Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Potential Roles of α-amylase in Alzheimer’s Disease: Biomarker and Drug Target

Author(s): Win Ning Chen, Kim San Tang and Keng Yoon Yeong*

Volume 20, Issue 8, 2022

Published on: 12 April, 2022

Page: [1554 - 1563] Pages: 10

DOI: 10.2174/1570159X20666211223124715

Price: $65

Abstract

Alzheimer’s disease (AD), the most common form of dementia, is pathologically characterized by the deposition of amyloid-β plaques and the formation of neurofibrillary tangles. In a neurodegenerative brain, glucose metabolism is also impaired and considered as one of the key features in AD patients. The impairment causes a reduction in glucose transporters and the uptake of glucose as well as alterations in the specific activity of glycolytic enzymes. Recently, it has been reported that α-amylase, a polysaccharide-degrading enzyme, is present in the human brain. The enzyme is known to be associated with various diseases such as type 2 diabetes mellitus and hyperamylasaemia. With this information at hand, we hypothesize that α-amylase could have a vital role in the demented brains of AD patients. This review aims to shed insight into the possible link between the expression levels of α-amylase and AD. Lastly, we also cover the diverse role of amylase inhibitors and how they could serve as a therapeutic agent to manage or stop AD progression.

Keywords: Alzheimer’s disease, biomarker, drug target, alpha-amylase, enzyme inhibitor, amyloid-beta, neurological disorders, drug repurposing.

Graphical Abstract

[1]
Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement., 2013, 9(1), 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007]
[2]
2015 Alzheimer’s disease facts and figures. Alzheimers Dement., 2015, 11(3), 332-384.
[http://dx.doi.org/10.1016/j.jalz.2015.02.003] [PMID: 25984581]
[3]
Maurer, K.; Volk, S.; Gerbaldo, H. Auguste D and Alz-heimer’s disease. Lancet, 1997, 349(9064), 1546-1549.
[http://dx.doi.org/10.1016/S0140-6736(96)10203-8] [PMID: 9167474]
[4]
Mendez, M.F. Early-onset Alzheimer disease and its variants. Continuum (Minneap. Minn.), 2019, 25(1), 34-51.
[http://dx.doi.org/10.1212/CON.0000000000000687] [PMID: 30707186]
[5]
Noroozian, M.; Azadfar, P.; Akbari, L.; Sadeghi, A.; Housh-mand, M.; Vousooghi, N.; Zarrindast, M.R.; Minagar, A. Ear-ly-onset Alzheimer’s disease in two Iranian families: a genetic study. Dement. Geriatr. Cogn. Disord., 2014, 38(5-6), 330-336.
[http://dx.doi.org/10.1159/000358232] [PMID: 25138979]
[6]
Yang, Y.H.; Hsu, C.L.; Chou, M.C.; Kasai, M.; Meguro, K.; Liu, C.K. Early symptoms of Alzheimer’s disease in Japan and Taiwan. Geriatr. Gerontol. Int., 2016, 16(7), 797-803.
[http://dx.doi.org/10.1111/ggi.12557] [PMID: 26246377]
[7]
Santos, C.Y.; Snyder, P.J.; Wu, W-C.; Zhang, M.; Echeverria, A.; Alber, J. Pathophysiologic relationship between Alz-heimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimers Dement. (Amst.), 2017, 7, 69-87.
[http://dx.doi.org/10.1016/j.dadm.2017.01.005] [PMID: 28275702]
[8]
Chatterjee, S.; Mudher, A. Alzheimer’s disease and type 2 diabetes: A critical assessment of the shared pathological traits. Front. Neurosci., 2018, 12, 383.
[http://dx.doi.org/10.3389/fnins.2018.00383] [PMID: 29950970]
[9]
Geijselaers, S.L.C.; Sep, S.J.S.; Claessens, D.; Schram, M.T.; van Boxtel, M.P.J.; Henry, R.M.A.; Verhey, F.R.J.; Kroon, A.A.; Dagnelie, P.C.; Schalkwijk, C.G.; van der Kallen, C.J.H.; Biessels, G.J.; Stehouwer, C.D.A. The role of hyperglycemia, insulin resistance, and blood pressure in diabetes-associated differences in cognitive performance-the Maastricht Study. Diabetes Care, 2017, 40(11), 1537-1547.
[http://dx.doi.org/10.2337/dc17-0330] [PMID: 28842522]
[10]
Xue, M.; Xu, W.; Ou, Y-N.; Cao, X-P.; Tan, M-S.; Tan, L.; Yu, J-T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev., 2019, 55, 100944.
[http://dx.doi.org/10.1016/j.arr.2019.100944] [PMID: 31430566]
[11]
Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Taka-lo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; Natunen, T. Altered insulin sig-naling in Alzheimer’s disease brain-special emphasis on PI3K-Akt pathway. Front. Neurosci., 2019, 13, 629.
[http://dx.doi.org/10.3389/fnins.2019.00629] [PMID: 31275108]
[12]
Hirabayashi, N.; Hata, J.; Ohara, T.; Mukai, N.; Nagata, M.; Shibata, M.; Gotoh, S.; Furuta, Y.; Yamashita, F.; Yoshihara, K.; Kitazono, T.; Sudo, N.; Kiyohara, Y.; Ninomiya, T. Asso-ciation between diabetes and hippocampal atrophy in elderly Japanese: the Hisayama Study. Diabetes Care, 2016, 39(9), 1543-1549.
[http://dx.doi.org/10.2337/dc15-2800] [PMID: 27385328]
[13]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[14]
Date, K. Regulatory functions of α-amylase in the small intes-tine other than starch digestion: α-glucosidase activity, glu-cose absorption, cell proliferation, and differentiation. In: New Insights Into Metabolic Syndrome; IntechOpen: London, 2020.
[15]
Vajravijayan, S.; Pletnev, S.; Mani, N.; Pletneva, N.; Nandhagopal, N.; Gunasekaran, K. Structural insights on starch hydrolysis by plant β-amylase and its evolutionary re-lationship with bacterial enzymes. Int. J. Biol. Macromol., 2018, 113, 329-337.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.138] [PMID: 29481953]
[16]
Azzopardi, E.; Lloyd, C.; Teixeira, S.R.; Conlan, R.S.; Whita-ker, I.S. Clinical applications of amylase: Novel perspectives. Surgery, 2016, 160(1), 26-37.
[http://dx.doi.org/10.1016/j.surg.2016.01.005] [PMID: 27117578]
[17]
Ju, L.; Pan, Z.; Zhang, H.; Li, Q.; Liang, J.; Deng, G.; Yu, M.; Long, H. New insights into the origin and evolution of α-amylase genes in green plants. Sci. Rep., 2019, 9(1), 4929.
[http://dx.doi.org/10.1038/s41598-019-41420-w] [PMID: 30894656]
[18]
Claisse, G.; Feller, G.; Bonneau, M.; Da Lage, J-L. A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species. Insect Biochem. Mol. Biol., 2016, 75, 70-77.
[http://dx.doi.org/10.1016/j.ibmb.2016.06.003] [PMID: 27312592]
[19]
Peyrot des Gachons, C.; Breslin, P.A. Salivary amylase: diges-tion and metabolic syndrome. Curr. Diab. Rep., 2016, 16(10), 102.
[http://dx.doi.org/10.1007/s11892-016-0794-7] [PMID: 27640169]
[20]
Akinfemiwa, O.; Muniraj, T. Amylase; StatPearls, Publishing: Treasure Island, 2021.
[21]
Fraser-Reid, B.O.; Tatsuta, K.; Thiem, J. Glycoscience: Chem-istry and chemical biology I-III; Springer Science & Business Media: Berlin, 2002, Vol. 1, .
[22]
Aydin, S. A comparison of ghrelin, glucose, alpha-amylase and protein levels in saliva from diabetics. J. Biochem. Mol. Biol., 2007, 40(1), 29-35.
[PMID: 17244479]
[23]
Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci, 2016, 5(4), 1-8.
[24]
Malathi, L.; Masthan, K.M.; Balachander, N.; Babu, N.A.; Rajesh, E. Estimation of salivary amylase in diabetic patients and saliva as a diagnostic tool in early diabetic patients. J. Clin. Diagn. Res., 2013, 7(11), 2634-2636.
[http://dx.doi.org/10.7860/JCDR/2013/7574.3634] [PMID: 24392426]
[25]
Chawhuaveang, D.D.; Yu, O.Y.; Yin, I.X.; Lam, W.Y-H.; Mei, M.L.; Chu, C-H. Acquired salivary pellicle and oral diseases: A literature review. J. Dent. Sci., 2021, 16(1), 523-529.
[PMID: 33384841]
[26]
Scannapieco, F.A.; Torres, G.; Levine, M.J. Salivary alpha-amylase: role in dental plaque and caries formation. Crit. Rev. Oral Biol. Med., 1993, 4(3-4), 301-307.
[http://dx.doi.org/10.1177/10454411930040030701] [PMID: 8373987]
[27]
Monea, M.; Vlad, R.; Stoica, A. Analysis of salivary level of alpha-amylase as a risk factor for dental caries. Acta Medica Transilvanica, 2017, 8(4), 526-530.
[28]
Joksimović, Z.; Bastać, D.; Pavlović, S. Macroamylasemia as a cause of hyperamylasemia in clinically unclear conditions: Case report. Timoc. Med. Glas., 2020, 45(1-2), 68-72.
[http://dx.doi.org/10.5937/tmg2001068J]
[29]
Turrin, M.; Fornasiero, L. Familial Gullo’s syndrome: A clin-ical case report. Clin. Manag. Issues, 2021, 15(1), 15-24.
[http://dx.doi.org/10.7175/cmi.v15i1.1493]
[30]
Goyal, A.; Daneshpajouhnejad, P.; Hashmi, M.F.; Bashir, K. Acute kidney injury (acute renal failure); StatPearls, Publish-ing: Treasure Island, 2020.
[31]
Nemmar, A.; Karaca, T.; Beegam, S.; Yuvaraju, P.; Yasin, J.; Hamadi, N.K.; Ali, B.H. Prolonged pulmonary exposure to diesel exhaust particles exacerbates renal oxidative stress, in-flammation and DNA damage in mice with adenine-induced chronic renal failure. Cell. Physiol. Biochem., 2016, 38(5), 1703-1713.
[http://dx.doi.org/10.1159/000443109] [PMID: 27160713]
[32]
Kumar, V.; Gill, K.D. To determine serum and urinary amyl-ase activity. In: Basic Concepts in Clinical Biochemistry: A Practical Guide; Springer: New York, 2018, pp. 113-115.
[http://dx.doi.org/10.1007/978-981-10-8186-6_28]
[33]
Chatila, A.T.; Bilal, M.; Guturu, P. Evaluation and manage-ment of acute pancreatitis. World J. Clin. Cases, 2019, 7(9), 1006-1020.
[http://dx.doi.org/10.12998/wjcc.v7.i9.1006] [PMID: 31123673]
[34]
Greenberg, J.A.; Hsu, J.; Bawazeer, M.; Marshall, J.; Friedrich, J.O.; Nathens, A.; Coburn, N.; May, G.R.; Pearsall, E.; McLeod, R.S. Clinical practice guideline: management of acute pancreatitis. Can. J. Surg., 2016, 59(2), 128-140.
[http://dx.doi.org/10.1503/cjs.015015] [PMID: 27007094]
[35]
Dawson, T.M.; Dawson, V.L. Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 437-454.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-105001] [PMID: 28061689]
[36]
Gibbs, M.E. Role of glycogenolysis in memory and learning: regulation by noradrenaline, serotonin and ATP. Front. Integr. Nuerosci., 2016, 9, 70.
[http://dx.doi.org/10.3389/fnint.2015.00070] [PMID: 26834586]
[37]
Jin, C.; Gao, L.; Li, Y.; Wu, S.; Lu, X.; Yang, J.; Cai, Y. Lan-thanum damages learning and memory and suppresses astro-cyte-neuron lactate shuttle in rat hippocampus. Exp. Brain Res., 2017, 235(12), 3817-3832.
[http://dx.doi.org/10.1007/s00221-017-5102-5] [PMID: 28993860]
[38]
Byman, E.; Schultz, N.; Fex, M.; Wennström, M.; Wennström, M. Brain alpha-amylase: a novel energy regulator important in Alzheimer disease? Brain Pathol., 2018, 28(6), 920-932.
[http://dx.doi.org/10.1111/bpa.12597] [PMID: 29485701]
[39]
Byman, E.; Schultz, N.; Blom, A.M.; Wennström, M. A poten-tial role for α-amylase in amyloid-β-induced astrocytic gly-cogenolysis and activation. J. Alzheimers Dis., 2019, 68(1), 205-217.
[http://dx.doi.org/10.3233/JAD-180997] [PMID: 30775997]
[40]
Byman, E.; Martinsson, I.; Haukedal, H.; Gouras, G.; Freude, K.K.; Wennström, M.; Wennström, M. Neuronal α-amylase is important for neuronal activity and glycogenolysis and reduc-es in presence of amyloid beta pathology. Aging Cell, 2021, 20(8), e13433.
[http://dx.doi.org/10.1111/acel.13433] [PMID: 34261192]
[41]
Vlassenko, A.G.; Vaishnavi, S.N.; Couture, L.; Sacco, D.; Shannon, B.J.; Mach, R.H.; Morris, J.C.; Raichle, M.E.; Min-tun, M.A. Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proc. Natl. Acad. Sci. USA, 2010, 107(41), 17763-17767.
[http://dx.doi.org/10.1073/pnas.1010461107] [PMID: 20837517]
[42]
Bergau, N.; Maul, S.; Rujescu, D.; Simm, A. Navarrete San-tos, A. Reduction of glycolysis intermediate concentrations in the cerebrospinal fluid of Alzheimer’s disease patients. Front. Neurosci., 2019, 13(871), 871.
[http://dx.doi.org/10.3389/fnins.2019.00871] [PMID: 31496932]
[43]
Diehl, T.; Mullins, R.; Kapogiannis, D. Insulin resistance in Alzheimer’s disease. Transl. Res., 2017, 183, 26-40.
[http://dx.doi.org/10.1016/j.trsl.2016.12.005] [PMID: 28034760]
[44]
Arrieta-Cruz, I.; Gutiérrez-Juárez, R. The role of insulin re-sistance and glucose metabolism dysregulation in the devel-opment of Alzheimer s disease. Rev. Invest. Clin., 2016, 68(2), 53-58.
[PMID: 27103040]
[45]
Logan, S.; Pharaoh, G.A.; Marlin, M.C.; Masser, D.R.; Matsu-zaki, S.; Wronowski, B.; Yeganeh, A.; Parks, E.E.; Premku-mar, P.; Farley, J.A.; Owen, D.B.; Humphries, K.M.; Kinter, M.; Freeman, W.M.; Szweda, L.I.; Van Remmen, H.; Sonntag, W.E. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol. Metab., 2018, 9, 141-155.
[http://dx.doi.org/10.1016/j.molmet.2018.01.013] [PMID: 29398615]
[46]
Carbonell, F.; Zijdenbos, A.P.; McLaren, D.G.; Iturria-Medina, Y.; Bedell, B.J. Modulation of glucose metabolism and metabolic connectivity by β-amyloid. J. Cereb. Blood Flow Metab., 2016, 36(12), 2058-2071.
[http://dx.doi.org/10.1177/0271678X16654492] [PMID: 27301477]
[47]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; Nisticò, R.; Corbo, M.; Imbimbo, B.P.; Streffer, J.; Voytyuk, I.; Timmers, M.; Tahami Monfared, A.A.; Irizarry, M.; Albala, B.; Koyama, A.; Watanabe, N.; Kimura, T.; Yare-nis, L.; Lista, S.; Kramer, L.; Vergallo, A. The β-secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry, 2021, 89(8), 745-756.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[48]
Chen, W.N.; Yeong, K.Y. Scopolamine, a toxin-induced ex-perimental model, used for research in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2020, 19(2), 85-93.
[http://dx.doi.org/10.2174/1871527319666200214104331] [PMID: 32056532]
[49]
Vadukul, D.M.; Gbajumo, O.; Marshall, K.E.; Serpell, L.C. Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-β 1-42. FEBS Lett., 2017, 591(5), 822-830.
[http://dx.doi.org/10.1002/1873-3468.12590] [PMID: 28185264]
[50]
Beretta, C.; Nikitidou, E.; Streubel-Gallasch, L.; Ingelsson, M.; Sehlin, D.; Erlandsson, A. Extracellular vesicles from amyloid-β exposed cell cultures induce severe dysfunction in cortical neurons. Sci. Rep., 2020, 10(1), 19656.
[http://dx.doi.org/10.1038/s41598-020-72355-2] [PMID: 33184307]
[51]
Fujimoto, K.; Kosaki, G.; Masuike, M.; Minamiura, N.; Mura-ta, A.; Ogawa, M.; Saito, N.; Yamamoto, T. Posttranslational modification of pancreatic amylase in acute pancreatitis: Possible role of pancreatic deamidase. In: Electrophoresis ‘81; De Gruyter: Boston, 2019, pp. 471-478.
[52]
Crosara, K.T.B.; Zuanazzi, D.; Moffa, E.B.; Xiao, Y.; Macha-do, M.A.d.A.M.; Siqueira, W.L. Revealing the amylase in-teractome in whole saliva using proteomic approaches. BioMed Res. Int., 2018, 2018, 6346954.
[http://dx.doi.org/10.1155/2018/6346954]
[53]
Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of tau as a microtubule-associated protein: structural and functional aspects. Front. Aging Neurosci., 2019, 11(204), 204.
[http://dx.doi.org/10.3389/fnagi.2019.00204] [PMID: 31447664]
[54]
Mironov, V.I.; Semyanov, A.V.; Kazantsev, V.B. Dendrite and axon specific geometrical transformation in neurite de-velopment. Front. Comput. Neurosci., 2016, 9, 156.
[http://dx.doi.org/10.3389/fncom.2015.00156] [PMID: 26858635]
[55]
Luppi, M.; Hitrec, T.; Di Cristoforo, A.; Squarcio, F.; Stanza-ni, A.; Occhinegro, A.; Chiavetta, P.; Tupone, D.; Zamboni, G.; Amici, R.; Cerri, M. Phosphorylation and dephosphoryla-tion of tau protein during synthetic torpor. Front. Neuroanat., 2019, 13, 57.
[http://dx.doi.org/10.3389/fnana.2019.00057] [PMID: 31244617]
[56]
El-Sayyad, H.; Amin, A.; El-Beeh, M.E. Anti-aging properties of whey against brain damage of senile Wistar rat; Preprint, 2021.
[http://dx.doi.org/10.21203/rs.3.rs-477151/v1]
[57]
Htike, T.T.; Mishra, S.; Kumar, S.; Padmanabhan, P.; Gulyás, B. Peripheral biomarkers for early detection of Alzheimer’s and Parkinson’s diseases. Mol. Neurobiol., 2019, 56(3), 2256-2277.
[http://dx.doi.org/10.1007/s12035-018-1151-4] [PMID: 30008073]
[58]
Park, S.A.; Chae, W.S.; Kim, H.J.; Shin, H.S.; Kim, S. Im, J.Y.; Ahn, S.I.; Min, K.D.; Yim, S.J.; Ye, B.S.; Seo, S.W.; Jeong, J.H.; Park, K.W.; Choi, S.H.; Na, D.L. Cerebrospinal fluid biomarkers for the diagnosis of Alzheimer disease in South Korea. Alzheimer Dis. Assoc. Disord., 2017, 31(1), 13-18.
[http://dx.doi.org/10.1097/WAD.0000000000000184] [PMID: 28030437]
[59]
Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Porte-lius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alz-heimer’s disease: a systematic review and meta-analysis. Lancet Neurol., 2016, 15(7), 673-684.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[60]
Hansson, O.; Lehmann, S.; Otto, M.; Zetterberg, H.; Lewczuk, P. Advantages and disadvantages of the use of the CSF Amy-loid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Dis-ease. Alzheimers Res. Ther., 2019, 11(1), 34.
[http://dx.doi.org/10.1186/s13195-019-0485-0] [PMID: 31010420]
[61]
Lee, N-C.; Yang, S-Y.; Chieh, J-J.; Huang, P-T.; Chang, L-M.; Chiu, Y-N.; Huang, A-C.; Chien, Y-H.; Hwu, W-L.; Chiu, M-J. Blood beta-amyloid and tau in Down syndrome: a compari-son with Alzheimer’s disease. Front. Aging Neurosci., 2017, 8, 316.
[http://dx.doi.org/10.3389/fnagi.2016.00316] [PMID: 28144219]
[62]
Wojsiat, J.; Laskowska-Kaszub, K.; Mietelska-Porowska, A.; Wojda, U. Search for Alzheimer’s disease biomarkers in blood cells: hypotheses-driven approach. Biomarkers Med., 2017, 11(10), 917-931.
