Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

The Spectrum of Cefditoren for Lower Respiratory Tract Infections (LRTIs) in Surabaya

Author(s): Alfian Nur Rosyid*, Pepy Dwi Endraswari, Tutik Kusmiati, Arina Dery Puspitasari, Abdul Khairul Rizki Purba, Wiwin Is Effendi, Soedarsono, Nasronudin and Muhammad Amin

Volume 17, Issue 1, 2022

Published on: 11 March, 2022

Page: [30 - 38] Pages: 9

DOI: 10.2174/1574885517666211220150412

open access plus

Abstract

Background: Empirical antibiotics among outpatients with Lower Respiratory Tract Infections (LRTIs) are scarcely allocated in Indonesia. The study aims to evaluate the pathogens causing LRTIs, drug sensitivity test and the minimum inhibitory concentrations of 90% (MIC90) of Cefditoren, Azithromycin, Amoxicillin-Clavulanic Acid, and Cefixime.

Methods: The study was performed in adult outpatients with LRTI that can be expectorated. Patients with diabetes mellitus, HIV, lung tuberculosis, renal or hepatic failure, and hemoptysis were excluded. We performed bacterial culture, antibiotic sensitivity, and MIC measurement of four antibiotics.

Results: There were 126 patients with LRTIs, and 61 patients were eligible for the study. We identified 69 bacteria. We found Klebsiella pneumonia (n=16; 26.23%), Staphylococcus aureus (n=11; 18%), Pseudomonas aeruginosa (n=8; 13.11%), Acinetobacter baumanii complex (n= 4; 6.55%), Streptococcus pneumonia (n=3; 4.9%) and others bacteria as causes of LRTI. Testing MIC90 of Cefditoren and three empiric antibiotics on LRTI found that Cefditoren has a lower MIC of 90 for K. pneumonia (0.97(2.04) μg.mL-1) and S. pneumonia (0.06(0.00)μg.mL-1) than other antibiotics, but almost the same as Cefixime ((0.05(0.16)μg.mL-1) and (0.38(0.17)μg.mL-1). MIC90 Cefditoren for S.aureus (3.18(3.54)μg.mL-1) and P.aeruginosa (9.2(3.53)μg.mL-1) is lower than Cefixime but higher than Azithromycin and Amoxicillin-Clavulanic acid. Reference data MIC90 of Cefditoren for LRTI bacteria is lower than the other three oral empirical antibiotics.

Conclusion : In vitro studies of an outpatient LRTI in Surabaya found gram-negative bacteria dominant. Cefditoren can inhibit K.pneumonia and S.pneumonia has a lower MIC90 compared to other antibiotics. Cefditoren can inhibit gram-negative and positive bacteria causing LRTI.

Keywords: Oral antibiotics, cefditoren, in vitro, LRTI, MIC90, infection disease.

Graphical Abstract

[1]
GBD 2015 LRI Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis 2017; 17(11): 1133-61.
[http://dx.doi.org/10.1016/S1473-3099(17)30396-1] [PMID: 28843578]
[2]
Shrestha S, Acharya A, Gautam R, Ansari S. Lower respiratory tract pathogens and their antimicrobial susceptibility pattern in a medical hospital of central Nepal. Int J Biomed Adv Res Res 2015; 04: 335-40.
[http://dx.doi.org/10.7439/ijbar]
[3]
Woodhead M, Blasi F, Ewig S, et al. Guidelines for the management of adult lower respiratory tract infections. Eur Respir J 2005; 26(6): 1138-80.
[http://dx.doi.org/10.1183/09031936.05.00055705] [PMID: 16319346]
[4]
Feldman C, Shaddock E. Epidemiology of lower respiratory tract infections in adults. Expert Rev Respir Med 2019; 13(1): 63-77.
[http://dx.doi.org/10.1080/17476348.2019.1555040] [PMID: 30518278]
[5]
European Respiratory Society. The burden of lung disease. ERS White 2-15. Available from: https://www.erswhitebook.org/files/public/Chapters/01_burden.pdf (accessed on: February 24, 2020).
[6]
Mahashur A, Hospital PDHN. Management of lower respiratory tract infection in outpatient settings: Focus on clarithromycin. Lung India 2018; 35(2): 143-9.
[http://dx.doi.org/10.4103/lungindia.lungindia] [PMID: 29487250]
[7]
Purba AK, Ascobat P, Muchtar A, et al. Multidrug-resistant infections among hospitalized adults with community-acquired pneumonia in an Indonesian tertiary referral hospital. Infect Drug Resist 2019; 12: 3663-75.
[http://dx.doi.org/10.2147/IDR.S217842] [PMID: 31819549]
[8]
Feldman C, Richards G. Appropriate antibiotic management of bacterial lower respiratory tract infections. F1000 Res 2018; 7: 1-12.
[http://dx.doi.org/10.12688/f1000research.14226.1] [PMID: 30079235]
[9]
Lee MY, Ko KS, Oh WS, et al. In vitro activity of cefditoren: Antimicrobial efficacy against major respiratory pathogens from Asian countries. Int J Antimicrob Agents 2006; 28(1): 14-8.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.02.014] [PMID: 16777383]
[10]
Uzoamaka M, Ngozi O, Johnbull OS, Martin O. Current trends on bacterial etiology of lower respiratory tract infection and their antimicrobial susceptibility in Enugu. Am J Med Sci 2017; 06: 1-16.
[http://dx.doi.org/10.1016/j.amjms.2017.06.025] [PMID: 29173358]
[11]
Örtqvist A. Treatment of community-acquired lower respiratory tract infections in adults. Eur Respir J Suppl 2002; 36: 40s-53s.
[http://dx.doi.org/10.1183/09031936.02.00309002] [PMID: 12168747]
[12]
Ieven M, Coenen S, Loens K, et al. Aetiology of lower respiratory tract infection in adults in primary care: A prospective study in 11 European countries. Clin Microbiol Infect 2018; 24(11): 1158-63.
[http://dx.doi.org/10.1016/j.cmi.2018.02.004] [PMID: 29447989]
[13]
Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021; 10(2): 1-21.
[http://dx.doi.org/10.3390/pathogens10020165] [PMID: 33557078]
[14]
World Medical Association. WMA declaration of helsinki – ethical principles for medical research involving human subjects. 2018. Available from: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/.
[15]
Rosón B, Carratalà J, Verdaguer R, Dorca J, Manresa F, Gudiol F. Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization. Clin Infect Dis 2000; 31(4): 869-74.
[http://dx.doi.org/10.1086/318151] [PMID: 11049763]
[16]
Mikasa K, Aoki N, Aoki Y, et al. JAID/JSC guidelines for the treatment of respiratory infectious diseases: The Japanese Association for Infectious Diseases/Japanese Society of Chemotherapy - The JAID/JSC Guide to Clinical Management of Infectious Disease/Guideline-preparing Committee Respiratory Infectious Disease WG. J Infect Chemother 2016; 22(7)(Suppl.): S1-S65.
[http://dx.doi.org/10.1016/j.jiac.2015.12.019] [PMID: 27317161]
[17]
Rubimtein E, Carboil C, Ranjpvaj M, Saiztos J. Lower respiratory tract infections: Etiology, current treatment , and experience with fluoroquinolones. Clin Microbiol Infect 1998; 4: 2S42-50.
[http://dx.doi.org/10.1111/j.1469-0691.1998.tb00693.x]
[18]
Okesola AO, Ige OM. Trends in bacterial pathogens of lower respiratory tract infections. Indian J Chest Dis Allied Sci 2008; 50(3): 269-72.
[PMID: 18630792]
[19]
European Respiratory Society. Acute lower respiratory infections. ERS White B 2012; 210-23. Available from: https://www.erswhitebook.org/files/public/Chapters/18_ALRIs.pdf (Accessed on: February 24, 2020).
[20]
Wang D, Chen Y, Li H, Zhang W, Huang W, Lin X. Epidemiological study on the respiratory pathogens in hospitalized patients with lower respiratory tract infection in Fujian Province. Int J Clin Exp Med 2017; 10: 16444-51.
[21]
Arancibia F, Bauer TT, Ewig S, et al. Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa: Incidence, risk, and prognosis. Arch Intern Med 2002; 162(16): 1849-58.
[http://dx.doi.org/10.1001/archinte.162.16.1849] [PMID: 12196083]
[22]
Fogarty CM, Cyganowski M, Palo WA, Hom RC, Craig WA. A comparison of cefditoren pivoxil and amoxicillin/ clavulanate in the treatment of community-acquired pneumonia: A multicenter, prospective, randomized, investigator-blinded, parallel-group study. Clin Ther 2002; 24(11): 1854-70.
[http://dx.doi.org/10.1016/S0149-2918(02)80084-4] [PMID: 12501879]
[23]
Alzubiery TK, Alharazi T, Alsumairy H, Al-zubeiry A, Yusr A, Al-shami H. Current antibiotic sensitivity pattern of clinically isolated Klebsiella pneumoniae. J Biomed Res 2018; 3: 23-32.
[http://dx.doi.org/10.21276/sjbr.2018.3.2.1]
[24]
Riou M, Carbonnelle S, Avrain L, et al. In vivo development of antimicrobial resistance in Pseudomonas aeruginosa strains isolated from the lower respiratory tract of Intensive Care Unit patients with nosocomial pneumonia and receiving antipseudomonal therapy. Int J Antimicrob Agents 2010; 36(6): 513-22.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.08.005] [PMID: 20926262]
[25]
Mustafa MH, Khandekar S, Tunney MM, et al. Acquired resistance to macrolides in Pseudomonas aeruginosa from cystic fibrosis patients. Eur Respir J 2017; 49(5): 1601847.
[http://dx.doi.org/10.1183/13993003.01847-2016] [PMID: 28526799]
[26]
Bassetti M, Vena A, Russo A, Croxatto A, Calandra T, Guery B. Rational approach in the management of Pseudomonas aeruginosa infections. Curr Opin Infect Dis 2018; 31(6): 578-86.
[http://dx.doi.org/10.1097/QCO.0000000000000505] [PMID: 30299364]
[27]
Mesaros N, Nordmann P, Plésiat P, et al. Pseudomonas aeruginosa: Resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007; 13(6): 560-78.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01681.x] [PMID: 17266725]
[28]
European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints - bacteria (v 10.0). European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2020; 1-112.
[29]
Darabi A, Hocquet D, Dowzicky MJ. Antimicrobial activity against Streptococcus pneumoniae and Haemophilus influenzae collected globally between 2004 and 2008 as part of the Tigecycline Evaluation and Surveillance Trial. Diagn Microbiol Infect Dis 2010; 67(1): 78-86.
[http://dx.doi.org/10.1016/j.diagmicrobio.2009.12.009] [PMID: 20385351]
[30]
Tempera G, Furneri PM, Carlone NA, et al. Antibiotic susceptibility of respiratory pathogens recently isolated in Italy: Focus on cefditoren. J Chemother 2010; 22(3): 153-9.
[http://dx.doi.org/10.1179/joc.2010.22.3.153] [PMID: 20566418]
[31]
Barberán J, Aguilar L, Giménez MJ. Update on the clinical utility and optimal use of cefditoren. Int J Gen Med 2012; 5: 455-64.
[http://dx.doi.org/10.2147/IJGM.S25989] [PMID: 22675264]
[32]
van Zyl L, le Roux JG, LaFata JA, et al. Cefditoren pivoxil versus cefpodoxime proxetil for community-acquired pneumonia: Results of a multicenter, prospective, randomized, double-blind study. Clin Ther 2002; 24(11): 1840-53.
[http://dx.doi.org/10.1016/S0149-2918(02)80083-2] [PMID: 12501878]
[33]
Seral C, Suárez L, Rubio-Calvo C, et al. In vitro activity of cefditoren and other antimicrobial agents against 288 Streptococcus pneumoniae and 220 Haemophilus influenzae clinical strains isolated in Zaragoza, Spain. Diagn Microbiol Infect Dis 2008; 62(2): 210-5.
[http://dx.doi.org/10.1016/j.diagmicrobio.2008.06.007] [PMID: 18715733]
[34]
European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2011. In: Annual Report of the European An- timicrobial Resistance Surveillance Network (EARS-Net). Stockholm 2012.
[35]
Di Marco F, Braido F, Santus P, Scichilone N, Blasi F. The role of cefditoren in the treatment of lower community-acquired respiratory tract infections (LRTIs): From bacterial eradication to reduced lung inflammation and epithelial damage. Eur Rev Med Pharmacol Sci 2014; 18(3): 321-32.
[PMID: 24563430]
[36]
Clark CL, Nagai K, Dewasse BE, et al. Activity of cefditoren against respiratory pathogens. J Antimicrob Chemother 2002; 50(1): 33-41.
[http://dx.doi.org/10.1093/jac/dkf076] [PMID: 12096004]
[37]
Mazzeo F, Mangrella M, Falcone G, et al. Antibiotic drug prescription in respiratory tract infections: A pharmacoepidemiological survey among general practitioners in a region of Italy. J Chemother 2000; 12(2): 153-9.
[http://dx.doi.org/10.1179/joc.2000.12.2.153] [PMID: 10789555]
[38]
Williams JD, Naber KG, Bryskier A, et al. Classification of oral cephalosporins. A matter for debate. Int J Antimicrob Agents 2001; 17(6): 443-50.
[http://dx.doi.org/10.1016/S0924-8579(01)00309-0] [PMID: 11397613]
[39]
Balbisi EA. Cefditoren, a new aminothiazolyl cephalosporin. Pharmacotherapy 2002; 22(10): 1278-93.
[http://dx.doi.org/10.1592/phco.22.15.1278.33481] [PMID: 12389878]
[40]
Lockhart TJ, Black J, Moland ES, Thomson KS. Cefditoren: In vitro activity against respiratory pathogens and β-lactamase stability. Infect Dis Clin Pract 2004; 12: 223-9.
[http://dx.doi.org/10.1097/01.idc.0000130883.97363.24]
[41]
Soriano F, Giménez MJ, Aguilar L. Cefditoren in upper and lower community-acquired respiratory tract infections. Drug Des Devel Ther 2011; 5: 85-94.
[http://dx.doi.org/10.2147/DDDT.S9499] [PMID: 21340042]
[42]
Woodhead M, Blasi F, Ewig S, et al. Guidelines for the management of adult lower respiratory tract infections--summary. Clin Microbiol Infect 2011; 17(Suppl. 6): 1-24.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03602.x] [PMID: 21951384]
[43]
Panpanich R, Lerttrakarnnon P, Laopaiboon M. Azithromycin for acute lower respiratory tract infections. Cochrane Database Syst Rev 2008; 3(1): CD001954.
[http://dx.doi.org/10.1002/14651858.CD001954.pub3] [PMID: 18253999]
[44]
Blasi F, Cazzola M, Tarsia P, et al. Azithromycin and lower respiratory tract infections. Expert Opin Pharmacother 2005; 6(13): 2335-51.
[http://dx.doi.org/10.1517/14656566.6.13.2335] [PMID: 16218893]
[45]
García-Rodríguez JA, Muñoz Bellido JL, García Sánchez JE. Oral cephalosporins: Current perspectives. Int J Antimicrob Agents 1995; 5(4): 231-43.
[http://dx.doi.org/10.1016/0924-8579(95)00015-Z] [PMID: 18611674]

© 2024 Bentham Science Publishers | Privacy Policy