Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Antibody-drug Conjugate PCMC1D3-Duocarmycin SA as a Novel Therapeutic Entity for Targeted Treatment of Cancers Aberrantly Expressing MET Receptor Tyrosine Kinase

Author(s): Rachel Hudson, Hang-Ping Yao*, Sreedhar Reddy Suthe, Dhavalkumar Patel and Ming-Hai Wang*

Volume 22, Issue 4, 2022

Published on: 20 January, 2022

Page: [312 - 327] Pages: 16

DOI: 10.2174/1568009621666211222154129

Price: $65

Abstract

Background: Aberrant expression of the MET receptor tyrosine kinase is an oncogenic determinant and a drug target for cancer therapy. Currently, antibody-based biotherapeutics targeting MET are under clinical trials.

Objective: Here, we report the preclinical and therapeutic evaluation of a novel anti-MET antibody- drug conjugate PCMC1D3-duocarmycin SA (PCMC1D3-DCM) for targeted cancer therapy.

Methods: The monoclonal antibody PCMC1D3 (IgG1a/κ), generated by a hybridoma technique and specific to one of the MET extracellular domains, was selected based on its high specificity to human MET with a binding affinity of 1.60 nM. PCMC1D3 was conjugated to DCM via a cleavable valine-citrulline dipeptide linker to form an antibody-drug conjugate with a drug-to-antibody ratio of 3.6:1. PCMC1D3-DCM in vitro rapidly induced MET internalization with an internalization efficacy ranging from 6.5 to 17.2h dependent on individual cell lines.

Results: Studies using different types of cancer cell lines showed that PCMC1D3-DCM disrupted the cell cycle, reduced cell viability, and caused massive cell death within 96h after treatment initiation. The calculated IC50 values for cell viability reduction were 1.5 to 15.3 nM. Results from mouse xenograft tumor models demonstrated that PCMC1D3-DCM in a single dose injection at 10 mg/kg body weight effectively delayed xenograft tumor growth up to two weeks without signs of tumor regrowth. The calculated tumoristatic concentration, a minimal dose required to balance tumor growth and inhibition, was around 2 mg/kg body weight. Taken together, PCMC1D3-DCM was effective in targeting the inhibition of tumor growth in xenograft models.

Conclusion: This work provides the basis for the development of humanized PCMC1D3-DCM for MET-targeted cancer therapy in the future.

Keywords: MET receptor tyrosine kinase, mouse monoclonal antibody, antibody-drug conjugate, duocarmycin, drug delivery, in vitro cytotoxicity, tumor xenograft model, therapeutic efficacy.

Graphical Abstract

[1]
Comoglio, P.M.; Trusolino, L.; Boccaccio, C. Known and novel roles of the MET oncogene in cancer: A coherent approach to targeted therapy. Nat. Rev. Cancer, 2018, 18(6), 341-358.
[http://dx.doi.org/10.1038/s41568-018-0002-y] [PMID: 29674709]
[2]
Yao, H.P.; Zhou, Y.Q.; Zhang, R.; Wang, M.H. MSP-RON signalling in cancer: Pathogenesis and therapeutic potential. Nat. Rev. Cancer, 2013, 13(7), 466-481.
[http://dx.doi.org/10.1038/nrc3545] [PMID: 23792360]
[3]
Dean, M.; Park, M.; Le Beau, M.M.; Robins, T.S.; Diaz, M.O.; Rowley, J.D.; Blair, D.G.; Vande Woude, G.F. The human met oncogene is related to the tyrosine kinase oncogenes. Nature, 1985, 318(6044), 385-388.
[http://dx.doi.org/10.1038/318385a0] [PMID: 4069211]
[4]
Guo, R.; Luo, J.; Chang, J.; Rekhtman, N.; Arcila, M.; Drilon, A. MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol., 2020, 17(9), 569-587.
[http://dx.doi.org/10.1038/s41571-020-0377-z] [PMID: 32514147]
[5]
Koch, J.P.; Aebersold, D.M.; Zimmer, Y.; Medová, M. MET targeting: Time for a rematch. Oncogene, 2020, 39(14), 2845-2862.
[http://dx.doi.org/10.1038/s41388-020-1193-8] [PMID: 32034310]
[6]
Oliveres, H.; Pineda, E.; Maurel, J. MET inhibitors in cancer: Pitfalls and challenges. Expert Opin. Investig. Drugs, 2020, 29(1), 73-85.
[http://dx.doi.org/10.1080/13543784.2020.1699532] [PMID: 31783719]
[7]
Lv, P.C.; Yang, Y.S.; Wang, Z.C. Recent progress in the development of small molecule c-Met inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1276-1288.
[http://dx.doi.org/10.2174/1568026619666190712205353] [PMID: 31526339]
[8]
Yao, H.P.; Hudson, R.; Wang, M.H. Progress and challenge in development of biotherapeutics targeting MET receptor for treatment of advanced cancer. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188425.
[http://dx.doi.org/10.1016/j.bbcan.2020.188425] [PMID: 32961258]
[9]
Yao, H.P.; Tong, X.M.; Wang, M.H. Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov. Today, 2021, 26(1), 106-121.
[http://dx.doi.org/10.1016/j.drudis.2020.11.002] [PMID: 33171292]
[10]
Wang, J.; Goetsch, L.; Tucker, L.; Zhang, Q.; Gonzalez, A.; Vaidya, K.S.; Oleksijew, A.; Boghaert, E.; Song, M.; Sokolova, I.; Pestova, E.; Anderson, M.; Pappano, W.N.; Ansell, P.; Bhathena, A.; Naumovski, L.; Corvaia, N.; Reilly, E.B. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer, 2016, 16, 105.
[http://dx.doi.org/10.1186/s12885-016-2138-z] [PMID: 26879245]
[11]
Gymnopoulos, M.; Betancourt, O.; Blot, V.; Fujita, R.; Galvan, D.; Lieuw, V.; Nguyen, S.; Snedden, J.; Stewart, C.; Villicana, J.; Wojciak, J.; Wong, E.; Pardo, R.; Patel, N.; D’Hooge, F.; Vijayakrishnan, B.; Barry, C.; Hartley, J.A.; Howard, P.W.; Newman, R.; Coronella, J. TR1801-ADC: A highly potent cMet antibody-drug conjugate with high activity in patient-derived xenograft models of solid tumors. Mol. Oncol., 2020, 14(1), 54-68.
[http://dx.doi.org/10.1002/1878-0261.12600] [PMID: 31736230]
[12]
Yang, C.Y.; Wang, L.; Sun, X.; Tang, M.; Quan, H.T.; Zhang, L.S.; Lou, L.G.; Gou, S.H. SHR-A1403, a novel c-Met antibody- drug conjugate, exerts encouraging anti-tumor activity in c-Met-overexpressing models. Acta Pharmacol. Sin., 2019, 40(7), 971-979.
[http://dx.doi.org/10.1038/s41401-018-0198-0] [PMID: 30643210]
[13]
Min, B.; Jin, J.; Kim, H.; Her, N.G.; Park, C.; Kim, D.; Yang, J.; Hwang, J.; Kim, E.; Choi, M.; Song, H.Y.; Nam, D.H.; Yoon, Y. cIRCR201-dPBD, a novel pyrrolobenzodiazepine dimer-containing site-specific antibody-drug conjugate targeting c-MET overexpression tumors. ACS Omega, 2020, 5(40), 25798-25809.
[http://dx.doi.org/10.1021/acsomega.0c03102] [PMID: 33073104]
[14]
Wang, J.; Anderson, M.G.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Tucker, L.; Zhang, Q.; Han, E.K.; Palma, J.P.; Naumovski, L.; Reilly, E.B. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin. Cancer Res., 2017, 23(4), 992-1000.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1568] [PMID: 27573171]
[15]
Moores, S.L.; Chiu, M.L.; Bushey, B.S.; Chevalier, K.; Luistro, L.; Dorn, K.; Brezski, R.J.; Haytko, P.; Kelly, T.; Wu, S.J.; Martin, P.L.; Neijssen, J.; Parren, P.W.; Schuurman, J.; Attar, R.M.; Laquerre, S.; Lorenzi, M.V.; Anderson, G.M. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res., 2016, 76(13), 3942-3953.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2833] [PMID: 27216193]
[16]
Choi, H.J.; Kim, Y.J.; Lee, S.; Kim, Y.S. A heterodimeric Fc-based bispecific antibody simultaneously targeting VEGFR-2 and Met exhibits potent antitumor activity. Mol. Cancer Ther., 2013, 12(12), 2748-2759.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0628] [PMID: 24132142]
[17]
Casaletto, J.B.; Geddie, M.L.; Abu-Yousif, A.O.; Masson, K.; Fulgham, A.; Boudot, A.; Maiwald, T.; Kearns, J.D.; Kohli, N.; Su, S.; Razlog, M.; Raue, A.; Kalra, A.; Håkansson, M.; Logan, D.T.; Welin, M.; Chattopadhyay, S.; Harms, B.D.; Nielsen, U.B.; Schoeberl, B.; Lugovskoy, A.A.; MacBeath, G. MM-131, a bispecific anti-Met/EpCAM mAb, inhibits HGF-dependent and HGF-independent Met signaling through concurrent binding to EpCAM. Proc. Natl. Acad. Sci. USA, 2019, 116(15), 7533-7542.
[http://dx.doi.org/10.1073/pnas.1819085116] [PMID: 30898885]
[18]
Sellmann, C.; Doerner, A.; Knuehl, C.; Rasche, N.; Sood, V.; Krah, S.; Rhiel, L.; Messemer, A.; Wesolowski, J.; Schuette, M.; Becker, S.; Toleikis, L.; Kolmar, H.; Hock, B. Balancing selectivity and efficacy of bispecific Epidermal Growth Factor Receptor (EGFR) × c-MET antibodies and antibody-drug conjugates. J. Biol. Chem., 2016, 291(48), 25106-25119.
[http://dx.doi.org/10.1074/jbc.M116.753491] [PMID: 27694443]
[19]
Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody-drug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 18(1), 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582] [PMID: 31659006]
[20]
Yao, H.P.; Luo, Y.L.; Feng, L.; Cheng, L.F.; Lu, Y.; Li, W.; Wang, M.H. Agonistic monoclonal antibodies potentiate tumorigenic and invasive activities of splicing variant of the RON receptor tyrosine kinase. Cancer Biol. Ther., 2006, 5(9), 1179-1186.
[http://dx.doi.org/10.4161/cbt.5.9.3073] [PMID: 16880737]
[21]
Weng, T.H.; Yao, M.Y.; Xu, X.M.; Hu, C.Y.; Yao, S.H.; Liu, Y.Z.; Wu, Z.G.; Tang, T.M.; Fu, P.F.; Wang, M.H.; Yao, H.P. RON and MET co-overexpression are significant pathological characteristics of poor survival and therapeutic targets of tyrosine kinase inhibitors in triple-negative breast cancer. Cancer Res. Treat., 2020, 52(3), 973-986.
[http://dx.doi.org/10.4143/crt.2019.726] [PMID: 32324988]
[22]
Feng, L.; Yao, H.P.; Wang, W.; Zhou, Y.Q.; Zhou, J.; Zhang, R.; Wang, M.H. Efficacy of anti-RON antibody Zt/g4-drug maytansinoid conjugation (Anti-RON ADC) as a novel therapeutics for targeted colorectal cancer therapy. Clin. Cancer Res., 2014, 20(23), 6045-6058.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0898] [PMID: 25294907]
[23]
Yao, H.P.; Feng, L.; Weng, T.H.; Hu, C.Y.; Suthe, S.R.; Mostofa, A.G.M.; Chen, L.H.; Wu, Z.G.; Wang, W.L.; Wang, M.H. Preclinical efficacy of anti-RON antibody-drug conjugate Zt/g4-MMAE for targeted therapy of pancreatic cancer overexpressing RON receptor tyrosine kinase. Mol. Pharm., 2018, 15(8), 3260-3271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00298] [PMID: 29944378]
[24]
