Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Small Molecules Originated from Tryptophan and their Clinical Significance as Potential Biomarkers

Author(s): Katarzyna Kowalik, Natalia Miękus* and Tomasz Bączek

Volume 25, Issue 11, 2022

Published on: 11 January, 2022

Page: [1809 - 1817] Pages: 9

DOI: 10.2174/1386207325666211216140240

Price: $65

Abstract

Background: L-tryptophan is an essential amino acid necessary for the human body to function. Its degradation occurs through two metabolic pathways. Approximately 95 % of the Ltryptophan available in the body is converted via the kynurenine pathway, while the remainder is degraded via the serotonin pathway. Properly maintained balance between the concentrations of individual small molecular metabolites is extremely important to maintain homeostasis in the human body, and its disruption could lead to the development of numerous neurological, neurodegenerative, neoplastic, as well as cardiovascular diseases. Recent reports have suggested that by controlling the levels of selected L-tryptophan metabolites (potential biomarkers), it is possible to diagnose numerous diseases, monitor their course, and assess patient prognosis.

Objective: The aim of this paper is to review the currently important clinical applications of selected biomarkers from the L-tryptophan metabolism pathways that would be helpful in early diagnosis, monitoring the course and treatment of serious diseases of affluence, which ultimately could improve the patients’ quality of life, as well as support targeted therapy of the aforementioned diseases.

Conclusion: Since the biochemical biomarkers determination in body fluids presents the ideal minimally invasive tool in the patents’ diagnosis and prognostication, this study emphasizes the current trends and perspectives of application of analysis of selected L-tryptophan metabolites named kynurenine and serotonin-derived small compounds in the routine medical procedures.

Keywords: Biomarkers, disease diagnosis, Kynurenine pathway, L-tryptophan, serotonin pathway, cardiovascular diseases, neurodegenerative diseases, cancers, neurological diseases, Parkinson's disease, autism, heart failure, migraine.

[1]
Stępień, A.; Walecka-Kapica, E.; Błońska, A.; Klupińska, G. The role of tryptophan and serotonin in pathogenesis and treatment of irrita-ble bowel syndrome. Fol. Med. Lodziensia, 2014, 41(2), 139-154.
[2]
Topczewska-Bruns, J.; Pawlak, D.; Tankiewicz, A.; Chabielska, E.; Buczko, W. Kynurenine metabolism in central nervous system in ex-perimental chronic renal failure. Adv. Exp. Med. Biol., 2003, 527, 177-182.
[http://dx.doi.org/10.1007/978-1-4615-0135-0_20] [PMID: 15206730]
[3]
Pereiro, P.; Figueras, A.; Novoa, B. Insights into teleost interferon-gamma biology: An update. Fish Shellfish Immunol., 2019, 90, 150-164.
[http://dx.doi.org/10.1016/j.fsi.2019.04.002] [PMID: 31028897]
[4]
Merlo, L.M.F.; Mandik-Nayak, L. IDO2: A pathogenic mediator of inflammatory autoimmunity. Clin. Med. Insights Pathol., 2016, 9(1)(Suppl. 1), 21-28.
[http://dx.doi.org/10.4137/CPath.S39930] [PMID: 27891058]
[5]
Li, Y.; Hu, N.; Yang, D.; Oxenkrug, G.; Yang, Q. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J., 2017, 284(6), 948-966.
[http://dx.doi.org/10.1111/febs.14026] [PMID: 28118532]
[6]
Rebnord, E.W.; Strand, E.; Midttun, Ø.; Svingen, G.F.T.; Christensen, M.H.E.; Ueland, P.M.; Mellgren, G.; Njølstad, P.R.; Tell, G.S.; Ny-gård, O.K.; Pedersen, E.R. The kynurenine: Tryptophan ratio as a predictor of incident type 2 diabetes mellitus in individuals with coro-nary artery disease. Diabetologia, 2017, 60(9), 1712-1721.
[http://dx.doi.org/10.1007/s00125-017-4329-9] [PMID: 28612106]
[7]
Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. (Maywood), 2018, 243(3), 213-221.
[http://dx.doi.org/10.1177/1535370217750088] [PMID: 29405771]
[8]
Miękus, N.; Bączek, T. Non-invasive screening for neuroendocrine tumors-Biogenic amines as neoplasm biomarkers and the potential improvement of “gold standards”. J. Pharm. Biomed. Anal., 2016, 130, 194-201.
[http://dx.doi.org/10.1016/j.jpba.2016.06.013] [PMID: 27344936]
[9]
Carneiro, I.B.C.; Toscano, A.E.; Lacerda, D.C.; da Cunha, M.S.B.; de Castro, R.M.; Deiró, T.C.B.J.; Medeiros, J.M.B. L-tryptophan admin-istration and increase in cerebral serotonin levels: Systematic review. Eur. J. Pharmacol., 2018, 836, 129-135.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.009] [PMID: 30098308]
[10]
Chojnacki, C.; Błońska, A.; Kaczka, A.; Chojnacki, J.; Stępień, A.; Gąsiorowska, A. Evaluation of serotonin and dopamine secretion and metabolism in patients with irritable bowel syndrome. Pol Arch Intern Med, 2018, 128(11), 711-713.
[http://dx.doi.org/10.20452/pamw.4364] [PMID: 30398468]
[11]
Kaplan, K.; Echert, A.E.; Massat, B.; Puissant, M.M.; Palygin, O.; Geurts, A.M.; Hodges, M.R. Chronic central serotonin depletion attenu-ates ventilation and body temperature in young but not adult Tph2 knockout rats. J. Appl. Physiol., 2016, 120(9), 1070-1081.
[http://dx.doi.org/10.1152/japplphysiol.01015.2015]
[12]
Sarrouilhe, D.; Mesnil, M. Serotonin and human cancer: A critical view. Biochimie, 2019, 161, 46-50.
[http://dx.doi.org/10.1016/j.biochi.2018.06.016] [PMID: 29936294]
[13]
Calanchini, M.; Tadman, M.; Krogh, J.; Fabbri, A.; Grossman, A.; Shine, B. Measurement of urinary 5-HIAA: Correlation between spot versus 24-h urine collection. Endocr. Connect., 2019, 8(8), 1082-1088.
[http://dx.doi.org/10.1530/EC-19-0269] [PMID: 31265996]
[14]
Adaway, J.E.; Dobson, R.; Walsh, J.; Cuthbertson, D.J.; Monaghan, P.J.; Trainer, P.J.; Valle, J.W.; Keevil, B.G. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann. Clin. Biochem., 2016, 53(Pt 5), 554-560.
[http://dx.doi.org/10.1177/0004563215613109] [PMID: 26438520]
[15]
Semczuk-Kaczmarek, K.; Filipiak, K.J.; Szymańska-Tutak, A.; Szymańska-Tutak, A.; Płatek, A.E.; Szymański, F.M. Association between serotonergic and cardiovascular systems. Folia Cardiol., 2018, 13(5), 420-427.
[http://dx.doi.org/10.5603/FC.a2018.0088]
[16]
Busby, J.; Mills, K.; Zhang, S.D.; Liberante, F.G.; Cardwell, C.R. Selective serotonin reuptake inhibitor use and breast cancer survival: A population-based cohort study. Breast Cancer Res., 2018, 20(1), 4.
[http://dx.doi.org/10.1186/s13058-017-0928-0] [PMID: 29351761]
[17]
Cheng, J.; Jin, H.; Hou, X.; Lv, J.; Gao, X.; Zheng, G. Disturbed tryptophan metabolism correlating to progression and metastasis of esophageal squamous cell carcinoma. Biochem. Biophys. Res. Commun., 2017, 486(3), 781-787.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.120] [PMID: 28342863]
[18]
Politis, M.; Niccolini, F. Serotonin in Parkinson’s disease. Behav. Brain Res., 2015, 277, 136-145.
[http://dx.doi.org/10.1016/j.bbr.2014.07.037] [PMID: 25086269]
[19]
Tong, Q.; Zhang, L.; Yuan, Y.; Jiang, S.; Zhang, R.; Xu, Q.; Ding, J.; Li, D.; Zhou, X.; Zhang, K. Reduced plasma serotonin and 5-hydroxyindoleacetic acid levels in Parkinson’s disease are associated with nonmotor symptoms. Parkinsonism Relat. Disord., 2015, 21(8), 882-887.
[http://dx.doi.org/10.1016/j.parkreldis.2015.05.016] [PMID: 26028271]
[20]
Abdulamir, H.A.; Abdul-Rasheed, O.F.; Abdulghani, E.A. Serotonin and serotonin transporter levels in autistic children. Saudi Med. J., 2018, 39(5), 487-494.
[http://dx.doi.org/10.15537/smj.2018.5.21751] [PMID: 29738009]
[21]
Hranilovic, D.; Bujas-Petkovic, Z.; Vragovic, R.; Vuk, T.; Hock, K.; Jernej, B. Hyperserotonemia in adults with autistic disorder. J. Autism Dev. Disord., 2007, 37(10), 1934-1940.
[http://dx.doi.org/10.1007/s10803-006-0324-6] [PMID: 17165147]
[22]
Gasparini, C.F.; Smith, R.A.; Griffiths, L.R. Genetic and biochemical changes of the serotonergic system in migraine pathobiology. J. Headache Pain, 2017, 18(1), 20.
[http://dx.doi.org/10.1186/s10194-016-0711-0] [PMID: 28194570]
[23]
Selim, A.M.; Sarswat, N.; Kelesidis, I.; Iqbal, M.; Chandra, R.; Zolty, R. Plasma serotonin in heart failure: Possible marker and potential treatment target. Heart Lung Circ., 2017, 26(5), 442-449.
[http://dx.doi.org/10.1016/j.hlc.2016.08.003] [PMID: 27746058]
[24]
Song, P.; Ramprasath, T.; Wang, H.; Zou, M.H. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell. Mol. Life Sci., 2017, 74(16), 2899-2916.
[http://dx.doi.org/10.1007/s00018-017-2504-2] [PMID: 28314892]
[25]
Bohár, Z.; Toldi, J.; Fülöp, F.; Vécsei, L. Changing the face of kynurenines and neurotoxicity: Therapeutic considerations. Int. J. Mol. Sci., 2015, 16(5), 9772-9793.
[http://dx.doi.org/10.3390/ijms16059772] [PMID: 25938971]
[26]
Colín-González, A.L.; Maldonado, P.D.; Santamaría, A. 3-Hydroxykynurenine: An intriguing molecule exerting dual actions in the central nervous system. Neurotoxicology, 2013, 34, 189-204.
[http://dx.doi.org/10.1016/j.neuro.2012.11.007] [PMID: 23219925]
[27]
Curto, M.; Lionetto, L.; Negro, A.; Capi, M.; Fazio, F.; Giamberardino, M.A.; Simmaco, M.; Nicoletti, F.; Martelletti, P. Altered kynurenine pathway metabolites in serum of chronic migraine patients. J. Headache Pain, 2015, 17(47), 47.
[http://dx.doi.org/10.1186/s10194-016-0638-5] [PMID: 27130315]
[28]
Lee, JM; Tan, V; Lovejoy, D; Braidy, N; Rowe, DB; Brew, BJ; Guillemin, G.J. Involvement of quinolinic acid in the neuropathogenesis of amyotrophic lateral sclerosis. Neuropharmacology, 2017, 112(B), 346-364.
[http://dx.doi.org/10.1016/j.neuropharm.2016.05.011]
[29]
Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neu-rodegeneration and beyond. Nat. Rev. Drug Discov., 2019, 18(5), 379-401.
[http://dx.doi.org/10.1038/s41573-019-0016-5] [PMID: 30760888]
[30]
Pschowski, R.; Pape, U.F.; Fusch, G.; Fischer, C.; Jann, H.; Baur, A.; Arsenic, R.; Wiedenmann, B.; von Haehling, S.; Pavel, M.; Schefold, J.C. Increased activity of the immunoregulatory enzyme indoleamine-2,3-dioxygenase with consecutive tryptophan depletion predicts death in patients with neuroendocrine neoplasia. Neuroendocrinology, 2017, 104(2), 135-144.
[http://dx.doi.org/10.1159/000445191] [PMID: 26954941]
[31]
Heng, B.; Lim, C.K.; Lovejoy, D.B.; Bessede, A.; Gluch, L.; Guillemin, G.J. Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget, 2016, 7(6), 6506-6520.
[http://dx.doi.org/10.18632/oncotarget.6467] [PMID: 26646699]
[32]
Kiyozumi, Y.; Baba, Y.; Okadome, K.; Yagi, T.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Watanabe, M.; Komohara, Y.; Baba, H. IDO1 expression is associated with immune tolerance and poor prognosis in patients with surgically resected esophageal cancer. Ann. Surg., 2019, 269(6), 1101-1108.
[http://dx.doi.org/10.1097/SLA.0000000000002754] [PMID: 31082908]
[33]
Lim, C.K.; Essa, M.M.; de Paula Martins, R.; Lovejoy, D.B.; Bilgin, A.A.; Waly, M.I.; Al-Farsi, Y.M.; Al-Sharbati, M.; Al-Shaffae, M.A.; Guillemin, G.J. Altered kynurenine pathway metabolism in autism: Implication for immune-induced glutamatergic activity. Autism Res., 2016, 9(6), 621-631.
[http://dx.doi.org/10.1002/aur.1565] [PMID: 26497015]
[34]
Chang, K.H.; Cheng, M.L.; Tang, H.Y.; Huang, C.Y.; Wu, Y.R.; Chen, C.M. Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol. Neurobiol., 2018, 55(8), 6319-6328.
[http://dx.doi.org/10.1007/s12035-017-0845-3] [PMID: 29294246]
[35]
Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Saugstad, O.D.; Ormstad, H. Kynurenine pathway in autism spectrum disorders in children. Neuropsychobiology, 2017, 76(2), 82-88.
[http://dx.doi.org/10.1159/000488157] [PMID: 29694960]
[36]
Ormstad, H.; Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Halvorsen, B.; Saugstad, O.D.; Isaksen, J.; Maes, M. Serum tryptophan, tryptophan catabolites and brain-derived neurotrophic factor in subgroups of youngsters with autism spectrum disorders. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 626-639.
[http://dx.doi.org/10.2174/1871527317666180720163221] [PMID: 30033880]
[37]
Liu, G.; Chen, S.; Zhong, J.; Teng, K.; Yin, Y. Crosstalk between tryptophan metabolism and cardiovascular disease, mechanisms, and therapeutic implications. Oxid. Med. Cell. Longev., 2017, 2017, 1602074.
[http://dx.doi.org/10.1155/2017/1602074] [PMID: 28377795]
[38]
Dschietzig, T.B.; Kellner, K.H.; Sasse, K.; Boschann, F.; Klüsener, R.; Ruppert, J.; Armbruster, F.P.; Bankovic, D.; Meinitzer, A.; Mitrovic, V.; Melzer, C. Plasma kynurenine predicts severity and complications of heart failure and associates with established biochemical and clinical markers of disease. Kidney Blood Press. Res., 2019, 44(4), 765-776.
[http://dx.doi.org/10.1159/000501483] [PMID: 31387104]
[39]
Lee, M.S.; Cheng, F.C.; Yeh, H.Z.; Liou, T.Y.; Liu, J.H. Determination of plasma serotonin and 5-hydroxyindoleacetic acid in healthy subjects and cancer patients. Clin. Chem., 2000, 46(3), 422-423.
[http://dx.doi.org/10.1093/clinchem/46.3.422] [PMID: 10702533]
[40]
Lim, C.K.; Bilgin, A.; Lovejoy, D.B.; Tan, V.; Bustamante, S.; Taylor, B.V.; Bessede, A.; Brew, B.J.; Guillemin, G.J. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep., 2017, 7(1), 1-9.
[http://dx.doi.org/10.1038/srep41473] [PMID: 28155867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy