6148.
[http://dx.doi.org/10.1007/s11164-014-1727-1]
[8]
Sharma, B.K.; Sharma, P.K.; Kumar, M. One-pot, multicomponent sequential synthesis of benzothiazoloquinazolinones. Synth. Commun., 2010, 40, 2347-2352.
[http://dx.doi.org/10.1080/00397910903243807]
[9]
Fogla, A.K.; Ankodia, V.; Sharma, P.K.; Kumar, M. N-bridged heterocycles: regiospecific synthesis of 2-methyl-4H-pyrimido [2, 1-b] benzothiazol-4-ones. Res. Chem. Intermed., 2009, 35, 35-41.
[http://dx.doi.org/10.1007/s11164-008-0006-4]
[10]
Du, H.; Sun, Y.; Yang, R.; Zhang, W.; Wan, C.; Chen, J.; Kahramanoglu, I.; Zhu, L. Benzothiazole (BTH) induced resistance of navel orange fruit and maintained fruit quality during storage. J. Food Qual., 2021, 2021, 6631507.
[http://dx.doi.org/10.1155/2021/6631507]
[11]
Sharma, P.K.; Kumar, G. Synthesis, spectral, energetic and reactivity properties of phenothiazines: Experimental and computational approach. J. Chem. Pharm. Res., 2015, 7, 462-473.
[12]
Sharma, P.K.; Amin, A.; Kumar, M. Synthetic methods of medicinally important heterocycles-thiazines: A review. Open Med. Chem. J., 2020, 14, 71-82.
[http://dx.doi.org/10.2174/1874104502014010071]
[13]
Sharma, P.K. Amin, A.; Kumar, M. A Review: Medicinally important nitrogen sulphur containing heterocycles. Open Med. Chem. J., 2020, 14, 49-64.
[http://dx.doi.org/10.2174/1874104502014010049]
[14]
(a) Qadir, T.; Amin, A.; Sarkar, D.; Sharma, P.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis. Curr. Org. Chem., 2021, 25, 1868-1893.
[http://dx.doi.org/10.2174/1385272825666210728100022]
(b) Qadir, T.; Amin, A.; Sarkar, D.; Sharma, P.K. Synthesis of medicinally important indole derivatives: a review. Open Med. Chem. J., 2021, 15, 1-16.
[15]
Sharma, P.K.; Makkar, R. A review: Thiazines derivatives treated as potential antimicrobial agents. Asian J. Pharm. Clin. Res., 2017, 10, 43-46.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i1.115467]
[16]
Ankodia, V.; Sharma, P.K.; Gupta, V.; Kumar, M. Synthesis of 2, 4-diaryl-2, 3-dihydro-1, 5-benzothiazepines. Heterocycl. Commun., 2008, 14, 155-160.
[http://dx.doi.org/10.1515/HC.2008.14.3.155]
[17]
Sharma, P.K. Synthesis of starting heterocycles: 2-aminobenzothiazoles, 2-aminothiazoles and 2-aminobenzenethiols – Potential precursors for macroheterocycles. Macroheterocycles, 2018, 11, 316-321.
[http://dx.doi.org/10.6060/mhc171261s]
[18]
Sharma, P.K.; Manhas, M. A review: Different approach of bioactive pyrimidobenzothiazoles synthesis. Drug Invention Today, 2017, 9, 18-22.
[19]
Jiang, P.; Liu, L.; Tan, J.; Du, H. Visible-light-promoted photocatalyst-free alkylation and acylation of benzothiazoles. Org. Biomol. Chem., 2021, 19(20), 4487-4491.
[http://dx.doi.org/10.1039/D1OB00734C] [PMID: 33960996]
[20]
Sharma, S.; Sharma, K.; Pathak, S.; Kumar, M.; Sharma, P.K. Synthesis of medicinally important quinazolines and their derivatives: A review. Open Med. Chem. J., 2020, 14, 108-121.
[http://dx.doi.org/10.2174/1874104502014010108]
[21]
Dhawale, K.D.; Ingale, A.P.; Shinde, S.V.; Thorat, N.M.; Patil, L.R. ZnO-NPs catalyzed condensation of 2-aminothiophenol and aryl/alkyl nitriles: Efficient green synthesis of 2-substituted benzothiazoles. Synth. Commun., 2021, 51, 1588-1601.
[http://dx.doi.org/10.1080/00397911.2021.1894577]
[22]
Prajapati, N.P.; Vekariya, R.H.; Borad, M.A.; Patel, H.D. Recent advances in the synthesis of 2-substituted benzothiazoles: A review. RSC Advances, 2014, 4, 60176-60208.
[http://dx.doi.org/10.1039/C4RA07437H]
[23]
Ahmed, K.; Jeelani, I. Synthesis and in vitro antimicrobial screening of 3-acetyl-4-hydroxycoumarin hydrazones. Int. J. Pharma Bio Sci., 2019, 9, 1000-1005.
[24]
Itaya, K.; Jeelani, I.; Abe, H. Total synthesis of urolithin C 3-glucuronide. Heterocycles, 2021, 103, 1038-1047.
[http://dx.doi.org/10.3987/COM-20-S(K)51]
[25]
Itoh, T.; Mase, T. A novel practical synthesis of benzothiazoles via Pd-catalyzed thiol cross-coupling. Org. Lett., 2007, 9(18), 3687-3689.
[http://dx.doi.org/10.1021/ol7015737] [PMID: 17685625]
[26]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[27]
Gagoria, J.; Verma, P.K.; Khatkar, A. Anticonvulsant and neurological profile of benzothiazoles: A mini-review. Cent. Nerv. Syst. Agents Med. Chem., 2015, 15(1), 11-16.
[http://dx.doi.org/10.2174/1871524915666150112094206] [PMID: 25578435]
[28]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[29]
Heo, Y.; Song, Y.S.; Kim, B.T.; Heo, J.N. A highly regioselective synthesis of 2-aryl-6-chlorobenzothiazoles employing microwave-promoted Suzuki–Miyaura coupling reaction. Tetrahedron Lett., 2006, 47, 3091-3094.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.152]
[30]
Sharma, P.K.; Kaur, G. Antibacterial, antifungal and antioxidant activities of substituted pyrazolylbenzothiazines. Pharm. Lett., 2016, 8, 79-82.
[31]
Alaimo, R.J.; Pelosi, S.S.; Freedman, R. Synthesis and antibacterial evaluation of 2-(substituted phenylureido)-4-thiocyanatobenzothiazoles. J. Pharm. Sci., 1978, 67(2), 281-282.
[http://dx.doi.org/10.1002/jps.2600670247] [PMID: 621660]
[32]
Singh, M.; Singh, S.K.; Gangwar, M.; Nath, G.; Singh, S.K. Design, synthesis and mode of action of some benzothiazole derivatives bearing an amide moiety as antibacterial agents. RSC Advances, 2014, 4, 19013-19023.
[http://dx.doi.org/10.1039/C4RA02649G]
[33]
Asiri, Y.I.; Alsayari, A.; Muhsinah, A.B.; Mabkhot, Y.N.; Hassan, M.Z. Benzothiazoles as potential antiviral agents. J. Pharm. Pharmacol., 2020, 72(11), 1459-1480.
[http://dx.doi.org/10.1111/jphp.13331] [PMID: 32705690]
[34]
Paget, C.J.; Kisner, K.; Stone, R.L.; DeLong, D.C. Heterocyclic substituted ureas. II. Immunosuppressive and antiviral activity of benzothiazole- and benzoxazoleureas. J. Med. Chem., 1969, 12(6), 1016-1018.
[http://dx.doi.org/10.1021/jm00306a011] [PMID: 5351441]
[35]
el-Sherbeny, M.A. Synthesis of certain pyrimido[2,1-b]benzothiazole and benzothiazolo[2,3-b]quinazoline derivatives for in vitro antitumor and antiviral activities. Arzneimittelforschung, 2000, 50(9), 848-853.
[PMID: 11050704 ]
[36]
Sharma, P.K.; Fogla, A.; Rathore, B.S.; Kumar, M. Synthesis and antimicrobial activity of structurally flexible heterocycles with the 1, 4-thiazine heterosystem. Res. Chem. Intermed., 2011, 37, 1103-1111.
[http://dx.doi.org/10.1007/s11164-011-0320-0]
[37]
Sharma, P.K.; Kumar, M.; Mohan, V. Synthesis and antimicrobial activity of 2H-pyrimido [2, 1-b] benzothiazol-2-ones. Res. Chem. Intermed., 2010, 36, 985-993.
[http://dx.doi.org/10.1007/s11164-010-0211-9]
[38]
Sharma, P.K.; Kumar, M.; Vats, S. Synthesis and antimicrobial activity of morpholinyl/piperazinyl benzothiazines. Med. Chem. Res., 2012, 21, 2072-2078.
[http://dx.doi.org/10.1007/s00044-011-9732-z]
[39]
Sharma, P.K. A review on antimicrobial activities of important thiazines based heterocycles. Drug Invention Today, 2017, 9, 23-25.
[40]
Sharma, P.K.A. Review: Antimicrobial agents based on nitrogen and sulphur containing heterocycles. Asian J. Pharm. Clin. Res., 2017, 10, 47-49.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15673]
[41]
Chaucer, P.; Sharma, P.K. Study of thiazines as potential anticancer agents. Plant Arch., 2020, 20, 3199-3202.
[42]
Islam, M.K.; Baek, A-R.; Sung, B.; Yang, B-W.; Choi, G.; Park, H-J.; Kim, Y-H.; Kim, M.; Ha, S.; Lee, G-H.; Kim, H-K.; Chang, Y. Synthesis, characterization, and anticancer activity of benzothiazole aniline derivatives and their platinum (II) complexes as new chemotherapy agents. Pharmaceuticals (Basel), 2021, 14(8), 832.
[http://dx.doi.org/10.3390/ph14080832] [PMID: 34451928]
[43]
Nagarajan, S.R.; De Crescenzo, G.A.; Getman, D.P.; Lu, H.F.; Sikorski, J.A.; Walker, J.L.; McDonald, J.J.; Houseman, K.A.; Kocan, G.P.; Kishore, N.; Mehta, P.P.; Funkes-Shippy, C.L.; Blystone, L. Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg. Med. Chem., 2003, 11(22), 4769-4777.
[http://dx.doi.org/10.1016/j.bmc.2003.07.001] [PMID: 14556792]
[44]
Kok, S.H.L.; Gambari, R.; Chui, C.H.; Yuen, M.C.W.; Lin, E.; Wong, R.S.M.; Lau, F.Y.; Cheng, G.Y.M.; Lam, W.S.; Chan, S.H.; Lam, K.H.; Cheng, C.H.; Lai, P.B.; Yu, M.W.; Cheung, F.; Tang, J.C.; Chan, A.S. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem., 2008, 16(7), 3626-3631.
[http://dx.doi.org/10.1016/j.bmc.2008.02.005] [PMID: 18295491]
[45]
Cressier, D.; Prouillac, C.; Hernandez, P.; Amourette, C.; Diserbo, M.; Lion, C.; Rima, G. Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles. Bioorg. Med. Chem., 2009, 17(14), 5275-5284.
[http://dx.doi.org/10.1016/j.bmc.2009.05.039] [PMID: 19502068]
[46]
Doğruer, D.S.; Unlü, S.; Sahin, M.F.; Yeşilada, E. Anti-nociceptive and anti-inflammatory activity of some (2-benzoxazolone-3-yl and 2-benzothiazolone-3-yl)acetic acid derivatives. Farmaco, 1998, 53(1), 80-84.
[http://dx.doi.org/10.1016/S0014-827X(97)00017-7] [PMID: 9543729]
[47]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg. Med. Chem., 2014, 22(21), 5804-5812.
[http://dx.doi.org/10.1016/j.bmc.2014.09.028] [PMID: 25311566]
[48]
Naik, P.R.; Pandeya, S.N.; Pandey, A. Anti-inflammatory and analgesic activities of 1-[2-(substituted benzothiazole)]-1,3-diethyl-4-aryl guanidines. Indian J. Physiol. Pharmacol., 1996, 40(2), 189-190.
[PMID: 9062820]
[49]
Caleta, I.; Grdisa, M.; Mrvos-Sermek, D.; Cetina, M.; Tralić-Kulenović, V.; Pavelić, K.; Karminski-Zamola, G. Synthesis, crystal structure and antiproliferative evaluation of some new substituted benzothiazoles and styrylbenzothiazoles. Farmaco, 2004, 59(4), 297-305.
[http://dx.doi.org/10.1016/j.farmac.2004.01.008] [PMID: 15081347]
[50]
Das, J.; Moquin, R.V.; Lin, J.; Liu, C.; Doweyko, A.M.; DeFex, H.F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D.R.; Schieven, G.L.; Barrish, J.C.; Wityak, J. Discovery of 2-amino-heteroaryl-benzothiazole-6-anilides as potent p56(lck) inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(15), 2587-2590.
[http://dx.doi.org/10.1016/S0960-894X(03)00511-0] [PMID: 12852972]
[51]
Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J.C.; Boireau, A.; Bour, Y.; Coléno, M.A.; Doble, A.; Doerflinger, G.; Huu, C.D.; Donat, M.H.; Duchesne, J.M.; Ganil, P.; Guérémy, C.; Honor, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P.M.; Le Blevec, J.; Meunier, M.; Miquet, J.M.; Nemecek, C.; Mignani, S. Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J. Med. Chem., 1999, 42(15), 2828-2843.
[http://dx.doi.org/10.1021/jm980202u] [PMID: 10425092]
[52]
Rana, A.; Siddiqui, N.; Khan, S.A. Benzothiazoles: a new profile of biological activities. Indian J. Pharm. Sci., 2007, 69, 10-17.
[http://dx.doi.org/10.4103/0250-474X.32100]
[53]
Ma, H.; Zhuang, C.; Xu, X.; Li, J.; Wang, J.; Min, X.; Zhang, W.; Zhang, H.; Miao, Z. Discovery of benzothiazole derivatives as novel non-sulfamide NEDD8 activating enzyme inhibitors by target-based virtual screening. Eur. J. Med. Chem., 2017, 133, 174-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.076] [PMID: 28388520]
[54]
Mylari, B.L.; Larson, E.R.; Beyer, T.A.; Zembrowski, W.J.; Aldinger, C.E.; Dee, M.F.; Siegel, T.W.; Singleton, D.H. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl] methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J. Med. Chem., 1991, 34(1), 108-122.
[http://dx.doi.org/10.1021/jm00105a018] [PMID: 1899452]
[55]
Bahrami, K.; Khodaei, M.M.; Naali, F. Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. J. Org. Chem., 2008, 73(17), 6835-6837.
[http://dx.doi.org/10.1021/jo8010232] [PMID: 18652508]
[56]
Riadi, Y.; Mamouni, R.; Azzalou, R.; Haddadc, M.E.; Guillaumetd, S.R.G.; Lazara, S. An efficient and reusable heterogeneous catalyst animal bone meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles. Tetrahedron Lett., 2011, 52, 3492-3495.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.121]
[57]
Deng, H.; Li, Z.; Ke, F.; Zhou, X. Cu-catalyzed three-component synthesis of substituted benzothiazoles in water. Chemistry, 2012, 18(16), 4840-4843.
[http://dx.doi.org/10.1002/chem.201103525] [PMID: 22431176]
[58]
Xue, W-J.; Guo, Y-Q.; Gao, F-F.; Li, H-Z.; Wu, A-X. A novel self-sequence reaction network involving a set of six reactions in one pot: the synthesis of substituted benzothiazoles from aromatic ketones and anilines. Org. Lett., 2013, 15(4), 890-893.
[http://dx.doi.org/10.1021/ol400029t] [PMID: 23368771]
[59]
Kim, J.; Oh, K. Copper-catalyzed aerobic oxidation of amines to benzothiazoles via arene thiolation sequence. Adv. Synth. Catal., 2020, 362, 3576-3582.
[http://dx.doi.org/10.1002/adsc.202000598]
[60]
Qi, Y.; Chen, Y.; Xiu, F.R.; Hou, J. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicability. Sens. Actuators B Chem., 2020, 304, 127359.
[http://dx.doi.org/10.1016/j.snb.2019.127359]
[61]
Gao, X.; Yu, B.; Zhao, Y.; Hao, L.; Liu, C. Hydrosilane-promoted cyclization of 2-aminothiophenols by CO2 to benzothiazoles. RSC Advances, 2014, 4, 56957-56960.
[http://dx.doi.org/10.1039/C4RA09372K]
[62]
Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. Ionic liquid-catalyzed C–S bond construction using CO2 as a C1 building block under mild conditions: A metal-free route to synthesis of benzothiazoles. ACS Catal., 2015, 5, 6648-6652.
[http://dx.doi.org/10.1021/acscatal.5b01874]
[63]
Chun, S.; Yang, S.; Chung, Y.K. Synthesis of benzothiazoles from 2-aminobenzenethiols in the presence of a reusable polythiazolium precatalyst under atmospheric pressure of carbon dioxide. Tetrahedron, 2017, 73, 3438-3442.
[http://dx.doi.org/10.1016/j.tet.2017.05.003]
[64]
Folgueiras-Amador, A.A.; Qian, X.Y.; Xu, H.C.; Wirth, T. Catalyst-and supporting-electrolyte-free electrosynthesis of benzothiazoles and thiazolopyridines in continuous flow. Chemistry, 2018, 24(2), 487-491.
[http://dx.doi.org/10.1002/chem.201705016] [PMID: 29125202]
[65]
Bouchet, L.M.; Heredia, A.A.; Argüello, J.E.; Schmidt, L.C. Riboflavin as photoredox catalyst in the cyclization of thiobenzanilides: synthesis of 2-substituted benzothiazoles. Org. Lett., 2020, 22(2), 610-614.
[http://dx.doi.org/10.1021/acs.orglett.9b04384] [PMID: 31887062]
[66]
Rey, V.; Soria-Castro, S.M.; Argueello, J.E.; Penenory, A.B. Photochemical cyclization of thioformanilides by chloranil: An approach to 2-substituted benzothiazoles. Tetrahedron Lett., 2009, 50, 4720-4723.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.020]
[67]
Bose, D.S.; Idrees, M. Hypervalent iodine mediated intramolecular cyclization of thioformanilides: expeditious approach to 2-substituted benzothiazoles. J. Org. Chem., 2006, 71(21), 8261-8263.
[http://dx.doi.org/10.1021/jo0609374] [PMID: 17025321]
[68]
Downer-Riley, N.K.; Jackson, Y.A. Conversion of thiobenzamides to benzothiazoles via intramolecular cyclization of the aryl radical cation. Tetrahedron, 2008, 64, 7741-7744.
[http://dx.doi.org/10.1016/j.tet.2008.06.023]
[69]
Xu, Z.M.; Li, H.X.; Young, D.J.; Zhu, D.L.; Li, H.Y.; Lang, J.P. Exogenous photosensitizer-, metal-, and base-free visible-light-promoted C–H thiolation via reverse hydrogen atom transfer. Org. Lett., 2019, 21(1), 237-241.
[http://dx.doi.org/10.1021/acs.orglett.8b03679] [PMID: 30575402]
[70]
Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Aerobic visible-light photoredox radical C-H functionalization: catalytic synthesis of 2-substituted benzothiazoles. Org. Lett., 2012, 14(1), 98-101.
[http://dx.doi.org/10.1021/ol2028866] [PMID: 22146071]
[71]
Feng, E.; Huang, H.; Zhou, Y.; Ye, D.; Jiang, H.; Liu, H. Metal-free synthesis of 2-substituted (N, O, C) benzothiazoles via an intramolecular C-S bond formation. J. Comb. Chem., 2010, 12(4), 422-429.
[http://dx.doi.org/10.1021/cc9001839] [PMID: 20380448]
[72]
Wang, H.; Wang, L.; Shang, J.; Li, X.; Wang, H.; Gui, J.; Lei, A. Fe-catalysed oxidative C-H functionalization/C-S bond formation. Chem. Commun. (Camb.), 2012, 48(1), 76-78.
[http://dx.doi.org/10.1039/C1CC16184A] [PMID: 22089808]
[73]
Luo, B.; Li, D.; Zhang, A.L.; Gao, J.M. Synthesis, antifungal activities and molecular docking studies of benzoxazole and benzothiazole derivatives. Molecules, 2018, 23(10), 2457.
[http://dx.doi.org/10.3390/molecules23102457] [PMID: 30257495]
[74]
Racané, L.; Kralj, M.; Suman, L.; Stojković, R.; Tralić-Kulenović, V.; Karminski-Zamola, G. Novel amidino substituted 2-phenylbenzothiazoles: synthesis, antitumor evaluation in vitro and acute toxicity testing in vivo. Bioorg. Med. Chem., 2010, 18(3), 1038-1044.
[http://dx.doi.org/10.1016/j.bmc.2009.12.054] [PMID: 20060306]
[75]
Dar, A.A.; Shadab, M.; Khan, S.; Ali, N.; Khan, A.T. One-pot synthesis and evaluation of antileishmanial activities of functionalized S-alkyl/aryl benzothiazole-2-carbothioate scaffold. J. Org. Chem., 2016, 81(8), 3149-3160.
[http://dx.doi.org/10.1021/acs.joc.6b00113] [PMID: 26999637]
[76]
Nadaf, R.N.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. J. Mol. Catal. Chem., 2004, 214, 155-160.
[http://dx.doi.org/10.1016/j.molcata.2003.10.064]
[77]
Kumar, K.R.; Satyanarayana, P.V.V.; Reddy, B.S. NaHSO4 -SiO2 -promoted solvent-free synthesis of benzoxazoles, benzimidazoles, and benzothiazole derivatives. J. Chem., 2013, 2012, 1-10.
[http://dx.doi.org/10.1155/2013/151273]
[78]
Wu, C.; Wei, J.; Gao, K.; Wang, Y. Dibenzothiazoles as novel amyloid-imaging agents. Bioorg. Med. Chem., 2007, 15(7), 2789-2796.
[http://dx.doi.org/10.1016/j.bmc.2006.11.022] [PMID: 17293116]
[79]
Loukrakpam, D.C.; Phukan, P. TsNBr2 mediated synthesis of 2-acylbenzothiazoles and quinoxalines from aryl methyl ketones under metal free condition. ChemistrySelect, 2019, 4, 3180-3184.
[http://dx.doi.org/10.1002/slct.201900713]
[80]
Liao, Y.; Qi, H.; Chen, S.; Jiang, P.; Zhou, W.; Deng, G.J. Efficient 2-aryl benzothiazole formation from aryl ketones and 2-aminobenzenethiols under metal-free conditions. Org. Lett., 2012, 14(23), 6004-6007.
[http://dx.doi.org/10.1021/ol302902e] [PMID: 23151061]
[81]
Mayo, M.S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Convenient synthesis of benzothiazoles and benzimidazoles through Brønsted acid catalyzed cyclization of 2-amino thiophenols/anilines with β-diketones. Org. Lett., 2014, 16(3), 764-767.
[http://dx.doi.org/10.1021/ol403475v] [PMID: 24410080]
[82]
Elderfield, R.C.; McClenachan, E.C. Pyrolysis of the products of the reaction of o-aminobenzenethiols with ketones1. J. Am. Chem. Soc., 1960, 82, 1982-1988.
[http://dx.doi.org/10.1021/ja01493a035]
[83]
Bhat, R.; Karhale, S.; Arde, S.; Helavi, V. Acacia concinna pod catalyzed synthesis of 2-arylbenzothia/(oxa) zole derivatives. Iran. J. Catal., 2019, 9, 173-179.
[84]
Ye, L.; Chen, J.; Mao, P.; Mao, Z.; Zhang, X.; Yan, M. Visible-light-promoted synthesis of benzothiazoles from 2-aminothiophenols and aldehydes. Tetrahedron Lett., 2017, 58, 874-876.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.053]
[85]
Maleki, B.; Salehabadi, H. Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives. Eur. J. Chem., 2010, 1, 377-380.
[http://dx.doi.org/10.5155/eurjchem.1.4.377-380.165]
[86]
Batista, R.M.; Costa, S.P.; Raposo, M.M.M. Synthesis of new fluorescent 2-(2´, 2´´-bithienyl)-1, 3-benzothiazoles. Tetrahedron Lett., 2004, 45, 2825-2828.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.048]
[87]
Merroun, Y.; Chehab, S.; Ghailane, T.; Akhazzane, M. Souizi1, A.; Ghailane, R. Preparation of tin-modified mono-ammonium phosphate fertilizer and its application as heterogeneous catalyst in the benzimidazoles and benzothiazoles synthesis. React. Kinet. Mech. Catal., 2019, 126, 249-264.
[http://dx.doi.org/10.1007/s11144-018-1446-5]
[88]
Praveen, C.; Nandakumar, A.; Dheenkumar, P.; Muralidharan, D.; Perumal, P. Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents. J. Chem. Sci., 2012, 124, 609-624.
[http://dx.doi.org/10.1007/s12039-012-0251-3]
[89]
Guo, H.Y.; Li, J.C.; Shang, Y.L. A simple and efficient synthesis of 2-substituted benzothiazoles catalyzed by H2O2/HCl. Chin. Chem. Lett., 2009, 20, 1408-1410.
[http://dx.doi.org/10.1016/j.cclet.2009.06.037]
[90]
Kumar, A.; Maurya, R.A.; Ahmad, P. Diversity oriented synthesis of benzimidazole and benzoxa/(thia)zole libraries through polymer-supported hypervalent iodine reagent. J. Comb. Chem., 2009, 11(2), 198-201.
[http://dx.doi.org/10.1021/cc8001876] [PMID: 19152269]
[91]
Maphupha, M.; Juma, W.P.; Koning, C.B.; Brady, D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Advances, 2018, 8, 39496-39510.
[http://dx.doi.org/10.1039/C8RA07377E]
[92]
Coelho, F.L.; Campo, L.F. Synthesis of 2-arylbenzothiazoles via direct condensation between in situ generated 2-aminothiophenol from disulfide cleavage and carboxylic acids. Tetrahedron Lett., 2017, 58, 2330-2333.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.078]
[93]
Gupta, S.D.; Singh, H.P.; Moorthy, N. Iodine-catalyzed, one-pot, solid-phase synthesis of benzothiazole derivatives. Synth. Commun., 2007, 37, 4327-4329.
[http://dx.doi.org/10.1080/00397910701575657]
[94]
Sharghi, H.; Asemani, O. Methanesulfonic acid/SiO2 as an efficient combination for the synthesis of 2-substituted aromatic and aliphatic benzothiazoles from carboxylic acids. Synth. Commun., 2009, 39, 860-867.
[http://dx.doi.org/10.1080/00397910802431214]
[95]
Rauf, A.; Gangal, S.; Sharma, S. Solvent-free synthesis of 2-alkyl and 2-alkenylbenzothiazoles from fatty acids under microwave irradiation. Indian J. Chem., 2008, 47, 601-605.
[http://dx.doi.org/10.1002/chin.200831156]
[96]
Mokhir, A.A.; Domasevich, K.V.; Dalley, N.K.; Kou, X.; Gerasimchuk, N.N.; Gerasimchuk, O.A. Synthesis, crystal structures and coordination compounds of some 2-hetarylcyanoximes. Inorg. Chim. Acta, 1999, 284, 85-98.
[http://dx.doi.org/10.1016/S0020-1693(98)00290-4]
[97]
Van Zandt, M.C.; Sibley, E.O.; McCann, E.E.; Combs, K.J.; Flam, B.; Sawicki, D.R.; Sabetta, A.; Carrington, A.; Sredy, J.; Howard, E.; Mitschler, A.; Podjarny, A.D. Design and synthesis of highly potent and selective (2-arylcarbamoyl-phenoxy)-acetic acid inhibitors of aldose reductase for treatment of chronic diabetic complications. Bioorg. Med. Chem., 2004, 12(21), 5661-5675.
[http://dx.doi.org/10.1016/j.bmc.2004.07.062] [PMID: 15465344]
[98]
Sun, Y.; Jiang, H.; Wu, W.; Zeng, W.; Wu, X. Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles. Org. Lett., 2013, 15(7), 1598-1601.
[http://dx.doi.org/10.1021/ol400379z] [PMID: 23496117]
[99]
Khalil, Z.H.; Yanni, A.S.; Gaber, A.M.; Abdel-Mohsen, S.A. Synthesis and reactions of some new 5-carbonyl (4-amino-3-cyano-2-substituted thiophene-5-yl)-8-hydroxyquinoline (Part II). Synthesis of thiazole; isoxazole; pyrazole; pyrimidine; and pyridazine derivatives as possible antimicrobial agents. Phosphorus Sulfur Silicon Relat. Elem., 2000, 166, 57-69.
[http://dx.doi.org/10.1080/10426500008076531]
[100]
Manfroni, G.; Meschini, F.; Barreca, M.L.; Leyssen, P.; Samuele, A.; Iraci, N.; Sabatini, S.; Massari, S.; Maga, G.; Neyts, J.; Cecchetti, V. Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorg. Med. Chem., 2012, 20(2), 866-876.
[http://dx.doi.org/10.1016/j.bmc.2011.11.061] [PMID: 22197397]
[101]
Reddy, A.C.S.; Rao, P.S.; Venkataratnam, R.V. Fluoro-organics: Facile syntheses of novel 2- or 4-trifluoromethyl-1H-arylo-1, 5-diazepines, oxazepines, thiazepines, 2-(1,1,1-trifluoroacetonyl)imidazoles, oxazoles and thiazoles. Tetrahedron, 1997, 53, 5847-5854.
[http://dx.doi.org/10.1016/S0040-4020(97)00244-5]
[102]
Rajeeva, B.; Srinivasulu, N.; Shantakumar, S.M. Synthesis and antimicrobial activity of some new 2-substituted benzothiazole derivatives. J. Chem., 2009, 6, 775-779.
[103]
Bastug, G.; Eviolitte, C.; Markó, I.E. Functionalized orthoesters as powerful building blocks for the efficient preparation of heteroaromatic bicycles. Org. Lett., 2012, 14(13), 3502-3505.
[http://dx.doi.org/10.1021/ol301472a] [PMID: 22735031]
[104]
Karlsson, H.J.; Bergqvist, M.H.; Lincoln, P.; Westman, G. Syntheses and DNA-binding studies of a series of unsymmetrical cyanine dyes: structural influence on the degree of minor groove binding to natural DNA. Bioorg. Med. Chem., 2004, 12(9), 2369-2384.
[http://dx.doi.org/10.1016/j.bmc.2004.02.006] [PMID: 15080934]
[105]
Huang, W.; Yang, G.F. Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles. Bioorg. Med. Chem., 2006, 14(24), 8280-8285.
[http://dx.doi.org/10.1016/j.bmc.2006.09.016] [PMID: 17008103]
[106]
Murru, S.; Mondal, P.; Yella, R.; Patel, B.K. Copper (I)-catalyzed cascade synthesis of 2-substituted 1, 3-benzothiazoles: Direct access to benzothiazolones. Eur. J. Org. Chem., 2009, 2009, 5406-5413.
[http://dx.doi.org/10.1002/ejoc.200900711]
[107]
El-Sharief, A.M.S.; Ammar, Y.A.; Zahran, M.A.; Sabet, H.K. 1, 4-phenylenediisothiocyanate in the synthesis of bis-(thioureas, benzothiazole, quinazoline, 1, 3-benzoxazine and imidazolidineiminothiones) derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179, 267-275.
[http://dx.doi.org/10.1080/10426500490274682]
[108]
Ghorab, M.M.; Osman, A.N.; Noaman, E.; Heiba, H.I.; Zaher, N.H. The utility of isothiocyanato thiophenes in the synthesis of thieno [2,3-d] pyrimidine derivatives as possible radioprotective and anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181, 1983-1996.
[http://dx.doi.org/10.1080/10426500500544238]
[109]
Le, Z.G.; Xu, J.P.; Rao, H.Y.; Ying, M. One-pot synthesis of 2-aminobenzothiazoles using a new reagent of [bmim] br3 in [bmim] BF4. J. Heterocycl. Chem., 2006, 43, 1123-1124.
[http://dx.doi.org/10.1002/jhet.5570430447]
[110]
Cano, R.; Ramón, D.J.; Yus, M. Transition-metal-free O-, S-, and N-arylation of alcohols, thiols, amides, amines, and related heterocycles. J. Org. Chem., 2011, 76(2), 654-660.
[http://dx.doi.org/10.1021/jo1022052] [PMID: 21175155]
[111]
Ding, Q.; He, X.; Wu, J. Synthesis of 2-aminobenzothiazole via copper(I)-catalyzed tandem reaction of 2-iodobenzenamine with isothiocyanate. J. Comb. Chem., 2009, 11(4), 587-591.
[http://dx.doi.org/10.1021/cc900027c] [PMID: 19449803]
[112]
Guo, Y.J.; Tang, R.Y.; Zhong, P.; Li, J.H. Copper-catalyzed tandem reactions of 2-halobenzenamines with isothiocyanates under ligand- and base-free conditions. Tetrahedron Lett., 2010, 51, 649-652.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.086]
[113]
Wang, F.; Cai, S.; Wang, Z.; Xi, C. Synthesis of 2-mercaptobenzothiazoles via DBU-promoted tandem reaction of o-haloanilines and carbon disulfide. Org. Lett., 2011, 13(12), 3202-3205.
[http://dx.doi.org/10.1021/ol2011105] [PMID: 21591631]
[114]
Shi, L.; Liu, X.; Zhang, H.; Jiang, Y.; Ma, D. Synthesis of 2-thio-substituted benzothiazoles via a domino condensation/S-arylation/heterocyclization process. J. Org. Chem., 2011, 76(10), 4200-4204.
[http://dx.doi.org/10.1021/jo200535e] [PMID: 21495655]
[115]
Ma, D.; Lu, X.; Shi, L.; Zhang, H.; Jiang, Y.; Liu, X. Domino condensation/S-arylation/heterocyclization reactions: copper-catalyzed three-component synthesis of 2-N-substituted benzothiazoles. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1118-1121.
[http://dx.doi.org/10.1002/anie.201005787] [PMID: 21268208]
[116]
Sharma, S.; Pathare, R.S.; Maurya, A.K.; Gopal, K.; Roy, T.K.; Sawant, D.M.; Pardasani, R.T. Ruthenium catalyzed intramolecular C-S coupling reactions: Synthetic scope and mechanistic insight. Org. Lett., 2016, 18(3), 356-359.
[http://dx.doi.org/10.1021/acs.orglett.5b03185] [PMID: 26761401]
[117]
Djuidje, E.N.; Sciabica, S.; Buzzi, R.; Dissette, V.; Balzarini, J.; Liekens, S.; Serra, E.; Andreotti, E.; Manfredini, S.; Vertuani, S.; Baldisserotto, A. Design, synthesis and evaluation of benzothiazole derivatives as multifunctional agents. Bioorg. Chem., 2020, 101, 103960.
[http://dx.doi.org/10.1016/j.bioorg.2020.103960] [PMID: 32559579]
[118]
Ghanavatkar, C.W.; Mishra, V.R.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Synthesis, bioactivities, DFT and in-silico appraisal of azo clubbed benzothiazole derivatives. J. Mol. Struct., 2019, 1192, 162-171.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.123]
[119]
Ikpa, C.; Onoja, S.; Okwaraji, A. Synthesis and antibacterial activities of benzothiazole derivatives of sulphonamides. Acta Chem. Malays., 2020, 4, 55-57.
[http://dx.doi.org/10.2478/acmy-2020-0009]
[120]
Joyce, L.L.; Evindar, G.; Batey, R.A. Copper- and palladium-catalyzed intramolecular C-S bond formation: A convenient synthesis of 2-aminobenzothiazoles. Chem. Commun. (Camb.), 2004, 4(4), 446-447.
[http://dx.doi.org/10.1039/B311591G] [PMID: 14765251]
[121]
Cheng, Y.; Peng, Q.; Fan, W.; Li, P. Room-temperature ligand-free Pd/C-catalyzed C-S bond formation: synthesis of 2-substituted benzothiazoles. J. Org. Chem., 2014, 79(12), 5812-5819.
[http://dx.doi.org/10.1021/jo5002752] [PMID: 24853248]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy