Abstract
Background: The present work describes an eco-friendly and sustainable approach for the Knoevenagel condensation of an aromatic aldehyde with ethyl cyanoacetate, and salicylaldehyde with Meldrum acid for the synthesis of ethyl benzylidenecyanoacetate and 3-carboxy coumarin (2-oxo-2H-1-benzopyran) derivatives, respectively. The reaction was performed under green catalytic media-Water Extract of Watermelon Fruit Peel Ash (WEWFPA), which is an eco-friendly protocol derived from the agro-waste feedstock. Various protocols have been reported for the synthesis of Knoevenagel condensation reaction using a hazardous catalyst or/and solvents found toxic to the environment, requiring longer reaction time, giving poor yield, and requiring purification of the final product. The method at hand provides several added advantages like: being a completely green method, economic, inexpensive catalyst, and the final product isolated is in pure form with good yield.
Objective: The objective of the study was to develop a green methodology for the synthesis of ethyl benzylidenecyanoacetate and 3-carboxy coumarin derivatives.
Results: The agro-waste based catalyst developed in the present study avoids the use of external inorganic/ organic bases and additives. Knoevenagel condensation of ethyl benzylidenecyanoacetate and 3-carboxy coumarin derivatives is carried out under room temperature using microwave irradiation, which is a solvent-free synthesis, requiring less time and giving better yield.
Methods: We have demonstrated that WEWFPA can be employed as a green homogenous agrowaste for the synthesis of ethyl benzylidenecyanoacetate and 3-carboxy coumarin derivatives under rt stirring and microwave irradiation in a very economical way. The developed method is found to be simple and robust, non-hazardous and solvent-free to obtain the target product.
Conclusion: In conclusion, we have established an efficient, simple, agro-waste based catalytic approach for the synthesis of ethylbenzylidenecyanoacetate and 3-carboxy coumarin derivatives employing WEWFPA as an efficient catalyst under rt stirring and microwave synthesis. The method is a green, economical and eco-friendly approach for the synthesis of Knoevenagel condensation products. The advantages of the present approach are that the reaction is a solvent-free synthesis, requiring no external metal catalyst, chemical base free, short reaction time and excellent yield of product. The catalyst is agro-waste derived, which is abundant in nature, thus making the present approach a greener one.
Keywords: Knoevenagel condensation, ethyl benzylidenecyanoacetate, 3-carboxy coumarin, feedstock, eco-friendly, agrowaste.
Graphical Abstract
[http://dx.doi.org/10.1080/00397911.2013.824984]
[http://dx.doi.org/10.4155/fmc.09.144] [PMID: 21426184]
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[http://dx.doi.org/10.1039/b900236g] [PMID: 19590767]
[http://dx.doi.org/10.1002/(SICI)1097-4660(199704)68:4<381::AID-JCTB620>3.0.CO;2-3]
[http://dx.doi.org/10.1080/17518251003749353]
[http://dx.doi.org/10.1039/9781847559760]
[http://dx.doi.org/10.2174/0929867023369989] [PMID: 12052166]
[http://dx.doi.org/10.1016/j.bmcl.2005.03.030] [PMID: 15837306]
[http://dx.doi.org/10.1016/j.bmcl.2006.08.132] [PMID: 16997556]
[http://dx.doi.org/10.1124/jpet.104.066092] [PMID: 15075380]
[http://dx.doi.org/10.1021/jm060420k] [PMID: 17290978]
[http://dx.doi.org/10.1016/0196-9781(92)90093-I] [PMID: 1326105]
[http://dx.doi.org/10.1016/j.ccl.2007.12.005] [PMID: 18406993]
[http://dx.doi.org/10.1021/jm901775y] [PMID: 20337371]
[http://dx.doi.org/10.1093/nass/42.1.53]
(b)Chem. Abstr., 1998, 129, 58.784g.
[http://dx.doi.org/10.1016/0048-3575(87)90115-5]
[http://dx.doi.org/10.1002/prot.20035] [PMID: 15048822]
[http://dx.doi.org/10.1007/BF02510042]
[http://dx.doi.org/10.1016/S0968-0896(99)00291-6] [PMID: 10722160]
[http://dx.doi.org/10.1021/jm0109513] [PMID: 11960487]
[http://dx.doi.org/10.1016/S0960-894X(03)00661-9] [PMID: 12951103]
[http://dx.doi.org/10.1021/jm970559i] [PMID: 9548815]
[http://dx.doi.org/10.1021/jm970096g] [PMID: 9435891]
[http://dx.doi.org/10.1021/jm970545c] [PMID: 9575044]
[http://dx.doi.org/10.1021/jm000297b] [PMID: 11170623]
[http://dx.doi.org/10.1016/S0957-4166(02)00079-4]
[http://dx.doi.org/10.1248/cpb.30.2996]
[http://dx.doi.org/10.1016/j.ejmech.2006.01.006] [PMID: 16527375]
[http://dx.doi.org/10.1016/0040-4020(68)88080-9]
[http://dx.doi.org/10.1186/2191-2858-3-7] [PMID: 23919542]
[http://dx.doi.org/10.1002/ejoc.201201101] [PMID: 23525858]
[http://dx.doi.org/10.1016/j.tetlet.2017.04.020]
[http://dx.doi.org/10.1016/j.tetlet.2011.08.105]
[http://dx.doi.org/10.1016/j.tetlet.2005.10.134]
[http://dx.doi.org/10.1055/s-2000-7111]
[http://dx.doi.org/10.1016/j.tetlet.2004.07.042]
[http://dx.doi.org/10.1016/S0040-4039(03)01387-X]
[http://dx.doi.org/10.1021/jo8014984] [PMID: 18754576]
[http://dx.doi.org/10.1016/j.tetlet.2006.11.010]
[http://dx.doi.org/10.1016/j.tetlet.2006.02.015]
[http://dx.doi.org/10.1080/00397910701230170]
[http://dx.doi.org/10.1080/00397910903219328]
[http://dx.doi.org/10.1080/00397910903318658]
[http://dx.doi.org/10.1016/j.tetlet.2009.01.076]
[http://dx.doi.org/10.1080/00397910802654815]
[http://dx.doi.org/10.1080/00397910903534064]
[http://dx.doi.org/10.1016/j.molcata.2005.09.025]
[http://dx.doi.org/10.1016/j.molcata.2003.10.064]
[http://dx.doi.org/10.1016/j.tetlet.2004.03.117]
[http://dx.doi.org/10.1007/s00706-005-0407-7]
[http://dx.doi.org/10.1016/j.catcom.2007.03.011]
[http://dx.doi.org/10.1007/s00706-011-0647-7]
(b)Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
(c)Walsh, P.J.; Li, H.; de Parrodi, C.A. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem. Rev., 2007, 107(6), 2503-2545.
[http://dx.doi.org/10.1021/cr800462w] [PMID: 19385653] [http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022] [http://dx.doi.org/10.1021/cr0509556] [PMID: 17530908]
[http://dx.doi.org/10.1002/slct.201700580]
(b)Saikia, E.; Bora, S.J.; Chetia, B.H. 2O2 in WERSA: an efficient green protocol for ipso-hydroxylation of aryl/heteroarylboronic acid. RSC Advances, 2015, 5, 102723-102726.
(c)Godoi, M.; Leitemberger, A.; Böhs, L.M.C.; Silveira, M.V.; Rafique, J.; D’Oca, M.G.M. Rice straw ash extract, an efficient solvent for regioselective hydrothiolation of alkynes. Environ. Chem. Lett., 2019, 17, 1441-1446.
[http://dx.doi.org/10.1039/C5RA20133K] [http://dx.doi.org/10.1039/C5RA21354A] [http://dx.doi.org/10.1007/s10311-019-00882-0]
[http://dx.doi.org/10.1039/C6RA28779D]
(b)Sarmah, M.; Dewan, A.; Mondal, M.; Thakur, A.J.; Bora, U. Analysis of the water extract of waste papaya bark ash and its implications as an in situ base in the ligand-free recyclable Suzuki–Miyaura coupling reaction. RSC Advances, 2016, 6, 28981-28985.
[http://dx.doi.org/10.1002/aoc.3646] [http://dx.doi.org/10.1039/C6RA00454G]
[http://dx.doi.org/10.1002/slct.201701057]
[http://dx.doi.org/10.2174/2213335606666190820091029]
[http://dx.doi.org/10.1002/slct.201904336]
(b)Laskar, K.; Bhattacharjee, P.; Gohain, M.; Deka, D.; Bora, U. Application of bio-based green heterogeneous catalyst for the synthesis of arylidinemalononitriles. Sustain. Chem. Pharm., 2019, 14, 100181.
(c)Gohain, M.; Laskar, K.; Phukon, H.; Bora, U.; Kalita, D.; Deka, D. Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves. Waste Manag., 2020, 102, 212-221.
(d)Gohain, M.; Laskar, K.; Paul, A.K.; Daimary, N.; Maharana, M.; Goswami, I.K.; Deka, D. Carica papaya stem: a source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation. Renew. En., 2020, 147, 541-555.
[http://dx.doi.org/10.1007/s10311-018-0764-1] [http://dx.doi.org/10.1016/j.scp.2019.100181] [http://dx.doi.org/10.1016/j.wasman.2019.10.049] [PMID: 31683077] [http://dx.doi.org/10.1016/j.renene.2019.09.016]
(b)Kantharaju, K.; Hiremath, P.B. CuI-NPs catalyzed mechanochemical assisted n-boc protection of primary amines. Indian J. Chem., 2020, 59B, 1016-1024.
cKantharaju, K.; Hiremath, P.B. A green catalytic system for the Knoevenagel condensation using WEPBA. IJETSR, 2017, 4, 807-813.
[http://dx.doi.org/10.1039/9781839160783-00123]