Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Amniotic Fluid Stem Cells: What They Are and What They Can Become

Author(s): Margit Rosner and Markus Hengstschläger*

Volume 18, Issue 1, 2023

Published on: 26 January, 2022

Page: [7 - 16] Pages: 10

DOI: 10.2174/1574888X16666211210143640

Price: $65

Abstract

In the last two decades, fetal amniotic fluid stem cells progressively attracted attention in the context of both basic research and the development of innovative therapeutic concepts. They exhibit broadly multipotent plasticity with the ability to differentiate into cells of all three embryonic germ layers and low immunogenicity. They are convenient to maintain, highly proliferative, genomically stable, non-tumorigenic, perfectly amenable to genetic modifications, and do not raise ethical concerns. However, it is important to note that among the various fetal amniotic fluid cells, only c-Kit+ amniotic fluid stem cells represent a distinct entity showing the full spectrum of these features. Since amniotic fluid additionally contains numerous terminally differentiated cells and progenitor cells with more limited differentiation potentials, it is of highest relevance to always precisely describe the isolation procedure and characteristics of the used amniotic fluid-derived cell type. It is of obvious interest for scientists, clinicians, and patients alike to be able to rely on up-todate and concisely separated pictures of the utilities as well as the limitations of terminally differentiated amniotic fluid cells, amniotic fluid-derived progenitor cells, and c-Kit+ amniotic fluid stem cells, to drive these distinct cellular models towards as many individual clinical applications as possible.

Keywords: Amniotic fluid stem cells, fetal stem cells, amniotic fluid, c-Kit, basic research, cell therapy.

Graphical Abstract

[1]
Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350(9076): 485-7.
[http://dx.doi.org/10.1016/S0140-6736(97)02174-0] [PMID: 9274585]
[2]
Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet 2016; 17(10): 643-56.
[http://dx.doi.org/10.1038/nrg.2016.97] [PMID: 27629932]
[3]
Bianchi DW, Chiu RWK. Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med 2018; 379(5): 464-73.
[http://dx.doi.org/10.1056/NEJMra1705345] [PMID: 30067923]
[4]
Milunsky A. Amniotic fluid cell culture. Genetic disorder and the fetus. New York: Plenum Press 1979.
[http://dx.doi.org/10.1007/978-1-4684-3438-5_4]
[5]
Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol 1982; 26: 11-34.
[http://dx.doi.org/10.1016/S0091-679X(08)61362-X] [PMID: 6752650]
[6]
Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol 2005; 25(5): 341-8.
[http://dx.doi.org/10.1038/sj.jp.7211290] [PMID: 15861199]
[7]
Dobreva MP, Pereira PNG, Deprest J, Zwijsen A. On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 2010; 54(5): 761-77.
[http://dx.doi.org/10.1387/ijdb.092935md] [PMID: 20446274]
[8]
Oh JE, Fountoulakis M, Juranville JF, Rosner M, Hengstschläger M, Lubec G. Proteomic determination of metabolic enzymes of the amnion cell: basis for a possible diagnostic tool? Proteomics 2004; 4(4): 1145-58.
[http://dx.doi.org/10.1002/pmic.200300654] [PMID: 15048995]
[9]
Siegel N, Rosner M, Hanneder M, Valli A, Hengstschläger M. Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev 2007; 3(4): 256-64.
[http://dx.doi.org/10.1007/s12015-007-9003-z] [PMID: 17955390]
[10]
Loukogeorgakis SP, De Coppi P. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 2017; 35(7): 1663-73.
[http://dx.doi.org/10.1002/stem.2553] [PMID: 28009066]
[11]
Antonucci I, Crowley MG, Stuppia L. Amniotic fluid stem cell models: A tool for filling the gaps in knowledge for human genetic diseases. Brain Circ 2017; 3(3): 167-74.
[http://dx.doi.org/10.4103/bc.bc_23_17] [PMID: 30276320]
[12]
Ramasamy TS, Velaithan V, Yeow Y, Sarkar FH. Stem cells derived from amniotic fluid: A potential pluripotent-like cell source for cellular therapy? Curr Stem Cell Res Ther 2018; 13(4): 252-64.
[http://dx.doi.org/10.2174/1574888X13666180115093800] [PMID: 29336267]
[13]
Cremer M, Treiss I, Cremer T, Hager D, Franke WW. Characterization of cells of amniotic fluids by immunological identification of intermediate-sized filaments: presence of cells of different tissue origin. Hum Genet 1981; 59(4): 373-9.
[http://dx.doi.org/10.1007/BF00295475] [PMID: 6174407]
[14]
Gosden CM. Amniotic fluid cell types and culture. Br Med Bull 1983; 39(4): 348-54.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a071847] [PMID: 6357346]
[15]
Gosden C, Brock DJ. Amniotic fluid cell morphology in early antenatal prediction of abortion and low birth weight. BMJ 1978; 2(6146): 1186-9.
[http://dx.doi.org/10.1136/bmj.2.6146.1186] [PMID: 82463]
[16]
Aula P, von Koskull H, Teramo K, et al. Glial origin of rapidly adhering amniotic fluid cells. BMJ 1980; 281(6253): 1456-7.
[http://dx.doi.org/10.1136/bmj.281.6253.1456] [PMID: 7002257]
[17]
Cremer M, Schachner M, Cremer T, Schmidt W, Voigtländer T. Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect. Hum Genet 1981; 56(3): 365-70.
[http://dx.doi.org/10.1007/BF00274694] [PMID: 7016720]
[18]
Sutherland GR, Brock DJ, Scrimgeour JB. Letter: Amniotic-fluid macrophages and anencephaly. Lancet 1973; 2(7837): 1098-9.
[http://dx.doi.org/10.1016/S0140-6736(73)92720-7] [PMID: 4127367]
[19]
Gomez-Lopez N, Romero R, Leng Y, et al. The origin of amniotic fluid monocytes/macrophages in women with intra-amniotic inflammation or infection. J Perinat Med 2019; 47(8): 822-40.
[http://dx.doi.org/10.1515/jpm-2019-0262] [PMID: 31494640]
[20]
Hoehn H, Bryant EM, Karp LE, Martin GM. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential. Pediatr Res 1974; 8(8): 746-54.
[http://dx.doi.org/10.1203/00006450-197408000-00003] [PMID: 4844525]
[21]
Hoehn H, Bryant EM, Fantel AG, Martin GM. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. III. The fetal urine as a potential source of clonable cells. Humangenetik 1975; 29(4): 285-90.
[http://dx.doi.org/10.1007/BF00394190] [PMID: 1176144]
[22]
Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 2001; 36(11): 1662-5.
[http://dx.doi.org/10.1053/jpsu.2001.27945] [PMID: 11685697]
[23]
Mitka M. Amniotic cells show promise for fetal tissue engineering. JAMA 2001; 286(17): 2083.
[http://dx.doi.org/10.1001/jama.286.17.2083-JMN1107-2-1] [PMID: 11694128]
[24]