Tong, X.M.; Feng, L.; Suthe, S.R.; Weng, T.H.; Hu, C.Y.; Liu, Y.Z.; Wu, Z.G.; Wang, M.H.; Yao, H.P. Therapeutic efficacy of a novel humanized antibody-drug conjugate recognizing plexin-semaphorin-integrin domain in the RON receptor for targeted cancer therapy. J. Immunother. Cancer, 2019, 7(1), 250.
[http://dx.doi.org/10.1186/s40425-019-0732-8] [PMID: 31519211]
[25]
Yao, H.P.; Feng, L.; Suthe, S.R.; Chen, L.H.; Weng, T.H.; Hu, C.Y.; Jun, E.S.; Wu, Z.G.; Wang, W.L.; Kim, S.C.; Tong, X.M.; Wang, M.H. Therapeutic efficacy, pharmacokinetic profiles, and toxicological activities of humanized antibody-drug conjugate Zt/g4-MMAE targeting RON receptor tyrosine kinase for cancer therapy. J. Immunother. Cancer, 2019, 7, 1-6.
[http://dx.doi.org/10.1186/s40425-019-0525-0]
[26]
Suthe, S.R.; Yao, H.P.; Weng, T.H.; Hu, C.Y.; Feng, L.; Wu, Z.G.; Wang, M.H. RON receptor tyrosine kinase as a therapeutic target for eradication of triple-negative breast cancer: Efficacy of anti-RON ADC Zt/g4-MMAE. Mol. Cancer Ther., 2018, 17(12), 2654-2664.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0252] [PMID: 30275241]
[27]
Boatright, K.M.; Salvesen, G.S. Mechanisms of caspase activation. Curr. Opin. Cell Biol., 2003, 15(6), 725-731.
[http://dx.doi.org/10.1016/j.ceb.2003.10.009] [PMID: 14644197]
[28]
Lai, K.C.; Muvaffak, A.; Li, M.; Themeles, M.; Sikka, S.; Donahue, K.; Hicks, S.W.; Romanelli, A.; Chittenden, T. In vitro and in vivo activity of a novel c-Met-targeting antibody-drug conjugate using a DNA-alkylating, indolinobenzodiazepine payload. AACR 110 Annual Meeting, Washington DC2017, 77(13), p. 45.
[29]
Patil, P.C.; Satam, V.; Lee, M. A short review on the synthetic strategies of duocarmycin analogs that are powerful DNA alkylating agents. Anticancer Agents Med. Chem., 2015, 15(5), 616-630.
[http://dx.doi.org/10.2174/1871520615666141216144116] [PMID: 25511515]
[30]
Jukes, Z.; Morais, G.R.; Loadman, P.M.; Pors, K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov. Today, 2021, 26(2), 577-584.
[http://dx.doi.org/10.1016/j.drudis.2020.11.020] [PMID: 33232841]
[31]
Bhuyan, B.K.; Smith, K.S.; Kelly, R.C.; Adams, E.G.; Abraham, I.; Sampson, K.E. Multidrug resistance is a component of V79 cell resistance to the alkylating agent adozelesin. Cancer Res., 1993, 53(6), 1354-1359.
[PMID: 8443816]
[32]
Ogasawara, H.; Nishio, K.; Kanzawa, F.; Lee, Y.S.; Funayama, Y.; Ohira, T.; Kuraishi, Y.; Isogai, Y.; Saijo, N. Intracellular carboxyl esterase activity is a determinant of cellular sensitivity to the antineoplastic agent KW-2189 in cell lines resistant to cisplatin and CPT-11. Jpn. J. Cancer Res., 1995, 86(1), 124-129.
[http://dx.doi.org/10.1111/j.1349-7006.1995.tb02997.x] [PMID: 7737904]
[33]
Dokter, W.; Ubink, R.; van der Lee, M.; van der Vleuten, M.; van Achterberg, T.; Jacobs, D.; Loosveld, E.; van den Dobbelsteen, D.; Egging, D.; Mattaar, E.; Groothuis, P.; Beusker, P.; Coumans, R.; Elgersma, R.; Menge, W.; Joosten, J.; Spijker, H.; Huijbregts, T.; de Groot, V.; Eppink, M.; de Roo, G.; Verheijden, G.; Timmers, M. Preclinical profile of the HER2-targeting ADC SYD983/SYD985: Introduction of a new duocarmycin-based linker- drug platform. Mol. Cancer Ther., 2014, 13(11), 2618-2629.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0040-T] [PMID: 25189543]
[34]
Scribner, J.A.; Brown, J.G.; Son, T.; Chiechi, M.; Li, P.; Sharma, S.; Li, H.; De Costa, A.; Li, Y.; Chen, Y.; Easton, A.; Yee-Toy, N.C.; Chen, F.Z.; Gorlatov, S.; Barat, B.; Huang, L.; Wolff, C.R.; Hooley, J.; Hotaling, T.E.; Gaynutdinov, T.; Ciccarone, V.; Tamura, J.; Koenig, S.; Moore, P.A.; Bonvini, E.; Loo, D. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol. Cancer Ther., 2020, 19(11), 2235-2244.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0116] [PMID: 32967924]
[35]
Su, D.; Chen, J.; Cosino, E.; Dela Cruz-Chuh, J.; Davis, H.; Del Rosario, G.; Figueroa, I.; Goon, L.; He, J.; Kamath, A.V.; Kaur, S.; Kozak, K.R.; Lau, J.; Lee, D.; Lee, M.V.; Leipold, D.; Liu, L.; Liu, P.; Lu, G.L.; Nelson, C.; Ng, C.; Pillow, T.H.; Polakis, P.; Polson, A.G.; Rowntree, R.K.; Saad, O.; Safina, B.; Stagg, N.J.; Tercel, M.; Vandlen, R.; Vollmar, B.S.; Wai, J.; Wang, T.; Wei, B.; Xu, K.; Xue, J.; Xu, Z.; Yan, G.; Yao, H.; Yu, S.F.; Zhang, D.; Zhong, F.; Dragovich, P.S. Antibody-drug conjugates derived from cytotoxic seco-CBI-dimer payloads are highly efficacious in xenograft models and form protein adducts In Vivo. Bioconjug. Chem., 2019, 30(5), 1356-1370.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00133] [PMID: 30966735]
[36]
Yao, H.P.; Tong, X.M.; Wang, M.H. Oncogenic mechanism-based pharmaceutical validation of therapeutics targeting MET receptor tyrosine kinase. Ther. Adv. Med. Oncol., 2021, 13, 17588359211006957.
[http://dx.doi.org/10.1177/17588359211006957] [PMID: 33868463]
[37]
Arriola, E.; Cañadas, I.; Arumí-Uría, M.; Dómine, M.; Lopez-Vilariño, J.A.; Arpí, O.; Salido, M.; Menéndez, S.; Grande, E.; Hirsch, F.R.; Serrano, S.; Bellosillo, B.; Rojo, F.; Rovira, A.; Albanell, J. MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGF-induced effects in MET mutant cell lines. Br. J. Cancer, 2011, 105(6), 814-823.
[http://dx.doi.org/10.1038/bjc.2011.298] [PMID: 21847116]
[38]
Fong, J.T.; Jacobs, R.J.; Moravec, D.N.; Uppada, S.B.; Botting, G.M.; Nlend, M.; Puri, N. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer. PLoS One, 2013, 8(11), e78398.
[http://dx.doi.org/10.1371/journal.pone.0078398] [PMID: 24223799]
[39]
Yi, S.; Tsao, M.S. Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia, 2000, 2(3), 226-234.
[http://dx.doi.org/10.1038/sj.neo.7900080] [PMID: 10935508]
[40]
Qian, F.; Engst, S.; Yamaguchi, K.; Yu, P.; Won, K.A.; Mock, L.; Lou, T.; Tan, J.; Li, C.; Tam, D.; Lougheed, J.; Yakes, F.M.; Bentzien, F.; Xu, W.; Zaks, T.; Wooster, R.; Greshock, J.; Joly, A.H. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res., 2009, 69(20), 8009-8016.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4889] [PMID: 19808973]
[41]
Gavine, P.R.; Ren, Y.; Han, L.; Lv, J.; Fan, S.; Zhang, W.; Xu, W.; Liu, Y.J.; Zhang, T.; Fu, H.; Yu, Y.; Wang, H.; Xu, S.; Zhou, F.; Su, X.; Yin, X.; Xie, L.; Wang, L.; Qing, W.; Jiao, L.; Su, W.; Wang, Q.M. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol. Oncol., 2015, 9(1), 323-333.
[http://dx.doi.org/10.1016/j.molonc.2014.08.015] [PMID: 25248999]
[42]
Park, C.H.; Cho, S.Y.; Ha, J.D.; Jung, H.; Kim, H.R.; Lee, C.O.; Jang, I.Y.; Chae, C.H.; Lee, H.K.; Choi, S.U. Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer, 2016, 16, 35.
[http://dx.doi.org/10.1186/s12885-016-2058-y] [PMID: 26801760]
[43]
Larsen, C.A.; Dashwood, R.H. Suppression of Met activation in human colon cancer cells treated with (-)-epigallocatechin-3-gallate: Minor role of hydrogen peroxide. Biochem. Biophys. Res. Commun., 2009, 389(3), 527-530.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.019] [PMID: 19744467]
[44]
Jaquish, D.V.; Yu, P.T.; Shields, D.J.; French, R.P.; Maruyama, K.P.; Niessen, S.; Hoover, H.; A Cheresh, D.; Cravatt, B.; Lowy, A.M. IGF1-R signals through the RON receptor to mediate pancreatic cancer cell migration. Carcinogenesis, 2011, 32(8), 1151-1156.
[http://dx.doi.org/10.1093/carcin/bgr086] [PMID: 21565828]
[45]
Hill, K.S.; Gaziova, I.; Harrigal, L.; Guerra, Y.A.; Qiu, S.; Sastry, S.K.; Arumugam, T.; Logsdon, C.D.; Elferink, L.A. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer. PLoS One, 2012, 7(7), e40420.
[http://dx.doi.org/10.1371/journal.pone.0040420] [PMID: 22815748]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy