摘要
MicroRNAs (miRs)是一类保守的,小的,非编码RNA分子,调节基因表达后转录。miR-148b是miR- 148/152家族的成员之一,通常通过影响不同的信号通路和调控基因而被认为是一种肿瘤抑制因子。最近,miR-148b的异常表达被证明与几种不同癌症类型的肿瘤发生有关。这篇综述讨论了目前关于miR-148b表达参与人类癌症的证据,以及其在肿瘤诊断、预后和治疗方面的潜在临床重要性。
关键词: miR-148/152, KIT, Cyclin D1, ALCAM, WNT, 癌症。
[1]
Bahrami A, Hassanian SM. ShahidSales S, et al. Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2018; 233(3): 2058-66.
[http://dx.doi.org/10.1002/jcp.25890] [PMID: 28262927]
[http://dx.doi.org/10.1002/jcp.25890] [PMID: 28262927]
[2]
Bahrami A, Amerizadeh F. ShahidSales S, et al. Therapeutic potential of targeting Wnt/β‐catenin pathway in treatment of colorectal cancer: Rational and progress. J Cell Biochem 2017; 118(8): 1979-83.
[http://dx.doi.org/10.1002/jcb.25903] [PMID: 28109136]
[http://dx.doi.org/10.1002/jcb.25903] [PMID: 28109136]
[3]
Bahrami A, Khazaei M, Bagherieh F, et al. Targeting stroma in pancreatic cancer: Promises and failures of targeted therapies. J Cell Physiol 2017; 232(11): 2931-7.
[http://dx.doi.org/10.1002/jcp.25798] [PMID: 28083912]
[http://dx.doi.org/10.1002/jcp.25798] [PMID: 28083912]
[4]
Bahrami A, Hasanzadeh M, Shahidsales S, et al. Genetic susceptibility in cervical cancer: from bench to bedside. J Cell Physiol 2018; 233(3): 1929-39.
[http://dx.doi.org/10.1002/jcp.26019] [PMID: 28542881]
[http://dx.doi.org/10.1002/jcp.26019] [PMID: 28542881]
[5]
Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med 2010; 16(6): 257-67.
[http://dx.doi.org/10.1016/j.molmed.2010.04.001] [PMID: 20493775]
[http://dx.doi.org/10.1016/j.molmed.2010.04.001] [PMID: 20493775]
[6]
Bahrami A, Aledavood A, Anvari K, et al. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J Cell Physiol 2018; 233(2): 774-86.
[http://dx.doi.org/10.1002/jcp.25813] [PMID: 28109133]
[http://dx.doi.org/10.1002/jcp.25813] [PMID: 28109133]
[7]
Bahreyni A, Rezaei M, Bahrami A, et al. Diagnostic, prognostic, and therapeutic potency of microRNA 21 in the pathogenesis of colon cancer, current status and prospective. J Cell Physiol 2019; 234(6): 8075-81.
[http://dx.doi.org/10.1002/jcp.27580] [PMID: 30317621]
[http://dx.doi.org/10.1002/jcp.27580] [PMID: 30317621]
[8]
Aboutalebi H, Bahrami A, Soleimani A, et al. The diagnostic, prognostic and therapeutic potential of circulating microRNAs in ovarian cancer. Int J Biochem Cell Biol 2020; 124: 105765.
[http://dx.doi.org/10.1016/j.biocel.2020.105765] [PMID: 32428568]
[http://dx.doi.org/10.1016/j.biocel.2020.105765] [PMID: 32428568]
[9]
Bahrami A, Khazaei M, Avan A. Long Non-coding RNA and microRNAs as novel potential biomarker and therapeutic target in the treatment of gastrointestinal cancers. Curr Pharm Des 2018; 24(39): 4599-600.
[http://dx.doi.org/10.2174/138161282439190314091937] [PMID: 30924419]
[http://dx.doi.org/10.2174/138161282439190314091937] [PMID: 30924419]
[10]
Fabbri M. MicroRNAs and cancer: towards a personalized medicine. Curr Mol Med 2013; 13(5): 751-6.
[http://dx.doi.org/10.2174/1566524011313050006] [PMID: 23642056]
[http://dx.doi.org/10.2174/1566524011313050006] [PMID: 23642056]
[11]
Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2013; 5(1): 3-13.
[http://dx.doi.org/10.1093/jmcb/mjs049] [PMID: 22935141]
[http://dx.doi.org/10.1093/jmcb/mjs049] [PMID: 22935141]
[12]
Chang H, Zhou X, Wang ZN, et al. Increased expression of MIR-148B in ovarian carcinoma and its clinical significance. Mol Med Rep 2012; 5(5): 1277-80.
[PMID: 22344713]
[PMID: 22344713]
[13]
Li R, Qian N, Tao K, You N, Wang X, Dou K. MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res 2010; 29(1): 169.
[http://dx.doi.org/10.1186/1756-9966-29-169] [PMID: 21176238]
[http://dx.doi.org/10.1186/1756-9966-29-169] [PMID: 21176238]
[14]
Mou Z, Xu X, Dong M, Xu J. MicroRNA-148b acts as a tumor suppressor in cervical cancer by inducing G1/S-Phase cell cycle arrest and apoptosis in a caspase-3-dependent manner. Med Sci Monit 2016; 22: 2809-15.
[http://dx.doi.org/10.12659/MSM.896862] [PMID: 27505047]
[http://dx.doi.org/10.12659/MSM.896862] [PMID: 27505047]
[15]
Song Y-X, Yue ZY, Wang ZN, et al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Cancer 2011; 10(1): 1.
[http://dx.doi.org/10.1186/1476-4598-10-1] [PMID: 21205300]
[http://dx.doi.org/10.1186/1476-4598-10-1] [PMID: 21205300]
[16]
Cimino D, De Pittà C, Orso F, et al. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J 2013; 27(3): 1223-35.
[http://dx.doi.org/10.1096/fj.12-214692] [PMID: 23233531]
[http://dx.doi.org/10.1096/fj.12-214692] [PMID: 23233531]
[17]
Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297(17): 1901-8.
[http://dx.doi.org/10.1001/jama.297.17.1901] [PMID: 17473300]
[http://dx.doi.org/10.1001/jama.297.17.1901] [PMID: 17473300]
[18]
Liu G-L, Liu X, Lv XB, Wang XP, Fang XS, Sang Y. MIR-148B functions as a tumor suppressor in non-small cell lung cancer by targeting carcinoembryonic antigen (CEA). Int J Clin Exp Med 2014; 7(8): 1990-9.
[PMID: 25232379]
[PMID: 25232379]
[19]
He W, Huang L, Li M, Yang Y, Chen Z, Shen X. MIR-148B, MiR-152/ALCAM axis regulates the proliferation and invasion of pituitary adenomas cells. Cell Physiol Biochem 2017; 44(2): 792-803.
[http://dx.doi.org/10.1159/000485342] [PMID: 29176323]
[http://dx.doi.org/10.1159/000485342] [PMID: 29176323]
[20]
Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299(4): 425-36.
[http://dx.doi.org/10.1001/jama.299.4.425] [PMID: 18230780]
[http://dx.doi.org/10.1001/jama.299.4.425] [PMID: 18230780]
[21]
Yu T, Wang XY, Gong RG, et al. The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res 2009; 28(1): 64.
[http://dx.doi.org/10.1186/1756-9966-28-64] [PMID: 19435529]
[http://dx.doi.org/10.1186/1756-9966-28-64] [PMID: 19435529]
[22]
Wang G, Li Z, Tian N, et al. MIR-148B-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression. Oncol Lett 2016; 12(2): 879-86.
[http://dx.doi.org/10.3892/ol.2016.4743] [PMID: 27446363]
[http://dx.doi.org/10.3892/ol.2016.4743] [PMID: 27446363]
[23]
Xiao D, Ohlendorf J, Chen Y, et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One 2012; 7(10): e46874.
[http://dx.doi.org/10.1371/journal.pone.0046874] [PMID: 23056502]
[http://dx.doi.org/10.1371/journal.pone.0046874] [PMID: 23056502]
[24]
Zhang Z, Zheng W, Hai J. MicroRNA-148b expression is decreased in hepatocellular carcinoma and associated with prognosis. Med Oncol 2014; 31(6): 984.
[http://dx.doi.org/10.1007/s12032-014-0984-6] [PMID: 24805877]
[http://dx.doi.org/10.1007/s12032-014-0984-6] [PMID: 24805877]
[25]
Wu M, Ye X, Wang S, Li Q, Lai Y, Yi Y. MicroRNA-148b suppresses proliferation, migration, and invasion of nasopharyngeal carcinoma cells by targeting metastasis-associated gene 2. OncoTargets Ther 2017; 10: 2815-22.
[http://dx.doi.org/10.2147/OTT.S135664] [PMID: 28652762]
[http://dx.doi.org/10.2147/OTT.S135664] [PMID: 28652762]
[26]
Wang R, Ye F, Zhen Q, et al. MicroRNA-148b is a potential prognostic biomarker and predictor of response to radiotherapy in non-small-cell lung cancer. J Physiol Biochem 2016; 72(2): 337-43.
[http://dx.doi.org/10.1007/s13105-016-0485-5] [PMID: 27083571]
[http://dx.doi.org/10.1007/s13105-016-0485-5] [PMID: 27083571]
[27]
Nie F, Liu T, Zhong L, et al. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9. Mol Med Rep 2016; 13(1): 83-90.
[http://dx.doi.org/10.3892/mmr.2015.4555] [PMID: 26573018]
[http://dx.doi.org/10.3892/mmr.2015.4555] [PMID: 26573018]
[28]
Azizi M, Teimoori-Toolabi L, Arzanani MK, Azadmanesh K, Fard-Esfahani P, Zeinali S. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol Ther 2014; 15(4): 419-27.
[http://dx.doi.org/10.4161/cbt.27630] [PMID: 24448385]
[http://dx.doi.org/10.4161/cbt.27630] [PMID: 24448385]
[29]
Wang G, Cao X, Lai S, et al. Altered p53 regulation of MIR-148B and p55PIK contributes to tumor progression in colorectal cancer. Oncogene 2015; 34(7): 912-21.
[http://dx.doi.org/10.1038/onc.2014.30] [PMID: 24632606]
[http://dx.doi.org/10.1038/onc.2014.30] [PMID: 24632606]
[30]
Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: An overview. J Cell Physiol 2018; 233(5): 3846-54.
[http://dx.doi.org/10.1002/jcp.26095] [PMID: 28703277]
[http://dx.doi.org/10.1002/jcp.26095] [PMID: 28703277]
[31]
Farooqi AA, Fayyaz S, Shatynska-Mytsyk I, et al. Is miR-34a a well-equipped swordsman to conquer temple of molecular oncology? Chem Biol Drug Des 2016; 87(3): 321-34.
[http://dx.doi.org/10.1111/cbdd.12634] [PMID: 26259537]
[http://dx.doi.org/10.1111/cbdd.12634] [PMID: 26259537]
[32]
Zhang JG, Shi Y, Hong DF, et al. MIR-148B suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci Rep 2015; 5: 8087.
[http://dx.doi.org/10.1038/srep08087] [PMID: 25627001]
[http://dx.doi.org/10.1038/srep08087] [PMID: 25627001]
[33]
Zhou Z, Su Y, Fa X. Restoration of BRG1 inhibits proliferation and metastasis of lung cancer by regulating tumor suppressor MIR-148B. OncoTargets Ther 2015; 8: 3603-12.
[PMID: 26664144]
[PMID: 26664144]
[34]
Patel S. Exploring novel therapeutic targets in GIST: Focus on the PI3K/Akt/mTOR pathway. Curr Oncol Rep 2013; 15(4): 386-95.
[http://dx.doi.org/10.1007/s11912-013-0316-6] [PMID: 23605780]
[http://dx.doi.org/10.1007/s11912-013-0316-6] [PMID: 23605780]
[35]
Li F, Huynh H, Li X, et al. FGFR-Mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov 2015; 5(4): 438-51.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0763] [PMID: 25673643]
[http://dx.doi.org/10.1158/2159-8290.CD-14-0763] [PMID: 25673643]
[36]
Wang Y. MIR-148B-3p functions as a tumor suppressor in GISTs by directly targeting KIT. Cell Commun Signal 2018; 16(1): 16.
[37]
Song Y, Xu Y, Wang Z, et al. MicroRNA-148b suppresses cell growth by targeting cholecystokinin-2 receptor in colorectal cancer. Int J Cancer 2012; 131(5): 1042-51.
[http://dx.doi.org/10.1002/ijc.26485] [PMID: 22020560]
[http://dx.doi.org/10.1002/ijc.26485] [PMID: 22020560]
[38]
Li K, Lu Y, Liang J, et al. RhoE enhances multidrug resistance of gastric cancer cells by suppressing bax. Biochem Biophys Res Commun 2009; 379(2): 212-6.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.044] [PMID: 19101510]
[http://dx.doi.org/10.1016/j.bbrc.2008.12.044] [PMID: 19101510]
[39]
Liu N, Zhang G, Bi F, et al. RhoC is essential for the metastasis of gastric cancer. J Mol Med (Berl) 2007; 85(10): 1149-56.
[http://dx.doi.org/10.1007/s00109-007-0217-y] [PMID: 17549441]
[http://dx.doi.org/10.1007/s00109-007-0217-y] [PMID: 17549441]
[40]
Pan Y, Bi F, Liu N, et al. Expression of seven main rho family members in gastric carcinoma. Biochem Biophys Res Commun 2004; 315(3): 686-91.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.108] [PMID: 14975755]
[http://dx.doi.org/10.1016/j.bbrc.2004.01.108] [PMID: 14975755]
[41]
Li X, Jiang M, Chen D, et al. MIR-148B-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res 2018; 37(1): 71.
[http://dx.doi.org/10.1186/s13046-018-0729-z] [PMID: 29587866]
[http://dx.doi.org/10.1186/s13046-018-0729-z] [PMID: 29587866]
[42]
Zhang H, Ye Q, Du Z, Huang M, Zhang M, Tan H. MIR-148B-3p inhibits renal carcinoma cell growth and pro-angiogenic phenotype of endothelial cell potentially by modulating FGF2. Biomed Pharmacother 2018; 107: 359-67.
[http://dx.doi.org/10.1016/j.biopha.2018.07.054] [PMID: 30099339]
[http://dx.doi.org/10.1016/j.biopha.2018.07.054] [PMID: 30099339]
[43]
Brooks AN, Kilgour E, Smith PD. Molecular pathways: Fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res 2012; 18(7): 1855-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0699] [PMID: 22388515]
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0699] [PMID: 22388515]
[44]
Lu L, Liu Q, Wang P, et al. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC Cancer 2019; 19(1): 209.
[http://dx.doi.org/10.1186/s12885-019-5400-3] [PMID: 30849960]
[http://dx.doi.org/10.1186/s12885-019-5400-3] [PMID: 30849960]
[45]
Lu H, Hu J, Li J, Lu W, Deng X, Wang X. miR-328-3p overexpression attenuates the malignant proliferation and invasion of liver cancer via targeting endoplasmic reticulum metallo protease 1 to inhibit AKT phosphorylation. Ann Transl Med 2020; 8(12): 754.
[http://dx.doi.org/10.21037/atm-20-3749] [PMID: 32647679]
[http://dx.doi.org/10.21037/atm-20-3749] [PMID: 32647679]
[46]
Malec V, Gottschald OR, Li S, Rose F, Seeger W, Hänze J. HIF-1 α signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic Biol Med 2010; 48(12): 1626-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.008] [PMID: 20347035]
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.008] [PMID: 20347035]
[47]
Espinosa-Diez C, Miguel V, Mennerich D, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6: 183-97.
[http://dx.doi.org/10.1016/j.redox.2015.07.008] [PMID: 26233704]
[http://dx.doi.org/10.1016/j.redox.2015.07.008] [PMID: 26233704]
[48]
Jiang Z, Zhang J, Chen F, Sun Y. MIR-148B suppressed non-small cell lung cancer progression via inhibiting ALCAM through the NF-κB signaling pathway. Thorac Cancer 2020; 11(2): 415-25.
[http://dx.doi.org/10.1111/1759-7714.13285] [PMID: 31883226]
[http://dx.doi.org/10.1111/1759-7714.13285] [PMID: 31883226]
[49]
Serramito-Gómez I, Boada-Romero E, Slowicka K, Vereecke L, Van Loo G, Pimentel-Muiños FX. The anti-inflammatory protein TNFAIP3/A20 binds the WD40 domain of ATG16L1 to control the autophagic response, NFKB/NF-κB activation and intestinal homeostasis. Autophagy 2019; 15(9): 1657-9.
[http://dx.doi.org/10.1080/15548627.2019.1628549] [PMID: 31184523]
[http://dx.doi.org/10.1080/15548627.2019.1628549] [PMID: 31184523]
[50]
Xing Y, Zhang Z, Chi F, et al. AEBP1, a prognostic indicator, promotes colon adenocarcinoma cell growth and metastasis through the NF-κB pathway. Mol Carcinog 2019; 58(10): 1795-808.
[http://dx.doi.org/10.1002/mc.23066] [PMID: 31219650]
[http://dx.doi.org/10.1002/mc.23066] [PMID: 31219650]
[51]
Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7(5): 812-21.
[http://dx.doi.org/10.1101/gad.7.5.812] [PMID: 8491378]
[http://dx.doi.org/10.1101/gad.7.5.812] [PMID: 8491378]
[52]
Bae D-S, Cho SB, Kim YJ, et al. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol Oncol 2001; 81(3): 341-7.
[http://dx.doi.org/10.1006/gyno.2001.6196] [PMID: 11371120]
[http://dx.doi.org/10.1006/gyno.2001.6196] [PMID: 11371120]
[53]
Moradi Binabaj M, Bahrami A, Khazaei M, et al. The prognostic value of cyclin D1 expression in the survival of cancer patients: a meta-analysis. Gene 2020; 728: 144283.
[http://dx.doi.org/10.1016/j.gene.2019.144283] [PMID: 31838249]
[http://dx.doi.org/10.1016/j.gene.2019.144283] [PMID: 31838249]
[54]
Li BL, Lu W, Qu JJ, Ye L, Du GQ, Wan XP. Loss of exosomal MIR-148B from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol 2019; 234(3): 2943-53.
[http://dx.doi.org/10.1002/jcp.27111] [PMID: 30146796]
[http://dx.doi.org/10.1002/jcp.27111] [PMID: 30146796]
[55]
Kurita S, Higuchi H, Saito Y, et al. DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci 2010; 101(6): 1431-9.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x] [PMID: 20398055]
[http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x] [PMID: 20398055]
[56]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[57]
Hu N. LncRNA HOTAIRM1 is involved in the progression of acute myeloid leukemia through targeting MIR-148B. RSC Advances 2019; 9(18): 10352-9.
[http://dx.doi.org/10.1039/C9RA00142E]
[http://dx.doi.org/10.1039/C9RA00142E]
[58]
Seo SI, Yoon JH, Byun HJ, Lee SK. HOTAIR induces methylation of PCDH10, a tumor suppressor gene, by regulating DNMT1 and sponging with MIR-148B in gastric adenocarcinoma. Yonsei Med J 2021; 62(2): 118-28.
[http://dx.doi.org/10.3349/ymj.2021.62.2.118] [PMID: 33527791]
[http://dx.doi.org/10.3349/ymj.2021.62.2.118] [PMID: 33527791]
[59]
Bae N, Gao M, Li X, et al. A transcriptional coregulator, SPIN·DOC, attenuates the coactivator activity of spindlin1. J Biol Chem 2017; 292(51): 20808-17.
[http://dx.doi.org/10.1074/jbc.M117.814913] [PMID: 29061846]
[http://dx.doi.org/10.1074/jbc.M117.814913] [PMID: 29061846]
[60]
Wang J-X, Zeng Q, Chen L, et al. SPINDLIN1 promotes cancer cell proliferation through activation of WNT/TCF-4 signaling. Mol Cancer Res 2012; 10(3): 326-35.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0440] [PMID: 22258766]
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0440] [PMID: 22258766]
[61]
Chen X, Wang Y-W, Gao P. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. J Exp Clin Cancer Res 2018; 37(1): 100.
[http://dx.doi.org/10.1186/s13046-018-0748-9] [PMID: 29743122]
[http://dx.doi.org/10.1186/s13046-018-0748-9] [PMID: 29743122]
[62]
Oh B, Hwang SY, Solter D, Knowles BB. Spindlin, a major maternal transcript expressed in the mouse during the transition from oocyte to embryo. Development 1997; 124(2): 493-503.
[http://dx.doi.org/10.1242/dev.124.2.493] [PMID: 9053325]
[http://dx.doi.org/10.1242/dev.124.2.493] [PMID: 9053325]
[63]
Liu Q, Xu Y, Wei S, et al. miRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1. Biosci Rep 2015; 35(4): e00229.
[http://dx.doi.org/10.1042/BSR20150084] [PMID: 25997710]
[http://dx.doi.org/10.1042/BSR20150084] [PMID: 25997710]
[64]
Zhao G, Zhang JG, Liu Y, et al. MIR-148B functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 2013; 12(1): 83-93.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0534-T] [PMID: 23171948]
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0534-T] [PMID: 23171948]
[65]
Vecchio E, Fiume G, Correnti S, et al. Insights about MYC and apoptosis in B-Lymphomagenesis: an update from murine models. Int J Mol Sci 2020; 21(12): 4265.
[http://dx.doi.org/10.3390/ijms21124265] [PMID: 32549409]
[http://dx.doi.org/10.3390/ijms21124265] [PMID: 32549409]
[66]
Zhao X, Tian X. Knockdown of long noncoding RNA HOTAIR inhibits cell growth of human lymphoma cells by upregulation of MIR-148B. J Cell Biochem 2019; 120(8): 12348-59.
[http://dx.doi.org/10.1002/jcb.28500] [PMID: 30848513]
[http://dx.doi.org/10.1002/jcb.28500] [PMID: 30848513]
[67]
Haflidadóttir BS, Bergsteinsdóttir K, Praetorius C, Steingrímsson E. miR-148 regulates mitf in melanoma cells. PLoS One 2010; 5(7): e11574.
[http://dx.doi.org/10.1371/journal.pone.0011574] [PMID: 20644734]
[http://dx.doi.org/10.1371/journal.pone.0011574] [PMID: 20644734]
[68]
Zhang C, Wang C, Chen X, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 2010; 56(12): 1871-9.
[http://dx.doi.org/10.1373/clinchem.2010.147553] [PMID: 20943850]
[http://dx.doi.org/10.1373/clinchem.2010.147553] [PMID: 20943850]
[69]
Ge H, Li B, Hu WX, et al. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival. Int J Clin Exp Pathol 2015; 8(1): 800-5.
[PMID: 25755777]
[PMID: 25755777]
[70]
Duan F, Liu W, Fu X, et al. Evaluating the prognostic value of miR-148/152 family in cancers: based on a systemic review of observational studies. Oncotarget 2017; 8(44): 77999-8010.
[http://dx.doi.org/10.18632/oncotarget.20830] [PMID: 29100442]
[http://dx.doi.org/10.18632/oncotarget.20830] [PMID: 29100442]
[71]
Fattahi F, Kiani J, Alemrajabi M, et al. Overexpression of DDIT4 and TPTEP1 are associated with metastasis and advanced stages in colorectal cancer patients: a study utilizing bioinformatics prediction and experimental validation. Cancer Cell Int 2021; 21(1): 303.
[http://dx.doi.org/10.1186/s12935-021-02002-x] [PMID: 34107956]
[http://dx.doi.org/10.1186/s12935-021-02002-x] [PMID: 34107956]
[72]
Li L, Chen YY, Li SQ, Huang C, Qin YZ. Expression of miR-148/152 family as potential biomarkers in non-small-cell lung cancer. Med Sci Monit 2015; 21: 1155-61.
[http://dx.doi.org/10.12659/MSM.892940] [PMID: 25904302]
[http://dx.doi.org/10.12659/MSM.892940] [PMID: 25904302]
[73]
Yang JS, Li BJ, Lu HW, et al. Serum miR-152, miR-148a, MIR-148B, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol 2015; 36(4): 3035-42.
[http://dx.doi.org/10.1007/s13277-014-2938-1] [PMID: 25501703]
[http://dx.doi.org/10.1007/s13277-014-2938-1] [PMID: 25501703]
[74]
Shen J, Hu Q, Schrauder M, et al. Circulating MIR-148B and miR-133a as biomarkers for breast cancer detection. Oncotarget 2014; 5(14): 5284-94.
[http://dx.doi.org/10.18632/oncotarget.2014] [PMID: 25051376]
[http://dx.doi.org/10.18632/oncotarget.2014] [PMID: 25051376]
[75]
Mangolini A, Ferracin M, Zanzi MV, et al. Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark Res 2015; 3(1): 12.
[http://dx.doi.org/10.1186/s40364-015-0037-0] [PMID: 26120471]
[http://dx.doi.org/10.1186/s40364-015-0037-0] [PMID: 26120471]
[76]
Arámbula-Meraz E, Bergez-Hernández F, Leal-León E, et al. Expression of MIR-148B-3p is correlated with overexpression of biomarkers in prostate cancer. Genet Mol Biol 2020; 43(1): e20180330.
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0330] [PMID: 32154827]
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0330] [PMID: 32154827]
[77]
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13(10): 714-26.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[78]
Honma K, Iwao-Koizumi K, Takeshita F, et al. RPN2 gene confers docetaxel resistance in breast cancer. Nat Med 2008; 14(9): 939-48.
[http://dx.doi.org/10.1038/nm.1858] [PMID: 18724378]
[http://dx.doi.org/10.1038/nm.1858] [PMID: 18724378]
[79]
Liu Y, Bailey JT, Abu-Laban M, et al. Photocontrolled MIR-148B nanoparticles cause apoptosis, inflammation and regression of Ras induced epidermal squamous cell carcinomas in mice. Biomaterials 2020; 256: 120212.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120212] [PMID: 32736169]
[http://dx.doi.org/10.1016/j.biomaterials.2020.120212] [PMID: 32736169]
[80]
Hummel R, Watson DI, Smith C, et al. Mir-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells. J Gastrointest Surg 2011; 15(3): 429-38.
[http://dx.doi.org/10.1007/s11605-011-1418-9] [PMID: 21246413]
[http://dx.doi.org/10.1007/s11605-011-1418-9] [PMID: 21246413]
[81]
Fujita Y, Kojima K, Ohhashi R, et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 2010; 285(25): 19076-84.
[http://dx.doi.org/10.1074/jbc.M109.079525] [PMID: 20406806]
[http://dx.doi.org/10.1074/jbc.M109.079525] [PMID: 20406806]
[82]
Sui C, Meng F, Li Y, Jiang Y. MIR-148B reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J Transl Med 2015; 13(1): 132.
[http://dx.doi.org/10.1186/s12967-015-0488-y] [PMID: 25927928]
[http://dx.doi.org/10.1186/s12967-015-0488-y] [PMID: 25927928]
[83]
Luo H, Liang C. MicroRNA-148b inhibits proliferation and the epithelial-mesenchymal transition and increases radiosensitivity in non-small cell lung carcinomas by regulating ROCK1. Exp Ther Med 2018; 15(4): 3609-16.
[http://dx.doi.org/10.3892/etm.2018.5845] [PMID: 29545890]
[http://dx.doi.org/10.3892/etm.2018.5845] [PMID: 29545890]
[84]
Zhang L, Komurov K, Wright WE, Shay JW. Identification of novel driver tumor suppressors through functional interrogation of putative passenger mutations in colorectal cancer. Int J Cancer 2013; 132(3): 732-7.
[http://dx.doi.org/10.1002/ijc.27705] [PMID: 22753261]
[http://dx.doi.org/10.1002/ijc.27705] [PMID: 22753261]
[85]
Wu Y, Liu GL, Liu SH, et al. MicroRNA-148b enhances the radiosensitivity of non-Hodgkin’s lymphoma cells by promoting radiation-induced apoptosis. J Radiat Res (Tokyo) 2012; 53(4): 516-25.
[http://dx.doi.org/10.1093/jrr/rrs002] [PMID: 22843616]
[http://dx.doi.org/10.1093/jrr/rrs002] [PMID: 22843616]
[86]
Sun N, Wang CY, Sun YQ, et al. Down-regulated MIR-148B increases resistance to CHOP in diffuse large B-cell lymphoma cells by rescuing ezrin. Biomed Pharmacother 2018; 106: 267-74.
[http://dx.doi.org/10.1016/j.biopha.2018.06.093] [PMID: 29966970]
[http://dx.doi.org/10.1016/j.biopha.2018.06.093] [PMID: 29966970]
[87]
Zhang Y, Huo W, Sun L, et al. Targeting MIR-148B-5p inhibits immunity microenvironment and gastric cancer progression. Front Immunol 2021; 12: 590447.
[http://dx.doi.org/10.3389/fimmu.2021.590447] [PMID: 33717068]
[http://dx.doi.org/10.3389/fimmu.2021.590447] [PMID: 33717068]
[88]
Li T, Wang B, Zhang L, Cui M, Sun B. Silencing of long noncoding RNA LINC00346 inhibits the tumorigenesis of colorectal cancer through targeting microRNA-148b. OncoTargets Ther 2020; 13: 3247-57.
[http://dx.doi.org/10.2147/OTT.S242715] [PMID: 32368083]
[http://dx.doi.org/10.2147/OTT.S242715] [PMID: 32368083]
[89]
Lai Y, Chen Y, Lin Y, Ye L. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating MIR-148B in breast cancer. Cell Biol Int 2018; 42(2): 227-36.
[http://dx.doi.org/10.1002/cbin.10890] [PMID: 29024383]
[http://dx.doi.org/10.1002/cbin.10890] [PMID: 29024383]