Kunisaki SM. Amniotic fluid stem cells for the treatment of surgical disorders in the fetus and neonate stem cells. Stem Cells Transl Med 2018; 7(11): 767-73.
[http://dx.doi.org/10.1002/sctm.18-0018] [PMID: 30085416]
[25]
Rosner M, Schipany K, Hengstschläger M. The decision on the “optimal” human pluripotent stem cell. Stem Cells Transl Med 2014; 3(5): 553-9.
[http://dx.doi.org/10.5966/sctm.2013-0194] [PMID: 24692589]
[26]
Yilmaz A, Benvenisty N. Defining human pluripotency. Cell Stem Cell 2019; 25(1): 9-22.
[http://dx.doi.org/10.1016/j.stem.2019.06.010] [PMID: 31271751]
[27]
Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100(1): 157-68.
[http://dx.doi.org/10.1016/S0092-8674(00)81692-X] [PMID: 10647940]
[28]
Donowitz M, Turner JR, Verkman AS, Zachos NC. Current and potential future applications of human stem cell models in drug development. J Clin Invest 2020; 130(7): 3342-4.
[http://dx.doi.org/10.1172/JCI138645] [PMID: 32452833]
[29]
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage human iPSC derived platforms for disease modeling and drug discovery. Cell Stem Cell 2020; 26(3): 309-29.
[http://dx.doi.org/10.1016/j.stem.2020.02.011] [PMID: 32142662]
[30]
Kimbrel EA, Lanza R. Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 2020; 19(7): 463-79.
[http://dx.doi.org/10.1038/s41573-020-0064-x] [PMID: 32612263]
[31]
Desgres M, Menasché P. Clinical translation of pluripotent stem cell therapies: challenges and considerations. Cell Stem Cell 2019; 25(5): 594-606.
[http://dx.doi.org/10.1016/j.stem.2019.10.001] [PMID: 31703770]
[32]
Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 2020; 27(4): 523-31.
[http://dx.doi.org/10.1016/j.stem.2020.09.014] [PMID: 33007237]
[33]
Torricelli F, Brizzi L, Bernabei PA, et al. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol 1993; 98(2): 119-26.
[PMID: 8239855]
[34]
Da Sacco S, Sedrakyan S, Boldrin F, et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 2010; 183(3): 1193-200.
[http://dx.doi.org/10.1016/j.juro.2009.11.006] [PMID: 20096867]
[35]
in t‘Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548-9.
[36]
Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 2009; 18 (Suppl. 1): 17-27.
[http://dx.doi.org/10.1016/S1472-6483(10)60111-3] [PMID: 19281660]
[37]
Antonucci I, Stuppia L, Kaneko Y, et al. Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant 2011; 20(6): 789-95.
[http://dx.doi.org/10.3727/096368910X539074] [PMID: 21054947]
[38]
Dziadosz M, Basch RS, Young BK. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol 2016; 214(3): 321-7.
[http://dx.doi.org/10.1016/j.ajog.2015.12.061] [PMID: 26767797]
[39]
Graham CD, Shieh HF, Brazzo JA III, Zurakowski D, Fauza DO. Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model. J Pediatr Surg 2017; 52(6): 1006-9.
[http://dx.doi.org/10.1016/j.jpedsurg.2017.03.027] [PMID: 28363468]
[40]
Tsai M-S, Lee J-L, Chang Y-J, Hwang S-M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004; 19(6): 1450-6.
[http://dx.doi.org/10.1093/humrep/deh279] [PMID: 15105397]
[41]
De Gemmis P, Lapucci C, Bertelli M, et al. A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells. Stem Cells Dev 2006; 15(5): 719-28.
[http://dx.doi.org/10.1089/scd.2006.15.719] [PMID: 17105407]
[42]
Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16(6): 931-52.
[http://dx.doi.org/10.1089/scd.2007.0036] [PMID: 18047393]
[43]
Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg 2007; 42(6): 974-9.
[http://dx.doi.org/10.1016/j.jpedsurg.2007.01.031] [PMID: 17560205]
[44]
De Coppi P, Callegari A, Chiavegato A, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 2007; 177(1): 369-76.
[http://dx.doi.org/10.1016/j.juro.2006.09.103] [PMID: 17162093]
[45]
Prusa AR, Marton E, Rosner M, et al. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol 2004; 191(1): 309-14.
[http://dx.doi.org/10.1016/j.ajog.2003.12.014] [PMID: 15295384]
[46]
Bossolasco P, Montemurro T, Cova L, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 2006; 16(4): 329-36.
[http://dx.doi.org/10.1038/sj.cr.7310043] [PMID: 16617328]
[47]
McLaughlin D, Tsirimonaki E, Vallianatos G, et al. Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells. J Neurosci Res 2006; 83(7): 1190-200.
[http://dx.doi.org/10.1002/jnr.20828] [PMID: 16555279]
[48]
Antonucci I, Iezzi I, Morizio E, et al. Isolation of osteogenic progenitors from human amniotic fluid using a single step culture protocol. BMC Biotechnol 2009; 9: 9.
[http://dx.doi.org/10.1186/1472-6750-9-9] [PMID: 19220883]
[49]
Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 2003; 18(7): 1489-93.
[http://dx.doi.org/10.1093/humrep/deg279] [PMID: 12832377]
[50]
Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 2009; 4(3): 423-33.
[http://dx.doi.org/10.2217/rme.09.12] [PMID: 19438317]
[51]
Karlmark KR, Freilinger A, Marton E, Rosner M, Lubec G, Hengstschläger M. Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells. Int J Mol Med 2005; 16(6): 987-92.
[http://dx.doi.org/10.3892/ijmm.16.6.987] [PMID: 16273276]
[52]
Tsai M-S, Hwang S-M, Tsai Y-L, Cheng FC, Lee JL, Chang YJ. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 2006; 74(3): 545-51.
[http://dx.doi.org/10.1095/biolreprod.105.046029] [PMID: 16306422]
[53]
Kim J, Lee Y, Kim H, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 2007; 40(1): 75-90.
[http://dx.doi.org/10.1111/j.1365-2184.2007.00414.x] [PMID: 17227297]
[54]
De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25(1): 100-6.
[http://dx.doi.org/10.1038/nbt1274] [PMID: 17206138]
[55]
Valli A, Rosner M, Fuchs C, et al. Embryoid body formation of human amniotic fluid stem cells depends on mTOR. Oncogene 2010; 29(7): 966-77.
[http://dx.doi.org/10.1038/onc.2009.405] [PMID: 19935716]
[56]
Kolambkar YM, Peister A, Soker S, Atala A, Guldberg RE. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 2007; 38(5): 405-13.
[http://dx.doi.org/10.1007/s10735-007-9118-1] [PMID: 17668282]
[57]
Perin L, Giuliani S, Jin D, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif 2007; 40(6): 936-48.
[http://dx.doi.org/10.1111/j.1365-2184.2007.00478.x] [PMID: 18021180]
[58]
Ditadi A, de Coppi P, Picone O, et al. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 2009; 113(17): 3953-60.
[http://dx.doi.org/10.1182/blood-2008-10-182105] [PMID: 19221036]
[59]
Arnhold S, Glüer S, Hartmann K, et al. Amniotic-Fluid Stem Cells: Growth Dynamics and Differentiation Potential after a CD-117-Based Selection Procedure. Stem Cells Int 2011; 2011: 715341.
[http://dx.doi.org/10.4061/2011/715341] [PMID: 21437196]
[60]
Preitschopf A, Li K, Schörghofer D, et al. mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression. PLoS One 2014; 9(9): e107004.
[http://dx.doi.org/10.1371/journal.pone.0107004] [PMID: 25221943]
[61]
Preitschopf A, Schörghofer D, Kinslechner K, et al. Rapamycin-induced hypoxia inducible factor 2A is essential for chondrogenic differentiation of amniotic fluid stem cells. Stem Cells Transl Med 2016; 5(5): 580-90.
[http://dx.doi.org/10.5966/sctm.2015-0262] [PMID: 27025692]
[62]
Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H, Hengstschläger M. Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 2010; 5(6): 1081-95.
[http://dx.doi.org/10.1038/nprot.2010.74] [PMID: 20539284]
[63]
Rosner M, Schipany K, Hengstschläger M. Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nat Protoc 2013; 8(3): 602-26.
[http://dx.doi.org/10.1038/nprot.2013.011] [PMID: 23449254]
[64]
Wolfrum K, Wang Y, Prigione A, Sperling K, Lehrach H, Adjaye J. The LARGE principle of cellular reprogramming: lost, acquired and retained gene expression in foreskin and amniotic fluid-derived human iPS cells. PLoS One 2010; 5(10): e13703.
[http://dx.doi.org/10.1371/journal.pone.0013703] [PMID: 21060825]
[65]
Galende E, Karakikes I, Edelmann L, et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram 2010; 12(2): 117-25.
[http://dx.doi.org/10.1089/cell.2009.0077] [PMID: 20677926]
[66]
Ginsberg M, James D, Ding BS, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 2012; 151(3): 559-75.
[http://dx.doi.org/10.1016/j.cell.2012.09.032] [PMID: 23084400]
[67]
Moschidou D, Mukherjee S, Blundell MP, et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 2012; 20(10): 1953-67.
[http://dx.doi.org/10.1038/mt.2012.117] [PMID: 22760542]
[68]
Moschidou D, Mukherjee S, Blundell MP, et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells Dev 2013; 22(3): 444-58.
[http://dx.doi.org/10.1089/scd.2012.0267] [PMID: 23050522]
[69]
Hawkins KE, Moschidou D, Faccenda D, et al. Human amniocytes are receptive to chemically induced reprogramming to pluripotency. Mol Ther 2017; 25(2): 427-42.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.014] [PMID: 28153093]
[70]
Rosner M, Pham HTT, Moriggl R, Hengstschläger M. Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nat Commun 2017; 8(1): 595.
[http://dx.doi.org/10.1038/s41467-017-00661-x] [PMID: 28928383]
[71]
Rosner M, Hengstschläger M. Amniotic fluid stem cells and fetal cell microchimerism. Trends Mol Med 2013; 19(5): 271-2.
[http://dx.doi.org/10.1016/j.molmed.2013.01.001] [PMID: 23337352]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy