Abstract
In recent years, the effective use of CO2 has become one of the research hotspots worldwide to solve environmental pollution and energy shortage, whose excessive emission led to increasingly serious global environmental problems. Metal-organic frameworks (MOFs), with extraordinary specific surface areas, tunable surface chemistry, fast electron migration rate, large CO2 adsorption capacity, etc. are a new class of functional materials composed of metal ions/clusters and organic ligands, which have broad application potential in CO2 photocatalytic reduction. This paper systematically generalized the composition of the structure, discussed the methods of synthetics and expounded the photocatalytic properties and photocatalytic mechanism of MOFs. In addition, the application and research progress of MOFs functional materials in recent research are reviewed. The article also summarized challenges and prospects for the large-scale photocatalytic applications of MOFs catalysts. It guides the preparation of novel modified MOFs photocatalysts for high-efficiency applications in the field of CO2 reduction and photocatalytic degradation of dyes.
Keywords: Metal-organic framework, CO2 reduction, photocatalyst, method, mechanism, research advances
Graphical Abstract