Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Boesenbergia Pandurata as an Anti-Breast Cancer Agent: Molecular Docking and ADMET Study

Author(s): Mohammad Rizki Fadhil Pratama, Ersanda Nurma Praditapuspa, Dini Kesuma, Hadi Poerwono, Tri Widiandani and Siswandono Siswodihardjo*

Volume 19, Issue 7, 2022

Published on: 16 February, 2022

Page: [606 - 626] Pages: 21

DOI: 10.2174/1570180819666211220111245

Price: $65

Abstract

Background: Boesenbergia pandurata or fingerroot is known to have various pharmacological activities, including anticancer properties. Extracts from these plants are known to inhibit the growth of cancer cells, including breast cancer. Anti-breast cancer activity is significantly influenced by the inhibition of two receptors: ER-α and HER2. However, it is unknown which metabolites of B. pandurata play the most crucial role in exerting anticancer activity.

Objective: This study aimed to determine the metabolites of B. pandurata with the best potential as ER-α and HER2 inhibitors.

Methods: The method used was molecular docking of several B. pandurata metabolites to ER-α and HER2 receptors, followed by an ADMET study of several metabolites with the best docking results.

Results: The docking results showed eight metabolites with the best docking results for the two receptors based on the docking score and ligand-receptor interactions. Of these eight compounds, compounds 11 ((2S)-7,8-dihydro-5-hydroxy-2-methyl-2-(4''-methyl-3''-pentenyl)-8-phenyl-2H,6H-benzo(1,2-b-5,4- b')dipyran-6-one) and 34 (geranyl-2,4-dihydroxy-6-phenethylbenzoate) showed the potential to inhibit both receptors. Both ADMET profiles also showed mixed results; however, there is a possibility of further development.

Conclusion: In conclusion, the metabolites of B. pandurata, especially compounds 11 and 34, can be developed as anti-breast cancer agents by inhibiting ER-α and HER2.

Keywords: ADMET, Boesenbergia pandurata, breast cancer, docking, ER-α, HER2.

Graphical Abstract

[1]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T-C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[2]
Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J. J.; Hartmans-henn, C.; O’Neill, K.M.; Balter, M.L.; Fritz, Z.R.; Androulakis, I.P.; Schloss, R.S.; Yarmush, M.L. The growing role of precision and per-sonalized medicine for cancer treatment. Technology (Singap World. Sci.), 2018. 6(3-4), 79-100.
[3]
Jean-Quartier, C.; Jeanquartier, F.; Jurisica, I.; Holzinger, A. In silico cancer research towards 3R. BMC Cancer, 2018, 18(1), 408.
[http://dx.doi.org/10.1186/s12885-018-4302-0] [PMID: 29649981]
[4]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br. J. Pharmacol., 2007, 152(1), 9-20.
[http://dx.doi.org/10.1038/sj.bjp.0707305] [PMID: 17549047]
[5]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[6]
Yi, F.; Li, L.; Xu, L-J.; Meng, H.; Dong, Y-M.; Liu, H-B.; Xiao, P-G. In silico approach in reveal traditional medicine plants pharmacologi-cal material basis. Chin. Med., 2018, 13(1), 33.
[http://dx.doi.org/10.1186/s13020-018-0190-0] [PMID: 29946351]
[7]
Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences. Nat. Prod. Bioprospect., 2020, 10(5), 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[8]
Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl. 2), 41-59.
[http://dx.doi.org/10.1159/000443404] [PMID: 26679767]
[9]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[10]
Sun, Y-S.; Zhao, Z.; Yang, Z-N.; Xu, F.; Lu, H-J.; Zhu, Z-Y.; Shi, W.; Jiang, J.; Yao, P-P.; Zhu, H-P. Risk factors and preventions of breast Cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[11]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[12]
Meiyanto, E.; Larasati, Y.A. The chemopreventive activity of Indonesia medicinal plants targeting on hallmarks of cancer. Adv. Pharm. Bull., 2019, 9(2), 219-230.
[http://dx.doi.org/10.15171/apb.2019.025] [PMID: 31380247]
[13]
Cheah, S-C.; Lai, S-L.; Lee, S-T.; Hadi, A.H.A.; Mustafa, M.R. Panduratin A. A possible inhibitor in metastasized A549 cells through inhibition of NF-kappa B translocation and chemoinvasion. Molecules, 2013, 18(8), 8764-8778.
[http://dx.doi.org/10.3390/molecules18088764] [PMID: 23887718]
[14]
Yun, J-M.; Kweon, M-H.; Kwon, H.; Hwang, J-K.; Mukhtar, H. Induction of apoptosis and cell cycle arrest by a chalcone panduratin A isolated from Kaempferia pandurata in androgen-independent human prostate cancer cells PC3 and DU145. Carcinogenesis, 2006, 27(7), 1454-1464.
[http://dx.doi.org/10.1093/carcin/bgi348] [PMID: 16497706]
[15]
Jaudan, A.; Sharma, S.; Malek, S.N.A.; Dixit, A. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mecha-nism of action. PLoS One, 2018, 13(2): e0191523.
[http://dx.doi.org/10.1371/journal.pone.0191523] [PMID: 29420562]
[16]
Le Bail, J.C.; Aubourg, L.; Habrioux, G. Effects of pinostrobin on estrogen metabolism and estrogen receptor transactivation. Cancer Lett., 2000, 156(1), 37-44.
[http://dx.doi.org/10.1016/S0304-3835(00)00435-3] [PMID: 10840157]
[17]
Jones, A.A.; Gehler, S. Acacetin and Pinostrobin inhibit malignant breast epithelial cell adhesion and focal adhesion formation to attenuate cell migration. Integr. Cancer Ther., 2020, 19: 1534735420918945.
[http://dx.doi.org/10.1177/1534735420918945] [PMID: 32493139]
[18]
Pratama, M.R.F.; Poerwono, H.; Siswandono, S. Design and molecular docking of novel 5-o-benzoylpinostrobin derivatives as anti-breast cancer. Thaiphesatchasan, 2019, 43(4), 201-212.
[19]
Youn, K.; Jun, M. Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients, 2019, 11(3), 662.
[http://dx.doi.org/10.3390/nu11030662] [PMID: 30893825]
[20]
Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The structural basis of estrogen recep-tor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95(7), 927-937.
[http://dx.doi.org/10.1016/S0092-8674(00)81717-1] [PMID: 9875847]
[21]
Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem., 2011, 54(23), 8030-8050.
[http://dx.doi.org/10.1021/jm2008634] [PMID: 22003817]
[22]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Auto-mated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[23]
Pratama, M.R.F.; Poerwono, H.; Siswodihardjo, S. Introducing a two;dimensional graph of docking score difference vs. similarity of lig-and;receptor interactions. Indones. J. Biotechnol., 2021, 26(1), 54.
[http://dx.doi.org/10.22146/ijbiotech.62194]
[24]
Pratama, M.R.F.; Poerwono, H.; Siswodiharjo, S. ADMET properties of novel 5-O-benzoylpinostrobin derivatives. J. Basic Clin. Physiol. Pharmacol., 2019, 30(6): 20190251.
[http://dx.doi.org/10.1515/jbcpp-2019-0251] [PMID: 31851612]
[25]
Sukardiman; Ervina, M.; Fadhil Pratama, M.R.; Poerwono, H.; Siswodihardjo S. The coronavirus disease 2019 main protease inhibitor from Andrographis paniculata (Burm. f). Ness. J. Adv. Pharm. Technol. Res., 2020, 11(4), 157-162.
[http://dx.doi.org/10.4103/japtr.JAPTR_84_20] [PMID: 33425697]
[26]
Win, N.N.; Awale, S.; Esumi, H.; Tezuka, Y.; Kadota, S. Bioactive secondary metabolites from Boesenbergia pandurata of Myanmar and their preferential cytotoxicity against human pancreatic cancer PANC-1 cell line in nutrient-deprived medium. J. Nat. Prod., 2007, 70(10), 1582-1587.
[http://dx.doi.org/10.1021/np070286m] [PMID: 17896818]
[27]
Morikawa, T.; Funakoshi, K.; Ninomiya, K.; Yasuda, D.; Miyagawa, K.; Matsuda, H.; Yoshikawa, M. Medicinal foodstuffs. XXXIV. Structures of new prenylchalcones and prenylflavanones with TNF-alpha and aminopeptidase N inhibitory activities from Boesenbergia rotunda. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 956-962.
[http://dx.doi.org/10.1248/cpb.56.956] [PMID: 18591809]
[28]
Jaipetch, T.; Kanghae, S.; Pancharoen, O.; Patrick, V.; Reutrakul, V.; Tuntiwachwuttikul, P.; White, A. Constituents of Boesenbergia pan-durata (Syn. Kaempferia pandurata): Isolation, crystal structure and synthesis of (±)-boesenbergin A. Aust. J. Chem., 1982, 35(2), 351.
[http://dx.doi.org/10.1071/CH9820351]
[29]
Herunsalee, A.; Pancharoen, O.; Tuntiwachwuttikul, P. Further studies of flavonoids of the black rhizomes Boesenbergia pandurata. J. Sci. Soc. Thailand, 1987, 13, 119-122.
[http://dx.doi.org/10.2306/scienceasia1513-1874.1987.13.119]
[30]
Trakoontivakorn, G.; Nakahara, K.; Shinmoto, H.; Takenaka, M.; Onishi-Kameyama, M.; Ono, H.; Yoshida, M.; Nagata, T.; Tsushida, T. Structural analysis of a novel antimutagenic compound, 4-Hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J. Agric. Food Chem., 2001, 49(6), 3046-3050.
[http://dx.doi.org/10.1021/jf010016o] [PMID: 11410007]
[31]
Wangkangwan, W.; Boonkerd, S.; Chavasiri, W.; Sukapirom, K.; Pattanapanyasat, K.; Kongkathip, N.; Miyakawa, T.; Yompakdee, C. Pi-nostrobin from Boesenbergia pandurata is an inhibitor of Ca2+-signal-mediated cell-cycle regulation in the yeast Saccharomyces cere-visiae. Biosci. Biotechnol. Biochem., 2009, 73(7), 1679-1682.
[http://dx.doi.org/10.1271/bbb.90114] [PMID: 19584530]
[32]
Mahidol, C.; Tuntiwachwuttikul, P.; Reutrakul, V.; Taylor, W.C. Constituents of Boesenbergia Pandurata (Syn. Kaempferia Pandurata). III. Isolation and synthesis of (±)-boesenbergin B. Aust. J. Chem., 1984, 37(8), 1739.
[http://dx.doi.org/10.1071/CH9841739]
[33]
Tuchinda, P.; Reutrakul, V.; Claeson, P.; Pongprayoon, U.; Sematong, T.; Santisuk, T.; Taylor, W.C. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry, 2002, 59(2), 169-173.
[http://dx.doi.org/10.1016/S0031-9422(01)00451-4] [PMID: 11809452]
[34]
Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Subhadhirasakul, S.; Tewtrakul, S. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg. Med. Chem., 2006, 14(6), 1710-1714.
[http://dx.doi.org/10.1016/j.bmc.2005.10.019] [PMID: 16263298]
[35]
Pancharoen, O.; Picker, K.; Reutrakul, V.; Taylor, W.C.; Tuntiwachwuttikul, P. Constituents of the Zingiberaceae. X. Diastereomers of [7-Hydroxy-5-Methoxy-2-Methyl-2-(4;-Methylpent-3;-Enyl)-2H-Chromen-8-Yl] [3;-Methyl-2;-(3;;-Methylbut-2;;-Enyl]-6;-Phenylcyclohex-3;-Enyl]M Ethanone (Panduratin B), a constituent of the red rhizomes of a variety of Boesenbergia pandurata. Aust. J. Chem., 1987, 40(3), 455.
[http://dx.doi.org/10.1071/CH9870455]
[36]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[37]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[38]
Isa, N.M.; Abdul, A.B.; Abdelwahab, S.I.; Abdullah, R.; Sukari, M.A.; Kamalidehghan, B.; Hadi, A.H.A.; Mohan, S. Boesenbergin A, a Chalcone from Boesenbergia rotunda induces apoptosis via mitochondrial dysregulation and cytochrome c release in a549 cells in vitro: Involvement of HSP70 and Bcl2/Bax signalling pathways. J. Funct. Foods, 2013, 5(1), 87-97.
[http://dx.doi.org/10.1016/j.jff.2012.08.008]
[39]
Zhang, T.; Guo, S.; Zhu, X.; Qiu, J.; Deng, G.; Qiu, C. Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. J. Cell. Mol. Med., 2020, 24(15), 8430-8440.
[http://dx.doi.org/10.1111/jcmm.15371] [PMID: 32562470]
[40]
Zhao, X.; Guo, X.; Shen, J.; Hua, D. Alpinetin inhibits proliferation and migration of ovarian cancer cells via suppression of STAT3 sig-naling. Mol. Med. Rep., 2018, 18(4), 4030-4036.
[http://dx.doi.org/10.3892/mmr.2018.9420] [PMID: 30132572]
[41]
Pascoal, A.C.R.F.; Ehrenfried, C.A.; Lopez, B.G-C.; de Araujo, T.M.; Pascoal, V.D.B.; Gilioli, R.; Anhê, G.F.; Ruiz, A.L.T.G.; Carvalho, J.E.; Stefanello, M.E.A.; Salvador, M.J. Antiproliferative activity and induction of apoptosis in PC-3 cells by the chalcone cardamonin from Campomanesia adamantium (Myrtaceae) in a bioactivity-guided study. Molecules, 2014, 19(2), 1843-1855.
[http://dx.doi.org/10.3390/molecules19021843] [PMID: 24514747]
[42]
Kumar, M.A.S.; Nair, M.; Hema, P.S.; Mohan, J.; Santhoshkumar, T.R. Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol. Carcinog., 2007, 46(3), 231-241.
[http://dx.doi.org/10.1002/mc.20272] [PMID: 17186548]
[43]
Chen, Z.; Rasul, A.; Zhao, C.; Millimouno, F.M.; Tsuji, I.; Yamamura, T.; Iqbal, R.; Malhi, M.; Li, X.; Li, J. Antiproliferative and apoptotic effects of pinocembrin in human prostate cancer cells. Bangladesh J. Pharmacol., 2013, 8(3), 255-262.
[http://dx.doi.org/10.3329/bjp.v8i3.14795]
[44]
Liu, Q.; Cao, Y.; Zhou, P.; Gui, S.; Wu, X.; Xia, Y.; Tu, J. Panduratin A inhibits cell proliferation by inducing G0/G1 phase cell cycle ar-rest and induces apoptosis in breast cancer cells. Biomol. Ther. (Seoul), 2018, 26(3), 328-334.
[http://dx.doi.org/10.4062/biomolther.2017.042] [PMID: 29301388]
[45]
Eng-Chong, T.; Yean-Kee, L.; Chin-Fei, C.; Choon-Han, H.; Sher-Ming, W.; Li-Ping, C.T.; Gen-Teck, F.; Khalid, N.; Abd Rahman, N.; Karsani, S.A.; Othman, S.; Othman, R.; Yusof, R. Boesenbergia rotunda: From ethnomedicine to drug discovery. Evid. Based Complement. Alternat. Med., 2012, 2012: 473637.
[http://dx.doi.org/10.1155/2012/473637] [PMID: 23243448]
[46]
McDonnell, D.P.; Wardell, S.E. The molecular mechanisms underlying the pharmacological actions of ER modulators: Implications for new drug discovery in breast cancer. Curr. Opin. Pharmacol., 2010, 10(6), 620-628.
[http://dx.doi.org/10.1016/j.coph.2010.09.007] [PMID: 20926342]
[47]
Pang, X.; Fu, W.; Wang, J.; Kang, D.; Xu, L.; Zhao, Y.; Liu, A-L.; Du, G-H. Identification of estrogen receptor α antagonists from natural products via in vitro and in silico approaches. Oxid. Med. Cell. Longev., 2018, 2018: 6040149.
[http://dx.doi.org/10.1155/2018/6040149] [PMID: 29861831]
[48]
Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals targeting estrogen receptors: beneficial rather than adverse effects? Int. J. Mol. Sci., 2017, 18(7), 1381.
[http://dx.doi.org/10.3390/ijms18071381] [PMID: 28657580]
[49]
Pantsar, T.; Poso, A. Binding affinity via docking: Fact and fiction. Molecules, 2018, 23(8), 1899.
[http://dx.doi.org/10.3390/molecules23081899] [PMID: 30061498]
[50]
Ng, H.W.; Zhang, W.; Shu, M.; Luo, H.; Ge, W.; Perkins, R.; Tong, W.; Hong, H. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC Bioinformatics, 2014, 11(S11), S4.
[http://dx.doi.org/10.1186/1471-2105-15-S11-S4]
[51]
Li, S.G.; Li, L. Targeted therapy in HER2-positive breast cancer. Biomed. Rep., 2013, 1(4), 499-505.
[http://dx.doi.org/10.3892/br.2013.95] [PMID: 24648975]
[52]
Pernas, S.; Tolaney, S.M. HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther. Adv. Med. Oncol., 2019, 11: 1758835919833519.
[http://dx.doi.org/10.1177/1758835919833519] [PMID: 30911337]
[53]
Li, J.; Wang, H.; Li, J.; Bao, J.; Wu, C. Discovery of a potential HER2 inhibitor from natural products for the treatment of HER2-positive breast cancer. Int. J. Mol. Sci., 2016, 17(7), 1055.
[http://dx.doi.org/10.3390/ijms17071055] [PMID: 27376283]
[54]
Yang, S-C.; Chang, S-S.; Chen, C.Y-C. Identifying HER2 inhibitors from natural products database. PLoS One, 2011, 6(12): e28793.
[http://dx.doi.org/10.1371/journal.pone.0028793] [PMID: 22174899]
[55]
Shi, Z.; Yu, T.; Sun, R.; Wang, S.; Chen, X-Q.; Cheng, L-J.; Liu, R. Discovery of novel human epidermal growth factor receptor-2 inhibi-tors by structure-based virtual screening. Pharmacogn. Mag., 2016, 12(46), 139-144.
[http://dx.doi.org/10.4103/0973-1296.177912] [PMID: 27076751]
[56]
Yousuf, Z.; Iman, K.; Iftikhar, N.; Mirza, M.U. Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. Breast Cancer (Dove Med. Press), 2017, 9, 447-459.
[http://dx.doi.org/10.2147/BCTT.S132074] [PMID: 28652811]
[57]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[58]
Davis, A.M.; Riley, R.J. Predictive ADMET studies, the challenges and the opportunities. Curr. Opin. Chem. Biol., 2004, 8(4), 378-386.
[http://dx.doi.org/10.1016/j.cbpa.2004.06.005] [PMID: 15288247]
[59]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpe-noids for COVID-19. Comput. Biol. Med., 2020, 124(103936): 103936.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[60]
Eswaramoorthy, R.; Hailekiros, H.; Kedir, F.; Endale, M. In silico molecular docking, DFT analysis and ADMET studies of carbazole alkaloid and coumarins from roots of Clausena anisata: A potent inhibitor for quorum sensing. Adv. Appl. Bioinform. Chem., 2021, 14, 13-24.
[http://dx.doi.org/10.2147/AABC.S290912] [PMID: 33584098]
[61]
Rasheed, M.A.; Iqbal, M.N.; Saddick, S.; Ali, I.; Khan, F.S.; Kanwal, S.; Ahmed, D.; Ibrahim, M.; Afzal, U.; Awais, M. Identification of lead compounds against Scm (fms10) in Enterococcus faecium using computer aided drug designing. Life (Basel), 2021, 11(2), 77.
[http://dx.doi.org/10.3390/life11020077] [PMID: 33494233]
[62]
Gleeson, M.P.; Hersey, A.; Montanari, D.; Overington, J. Probing the links between in vitro potency, ADMET and physicochemical pa-rameters. Nat. Rev. Drug Discov., 2011, 10(3), 197-208.
[http://dx.doi.org/10.1038/nrd3367] [PMID: 21358739]
[63]
Durán-Iturbide, N.A.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS Omega, 2020, 5(26), 16076-16084.
[http://dx.doi.org/10.1021/acsomega.0c01581] [PMID: 32656429]

© 2024 Bentham Science Publishers | Privacy Policy