[http://dx.doi.org/10.2217/bmm-2017-0041] [PMID: 28976776]
[63]
Carelli-Alinovi, C.; Ficarra, S.; Russo, A.M.; Giunta, E.; Bar-reca, D.; Galtieri, A.; Misiti, F.; Tellone, E. Involvement of acetylcholinesterase and protein kinase C in the protective ef-fect of caffeine against β-amyloid-induced alterations in red blood cells. Biochimie, 2016, 121, 52-59.
[http://dx.doi.org/10.1016/j.biochi.2015.11.022] [PMID: 26620258]
[64]
Zetterberg, H.; Burnham, S.C. Blood-based molecular bi-omarkers for Alzheimer’s disease. Mol. Brain, 2019, 12(1), 26.
[http://dx.doi.org/10.1186/s13041-019-0448-1] [PMID: 30922367]
[65]
Pekeles, H.; Qureshi, H.Y.; Paudel, H.K.; Schipper, H.M.; Gornistky, M.; Chertkow, H. Development and validation of a salivary tau biomarker in Alzheimer’s disease. Alzheimers Dement. (Amst.), 2018, 11, 53-60.
[http://dx.doi.org/10.1016/j.dadm.2018.03.003] [PMID: 30623019]
[66]
Lee, M.; Guo, J-P.; Kennedy, K.; McGeer, E.G.; McGeer, P.L. A method for diagnosing Alzheimer’s disease based on sali-vary amyloid-β protein 42 levels. J. Alzheimers Dis., 2017, 55(3), 1175-1182.
[http://dx.doi.org/10.3233/JAD-160748] [PMID: 27792013]
[67]
Bosch, J.A. Veerman, E.C.I.; de Geus, E.J.; Proctor, G.B. α-Amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 2011, 36(4), 449-453.
[http://dx.doi.org/10.1016/j.psyneuen.2010.12.019] [PMID: 21295411]
[68]
Proctor, G.B.; Carpenter, G.H. Regulation of salivary gland function by autonomic nerves. Auton. Neurosci., 2007, 133(1), 3-18.
[http://dx.doi.org/10.1016/j.autneu.2006.10.006] [PMID: 17157080]
[69]
Singhal, R. K.; Anand, S. Salivary-42, IGF-I, IGF-II, Alpha Amylase, IL-1, and TNF-alpha in Alzheimer's disease: a useful diagnostic tool. WebmedCentral Neurosciences, 2013, 4(58), WMC004358.
[http://dx.doi.org/10.9754/journal.wmc.2013.004358]
[70]
Rai, B.; Kaur, J. Indian applicants file patent application for specific salivary biomarkers for risk detection, early diagnosis, prognosis and monitoring of Alzheimer and Parkinson's disease. WO2013153461A2 2013.
[71]
Sramek, J.J.; Cutler, N.R.; Hurley, D.J.; Seifert, R.D. The utili-ty of salivary amylase as an evaluation of M3 muscarinic ag-onist activity in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1995, 19(1), 85-91.
[http://dx.doi.org/10.1016/0278-5846(94)00107-S] [PMID: 7535938]
[72]
Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouët, M.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and devic-es. An overview. Trends Analyt. Chem., 2020, 124, 115781.
[http://dx.doi.org/10.1016/j.trac.2019.115781]
[73]
Gug, I.T.; Tertis, M.; Hosu, O.; Cristea, C. Salivary bi-omarkers detection: Analytical and immunological methods overview. Trends Analyt. Chem., 2019, 113, 301-316.
[http://dx.doi.org/10.1016/j.trac.2019.02.020]
[74]
Kubala, E.; Strzelecka, P.; Grzegocka, M.; Lietz-Kijak, D.; Gronwald, H.; Skomro, P.; Kijak, E. A review of selected studies that determine the physical and chemical properties of saliva in the field of dental treatment. BioMed Res. Int., 2018, 2018, 6572381-13.
[http://dx.doi.org/10.1155/2018/6572381] [PMID: 29854777]
[75]
Pawlik, P. Błochowiak, K. The role of salivary biomarkers in the early diagnosis of Alzheimer’s disease and Parkinson’s disease. Diagnostics (Basel), 2021, 11(2), 371.
[http://dx.doi.org/10.3390/diagnostics11020371] [PMID: 33671562]
[76]
Atri, A. Current and future treatments in Alzheimer’s disease. Semin. Neurol., 2019, 39(2), 227-240.
[http://dx.doi.org/10.1055/s-0039-1678581] [PMID: 30925615]
[77]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. (N. Y.), 2019, 5, 272-293.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[78]
Schneider, L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol., 2020, 19(2), 111-112.
[http://dx.doi.org/10.1016/S1474-4422(19)30480-6] [PMID: 31978357]
[79]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Bren-nan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikul-skis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[80]
Singla, R.K.; Singh, R.; Dubey, A.K. Important aspects of post-prandial antidiabetic drug, acarbose. Curr. Top. Med. Chem., 2016, 16(23), 2625-2633.
[http://dx.doi.org/10.2174/1568026616666160414123500] [PMID: 27086787]
[81]
Ahr, H.J.; Boberg, M.; Brendel, E.; Krause, H.P.; Steinke, W. Pharmacokinetics of miglitol. Absorption, distribution, me-tabolism, and excretion following administration to rats, dogs, and man. Arzneimittelforschung, 1997, 47(6), 734-745.
[PMID: 9239452]
[82]
Salvatore, T.; Giugliano, D. Pharmacokinetic-pharmacodynamic relationships of acarbose. Clin. Pharmacokinet., 1996, 30(2), 94-106.
[http://dx.doi.org/10.2165/00003088-199630020-00002] [PMID: 8906894]
[83]
Groeneveld, O.N.; Kappelle, L.J.; Biessels, G.J. Potentials of incretin-based therapies in dementia and stroke in type 2 dia-betes mellitus. J. Diabetes Investig., 2016, 7(1), 5-16.
[http://dx.doi.org/10.1111/jdi.12420] [PMID: 26816596]
[84]
Daily, J.W.; Kang, S.; Park, S. Protection against Alzheimer’s disease by luteolin: Role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. Biofactors, 2021, 47(2), 218-231.
[http://dx.doi.org/10.1002/biof.1703] [PMID: 33347668]
[85]
D’Costa, A.S.; Bordenave, N. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics. Food Chem., 2021, 341(Pt 2), 128256.
[http://dx.doi.org/10.1016/j.foodchem.2020.128256] [PMID: 33035827]
[86]
Sultana, R.; Alashi, A.M.; Islam, K.; Saifullah, M.; Haque, C.E.; Aluko, R.E. Inhibitory activities of Polyphenolic ex-tracts of Bangladeshi vegetables against α-amylase, α-glucosidase, pancreatic lipase, renin, and angiotensin-converting enzyme. Foods, 2020, 9(7), 844.
[http://dx.doi.org/10.3390/foods9070844] [PMID: 32610462]
[87]
Chelladurai, G.R.M.; Chinnachamy, C. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz. J. Pharm. Sci., 2018, 54.
[http://dx.doi.org/10.1590/s2175-97902018000117151]
[88]
Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic acids of plant origin-A review on their antioxidant activity in vitro (O/W emulsion systems) along with their in vivo health bio-chemical properties. Foods, 2020, 9(4), E534.
[http://dx.doi.org/10.3390/foods9040534] [PMID: 32344540]
[89]
Oboh, G.; Ogunsuyi, O.B.; Ogunbadejo, M.D.; Adefegha, S.A. Influence of gallic acid on α-amylase and α-glucosidase inhib-itory properties of acarbose. J. Food Drug Anal, 2016, 24(3), 627-634.
[http://dx.doi.org/10.1016/j.jfda.2016.03.003] [PMID: 28911570]
[90]
Lim, J.; Ferruzzi, M.G.; Hamaker, B.R. Structural require-ments of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chem., 2022, 370, 130981.
[http://dx.doi.org/10.1016/j.foodchem.2021.130981] [PMID: 34500290]
[91]
Shah, B.; Sartaj, L.; Ali, F.; Shah, A.; Khan, T. Plant extracts are the potential inhibitors of α-amylase: a review. MOJ Bioe-quivalence Bioavailab, 2018, 5(5), 270-273.
[92]
Oyedemi, S.O.; Oyedemi, B.O.; Ijeh, I.I.; Ohanyerem, P.E.; Coopoosamy, R.M.; Aiyegoro, O.A. Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in southeastern Nigeria. ScientificWorldJournal, 2017, 2017, 3592491.
[http://dx.doi.org/10.1155/2017/3592491] [PMID: 28367491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy