Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

A Review on Mechanical Properties of Natural Fibre Reinforced PLA Composites

Author(s): Agnivesh Kumar Sinha, Kasi Raja Rao, Vinay Kumar Soni, Rituraj Chandrakar, Hemant Kumar Sharma and Anil Kumar*

Volume 16, Issue 4, 2023

Published on: 18 January, 2022

Page: [365 - 375] Pages: 11

DOI: 10.2174/2666145415666211228163914

Price: $65

Abstract

Presently, scientists and researchers are in an endless quest to develop green, recyclable, and eco-friendly materials. Natural fibre reinforced polymer composites became popular among materialists due to their lightweight, high strength-to-weight ratio, and biodegradability. However, all-natural fibre reinforced polymer composites are not biodegradable. Polymer matrices like poly-lactic acid (PLA) and poly-butylene succinate (PBS) are biodegradable, whereas epoxy, polypropylene, and polystyrene are non-biodegradable polymer matrices. Besides biodegradability, PLA has been known for its excellent physical and mechanical properties. This review emphasises the mechanical properties (tensile, flexural, and impact strengths) of natural fibrereinforced PLA composites. Factors affecting the mechanical properties of PLA composites are also discussed. It also unveils research gaps from the previous literature, which shows that limited studies are reported based on modeling and prediction of mechanical properties of hybrid PLA composites reinforcing natural fibres like abaca, aloe vera, and bamboo fibres.

Keywords: Polylactic acid, natural fibre, natural fibre reinforced polymer composites, mechanical properties, biodegradable, tensile strength, flexural strength, impact strength.

Next »
[1]
Mastour N, Bouchriha H. Effect of CdSe nanoparticles on the fluorescence spectra of conjugate polymer P3HT: An experimental and theoretical study. Phys Lett A 2016; 380(45): 3866-9.
[http://dx.doi.org/10.1016/j.physleta.2016.09.047]
[2]
Sinha AK, Narang HK, Bhattacharya S. Mechanical properties of natural fibre polymer composites. J Polym Eng 2017; 37: 879-95.
[http://dx.doi.org/10.1515/polyeng-2016-0362]
[3]
Sinha AK, Narang HK, Bhattacharya S. Mechanical properties of hybrid polymer composites: A review. J Braz Soc Mech Sci Eng 2020; 42: 431.
[http://dx.doi.org/10.1007/s40430-020-02517-w]
[4]
Saidi H, Zitouni O, Ridene S. Investigation of orientation dependence of piezoelectric effects in strained GaAs/InGaAs quantum well laser. Mater Sci Eng B 2021; 273: 115400.
[http://dx.doi.org/10.1016/j.mseb.2021.115400]
[5]
Nirmal U, Hashim J, Megat Ahmad MMH. A review on tribological performance of natural fibre polymeric composites. Tribol Int 2015; 83: 77-104.
[http://dx.doi.org/10.1016/j.triboint.2014.11.003]
[6]
Sinha AK, Narang HK, Bhattacharya S. Effect of Alkali treatment on surface morphology of Abaca fibre. Mater Today Proc 2017; 4: 8993-6.
[http://dx.doi.org/10.1016/j.matpr.2017.07.251]
[7]
Sinha AK, Narang HK, Bhattacharya S. Experimental investigation of surface modified Abaca fibre. Mater Sci Forum 2020; 978: 291-5.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.978.291]
[8]
Sinha AK, Narang HK, Bhattacharya S. Evaluation of bending strength of Abaca reinforced polymer composites. Mater Today Proc 2018; 5: 7284-8.
[http://dx.doi.org/10.1016/j.matpr.2017.11.396]
[9]
Sinha AK, Narang HK, Bhattacharya S. Tensile strength of Abaca epoxy laminated composites. Mater Today 2018; 14(2): 27861-4.
[http://dx.doi.org/10.1016/j.matpr.2018.10.024]
[10]
Sinha AK, Bhattacharya S, Narang HK. Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polym Polymer Compos 2019; 27: 597-608.
[http://dx.doi.org/10.1177/0967391119855843]
[11]
Sinha AK, Narang HK, Bhattacharya S. A fuzzy logic approach for modelling and prediction of mechanical properties of hybrid abaca-reinforced polymer composite. J Braz Soc Mech Sci Eng 2020; 42: 282.
[http://dx.doi.org/10.1007/s40430-020-02377-4]
[12]
Ramnath VB, Kokan JS, Raja NR, et al. Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 2013; 51: 357-66.
[http://dx.doi.org/10.1016/j.matdes.2013.03.102]
[13]
Rahman MR, Huque MM, Islam MN, Hasan M. Mechanical properties of polypropylene composites reinforced with chemically treat-ed abaca. Compos, Part A Appl Sci Manuf 2009; 40: 511-7.
[http://dx.doi.org/10.1016/j.compositesa.2009.01.013]
[14]
Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev 2016; 107: 367-92.
[http://dx.doi.org/10.1016/j.addr.2016.06.012] [PMID: 27356150]
[15]
Sood M, Dwivedi G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt J Pet 2018; 27: 775-83.
[http://dx.doi.org/10.1016/j.ejpe.2017.11.005]
[16]
Sahu G, Rajput MS, Sahu UN, Mahapatra SP. Production (Synthesis) and Rheological Properties of Poly Lactic Acid (PLA) for Food Packaging and Biomedical Application. 2-4.
[17]
Sahu G, Rajput MS, Mahapatra SP. Effect of calcium phosphate on tensile and rheological properties of polylactic acid (Pla). Mater Sci Forum 2019; 969: 404-8.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.969.404]
[18]
Garlotta D. A literature review of poly(lactic acid). J Polym Environ 2001; 9: 63-84.
[http://dx.doi.org/10.1023/A:1020200822435]
[19]
Nam TH, Ogihara S, Kobayashi S. Interfacial, mechanical and thermal properties of coir fiber-reinforced Poly(Lactic Acid) biode-gradable composites. Adv Compos Mater 2012; 21: 103-22.
[http://dx.doi.org/10.1163/156855112X629540]
[20]
Manral A, Ahmad F, Chaudhary V. Static and dynamic mechanical properties of PLA bio-composite with hybrid reinforcement of flax and jute. Mater Today 2020; 25(4): 577-80.
[21]
Alam AKMM, Mina MF, Beg MDH, et al. Thermo-mechanical and morphological properties of short natural fiber reinforced poly (lactic acid) biocomposite: Effect of fiber treatment. Fibers Polym 2014; 15: 1303-9.
[http://dx.doi.org/10.1007/s12221-014-1303-8]
[22]
Battegazzore D, Alongi J, Frache A. Poly(lactic acid)-based composites containing natural fillers: Thermal, mechanical and barrier properties. J Polym Environ 2014; 22: 88-98.
[http://dx.doi.org/10.1007/s10924-013-0616-9]
[23]
Bayart M, Gauvin F, Foruzanmehr MR, et al. Mechanical and moisture absorption characterization of PLA composites reinforced with nano-coated flax fibers. Fibers Polym 2017; 18: 1288-95.
[http://dx.doi.org/10.1007/s12221-017-7123-x]
[24]
Chinga-Carrasco G, Solheim O, Lenes M, Larsen A. A method for estimating the fibre length in fibre-PLA composites. J Microsc 2013; 250(1): 15-20.
[http://dx.doi.org/10.1111/jmi.12012] [PMID: 23339585]
[25]
Akpan EI, Gbenebor OP, Igogori EA, et al. Electrospun porous bio-fibre mat based on polylactide/natural fibre particles. Arab J Basic Appl Sci 2019; 26: 225-35.
[http://dx.doi.org/10.1080/25765299.2019.1607995]
[26]
Surin P, Rakkwamsuk P, Wimolmala E, Sombatsompop N. Effects of coir fiber and maleic anhydride modification on the properties of thermoplastic starch/PLA composite laminates. J Nat Fibers 2015; 12: 108-20.
[http://dx.doi.org/10.1080/15440478.2014.901203]
[27]
Jiang N, Li Y, Yu T, et al. Effect of saline and alkaline solution aging on the properties of jute/poly(lactic acid) composites. Polym Compos 2020; 41: 1003-12.
[http://dx.doi.org/10.1002/pc.25432]
[28]
Tawakkal ISMA, Cran MJ, Bigger SW. The influence of chemically treated natural fibers in poly(lactic acid) composites containing thymol. Polym Compos 2018; 39: 1261-72.
[http://dx.doi.org/10.1002/pc.24062]
[29]
Debeli DK, Qin Z, Guo J. Study on the pre-treatment, physical and chemical properties of ramie fibers reinforced poly (lactic acid) (PLA) biocomposite. J Nat Fibers 2018; 15: 596-610.
[http://dx.doi.org/10.1080/15440478.2017.1349711]
[30]
Zhanglin L. Improvement of interfacial adhesion and mechanical properties of sisal fiber-reinforced poly(lactic acid) composites with added bisoxazoline. Polym Compos 2020; 41: 1841-52.
[http://dx.doi.org/10.1002/pc.25502]
[31]
Du Y, Yan N, Kortschot MT. Novel lightweight sandwich-structured bio-fiber-reinforced poly(lactic acid) composites. J Mater Sci 2014; 49: 2018-26.
[http://dx.doi.org/10.1007/s10853-013-7889-1]
[32]
Fortunati E, Puglia D, Monti M, et al. Okra (Abelmoschus esculentus) Fibre based PLA composites: Mechanical behaviour and bio-degradation. J Polym Environ 2013; 21: 726-37.
[http://dx.doi.org/10.1007/s10924-013-0571-5]
[33]
Frone AN, Berlioz S, Chailan J-F, et al. Cellulose fiber-reinforced polylactic acid. Polym Compos 2011; 32: 976-85.
[http://dx.doi.org/10.1002/pc.21116]
[34]
Guan M, Zhang Z, Yong C, Du K. Interface compatibility and mechanisms of improved mechanical performance of starch/poly(lactic acid) blend reinforced by bamboo shoot shell fibers. J Appl Polym Sci 2019; 136: 1-8.
[http://dx.doi.org/10.1002/app.47899]
[35]
Hamdan MHM, Siregar JP, Rejab MRM, et al. Effect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA matrix polymer composite. Int J Precis Eng Manuf Green Technol 2019; 6: 113-24.
[http://dx.doi.org/10.1007/s40684-019-00017-4]
[36]
Gunti R, Ratna Prasad AV, Gupta AVSSKS. Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polym Compos 2018; 39: 1125-36.
[http://dx.doi.org/10.1002/pc.24041]
[37]
Jiang N, Yu T, Li Y. Effect of hydrothermal aging on injection molded short jute fiber reinforced poly(lactic acid) (PLA) composites. J Polym Environ 2018; 26: 3176-86.
[http://dx.doi.org/10.1007/s10924-018-1205-8]
[38]
Jiang A, Xu X, Wu H. Preparation and properties of L -lactide-grafted sisal fiber-reinforced poly(lactic acid) composites. Polym Compos 2016; 37: 802-9.
[http://dx.doi.org/10.1002/pc.23237]
[39]
Luo H, Zhang C, Xiong G, Wan Y. Effects of alkali and alkali/silane treatments of corn fibers on mechanical and thermal properties of its composites with polylactic acid. Polym Compos 2016; 37: 3499-507.
[http://dx.doi.org/10.1002/pc.23549]
[40]
Tengsuthiwat J, Asawapirom U, Siengchin S, Karger-Kocsis J. Mechanical, thermal, and water absorption properties of melamine–formaldehyde-treated sisal fiber containing poly(lactic acid) composites. J Appl Polym Sci 2018; 135: 1-9.
[http://dx.doi.org/10.1002/app.45681]
[41]
Venkata Prasad C, Sudhakara P, Prabhakar MN, et al. An investigation on the effect of silica aerogel content on thermal and mechani-cal properties of Sisal/PLA nano composites. Polym Compos 2018; 39: 835-40.
[http://dx.doi.org/10.1002/pc.24005]
[42]
Zhu Z, Hao M, Zhang N. Influence of contents of chemical compositions on the mechanical property of sisal fibers and sisal fibers reinforced PLA composites. J Nat Fibers 2020; 17: 101-12.
[http://dx.doi.org/10.1080/15440478.2018.1469452]
[43]
Harmaen AS, Khalina A, Faizal AR, Jawaid M. Effect of triacetin on tensile properties of oil palm empty fruit bunch fiber-reinforced polylactic acid composites. Polym Plast Technol Eng 2013; 52: 400-6.
[http://dx.doi.org/10.1080/03602559.2012.754897]
[44]
Kaewpirom S, Worrarat C. Preparation and properties of pineapple leaf fiber reinforced poly(lactic acid) green composites. Fibers Polym 2014; 15: 1469-77.
[http://dx.doi.org/10.1007/s12221-014-1469-0]
[45]
Karsli NG, Aytac A. Properties of alkali treated short flax fiber reinforced poly(lactic acid)/polycarbonate composites. Fibers Polym 2014; 15: 2607-12.
[http://dx.doi.org/10.1007/s12221-014-2607-4]
[46]
Kodal M, Topuk ZD, Ozkoc G. Dual effect of chemical modification and polymer precoating of flax fibers on the properties of short flax fiber/poly(lactic acid) composites. J Appl Polym Sci 2015; 13: 42564.
[http://dx.doi.org/10.1002/app.42564]
[47]
Liu H, He H, Peng X, et al. Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polym Adv Technol 2019; 30: 910-22.
[http://dx.doi.org/10.1002/pat.4524]
[48]
Long H, Wu Z, Dong Q, et al. Effect of polyethylene glycol on mechanical properties of bamboo fiber-reinforced polylactic acid com-posites. J Appl Polym Sci 2019; 136: 3-10.
[http://dx.doi.org/10.1002/app.47709]
[49]
Bayart M, Adjallé K, Diop A, et al. PLA/flax fiber bio-composites: Effect of polyphenol-based surface treatment on interfacial adhe-sion and durability. Compos Interfaces 2020; 28(3): 287-308.
[http://dx.doi.org/10.1080/09276440.2020.1773179]
[50]
Werchefani M, Lacoste C, Elloumi A, et al. Enzyme-treated Tunisian Alfa fibers reinforced polylactic acid composites: An investiga-tion in morphological, thermal, mechanical, and water resistance properties. Polym Compos 2020; 41: 1721-35.
[http://dx.doi.org/10.1002/pc.25492]
[51]
Qian S, Mao H, Sheng K, et al. Effect of low-concentration alkali solution pretreatment on the properties of bamboo particles rein-forced poly(lactic acid) composites. J Appl Polym Sci 2013; 130: 1667-74.
[http://dx.doi.org/10.1002/app.39328]
[52]
Raghu N, Kale A, Raj A, et al. Mechanical and thermal properties of wood fibers reinforced poly(lactic acid)/thermoplasticized starch composites. J Appl Polym Sci 2018; 135: 1-10.
[http://dx.doi.org/10.1002/app.46118]
[53]
Yang Z, Feng X, Bi Y, et al. Bleached extruder chemi-mechanical pulp fiber-PLA composites: Comparison of mechanical, thermal, and rheological properties with those of wood flour-PLA bio-composites. J Appl Polym Sci 2016; 133: 1-9.
[http://dx.doi.org/10.1002/app.44241]
[54]
Zhong J, Li H, Yu J, Tan T. Effects of natural fiber surface modification on mechanical properties of poly(lactic acid) (PLA)/sweet sorghum fiber composites. Polym Plast Technol Eng 2011; 50: 1583-9.
[http://dx.doi.org/10.1080/03602559.2011.557817]
[55]
Bledzki AK, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos, Part A Appl Sci Manuf 2009; 40: 404-12.
[http://dx.doi.org/10.1016/j.compositesa.2009.01.002]
[56]
Siakeng R, Jawaid M, Ariffin H, Sapuan SM. Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber rein-forced polylactic acid hybrid biocomposites. Polym Compos 2019; 40: 2000-11.
[http://dx.doi.org/10.1002/pc.24978]
[57]
Kumar R, Yakubu MK, Anandjiwala RD. Flax fibre reinforced polylactic acid composites with amphiphilic additives. Plast Rubber Compos 2010; 39: 437-44.
[http://dx.doi.org/10.1179/174328910X12691245470031]
[58]
Gunti R, Ratna Prasad AV, Gupta AVSSKS. Preparation and properties of successive alkali treated completely biodegradable short jute fiber reinforced PLA composites. Polym Compos 2016; 37: 2160-70.
[http://dx.doi.org/10.1002/pc.23395]
[59]
Feng NL, Malingam SD, Razali N, Subramonian S. Alkali and silane treatments towards exemplary mechanical properties of kenaf and pineapple leaf fibre-reinforced composites. J Bionics Eng 2020; 17: 380-92.
[http://dx.doi.org/10.1007/s42235-020-0031-6]
[60]
Ramesh P, Prasad BD, Narayana KL. Effect of fiber hybridization and montmorillonite clay on properties of treated kenaf/aloe vera fiber reinforced PLA hybrid nanobiocomposite. Cellulose 2020; 27: 6977-93.
[http://dx.doi.org/10.1007/s10570-020-03268-6]
[61]
Lu T, Liu S, Jiang M, et al. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Compos, Part B Eng 2014; 62: 191-7.
[http://dx.doi.org/10.1016/j.compositesb.2014.02.030]
[62]
Motru S, Adithyakrishna VH, Bharath J, Guruprasad R. Development and evaluation of mechanical properties of biodegradable PLA/flax fiber green composite laminates. Mater Today Proc 2020; 24: 641-9.
[http://dx.doi.org/10.1016/j.matpr.2020.04.318]
[63]
Zhang H, Ming R, Yang G, et al. Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 2015; 55: 2553-8.
[http://dx.doi.org/10.1002/pen.24147]
[64]
Siengchin S. Reinforced flax mat/modified polylactide (PLA) composites: Impact, thermal, and mechanical properties. Mech Compos Mater 2014; 50: 257-66.
[http://dx.doi.org/10.1007/s11029-014-9412-4]
[65]
Gibeop N, Lee DW, Prasad CV, et al. Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites. Adv Compos Mater 2013; 22: 389-99.
[http://dx.doi.org/10.1080/09243046.2013.843814]
[66]
Ben G, Kihara Y, Nakamori K, Aoki Y. Examination of heat resistant tensile properties and molding conditions of green composites composed of kenaf fibers and PLA resin. Adv Compos Mater Off J Japan Soc Compos Mater 2007; 16: 361-76.
[http://dx.doi.org/10.1163/156855107782325203]
[67]
Zhou L, Ju Y, Liao F, et al. Improve the mechanical property and flame retardant efficiency of the composites of poly(lactic acid) and resorcinol di(phenyl phosphate) (RDP) with ZnO-coated kenaf. Fire Mater 2014; 40(1): 129-40.
[http://dx.doi.org/10.1002/fam.2274]
[68]
Shumao L, Jie R, Hua Y, et al. Influence of ammonium polyphosphate on the flame retardancy andmechanical properties of ramie fi-ber-reinforced poly(lactic acid) biocomposites. Polym Int 2010; 59: 242-8.
[http://dx.doi.org/10.1002/pi.2715]
[69]
Asaithambi B, Ganesan G, Ananda Kumar S. Bio-composites: Development and mechanical characterization of banana/sisal fibre rein-forced poly lactic acid (PLA) hybrid composites. Fibers Polym 2014; 15: 847-54.
[http://dx.doi.org/10.1007/s12221-014-0847-y]
[70]
Duan J, Wu H, Fu W, Hao M. Mechanical properties of hybrid sisal/coir fibers reinforced polylactide biocomposites. Polym Compos 2018; 39: E188-99.
[http://dx.doi.org/10.1002/pc.24489]
[71]
Jiang A, Chen X, Gao D. Mechanical properties comparison of various ratios of l-lactide grafted sisal fibers and untreated sisal fibers reinforced poly (lactic acid) composites. J Macromol Sci Part B Phys 2019; 58: 161-73.
[http://dx.doi.org/10.1080/00222348.2018.1558590]
[72]
Samouh Z, Molnar K, Boussu F, et al. Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites. Polym Adv Technol 2019; 30: 529-37.
[http://dx.doi.org/10.1002/pat.4488]
[73]
Chaitanya S, Singh I. Ecofriendly treatment of aloe vera fibers for PLA based green composites. Int J Precis Eng Manuf-Green Technol 2018; 5: 143-50.
[http://dx.doi.org/10.1007/s40684-018-0015-8]
[74]
Mathew AP, Oksman K, Sain M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 2005; 97: 2014-25.
[http://dx.doi.org/10.1002/app.21779]
[75]
Piekarska K, Piorkowska E, Krasnikova N, Kulpinski P. Polylactide composites with waste cotton fibers: Thermal and mechanical properties. Polym Compos 2014; 35: 747-51.
[http://dx.doi.org/10.1002/pc.22717]
[76]
Ovlaque P. On the effectiveness of the addition of milkweed floss fibers on processing and mechanical properties of PLA biocompo-sites. Polym Eng Sci 2020; 60: 1377-88.
[http://dx.doi.org/10.1002/pen.25388]
[77]
Khan GMA, Terano M. Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid) composites. J King Saud Univ. Eng Sci 2013; 1-6.
[http://dx.doi.org/10.1016/j.jksues.2013.12.002]
[78]
Arao Y, Fujiura T, Itani S, Tanaka T. Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos, Part B Eng 2015; 68: 200-6.
[http://dx.doi.org/10.1016/j.compositesb.2014.08.032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy