Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

癌症治疗中铁死亡的药理学靶向

卷 22, 期 2, 2022

发表于: 10 March, 2022

页: [108 - 125] 页: 18

弟呕挨: 10.2174/1568009621666211202091523

价格: $65

摘要

铁死亡是一种非凋亡模式的调节性细胞死亡 (RCD),由有毒脂质过氧化物和铁过载的过度积累驱动。 铁死亡可以通过抑制抗氧化防御系统和积累与多不饱和脂肪酸大量反应的铁依赖性活性氧(ROS)来触发。 过去几年的新证据表明,铁死亡在抑制生长和转移以及克服肿瘤细胞耐药性方面具有巨大潜力。 因此,针对这种形式的细胞死亡可以被视为癌症治疗中潜在的新兴方法。 本综述简要介绍了铁死亡的潜在机制,并进一步旨在讨论各种类型的现有药物和天然化合物,这些药物和天然化合物可能被重新用于靶向肿瘤细胞中的铁死亡。 反过来,这将为有关基于铁死亡的癌症治疗的未来研究提供重要的观点。

关键词: 铁死亡、癌症治疗、细胞死亡、抗氧化剂、活性氧、铁、药物治疗。

Next »
图形摘要

[1]
Rahimi, S.; Roushandeh, A.M.; Ahmadzadeh, E.; Jahanian-Najafabadi, A.; Roudkenar, M.H. Implication and role of neutrophil gelatinase-associated lipocalin in cancer: Lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol. Biol. Rep., 2020, 47(3), 2327-2346.
[http://dx.doi.org/10.1007/s11033-020-05261-5] [PMID: 31970626]
[2]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[3]
Yagoda, N.; von Rechenberg, M.; Zaganjor, E.; Bauer, A.J.; Yang, W.S.; Fridman, D.J.; Wolpaw, A.J.; Smukste, I.; Peltier, J.M.; Boniface, J.J.; Smith, R.; Lessnick, S.L.; Sahasrabudhe, S.; Stockwell, B.R. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007, 447(7146), 864-868.
[http://dx.doi.org/10.1038/nature05859] [PMID: 17568748]
[4]
Tomita, K.; Nagasawa, T.; Kuwahara, Y.; Torii, S.; Igarashi, K.; Roudkenar, M.H.; Roushandeh, A.M.; Kurimasa, A.; Sato, T. MiR-7-5p is involved in ferroptosis signaling and radioresistance Thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int. J. Mol. Sci., 2021, 22(15), 8300.
[http://dx.doi.org/10.3390/ijms22158300] [PMID: 34361070]
[5]
Valashedi, M.R.; Najafi-Ghalehlou, N.; Nikoo, A.; Bamshad, C.; Tomita, K.; Kuwahara, Y.; Sato, T.; Roushandeh, A.M.; Roudkenar, M.H. Cashing in on ferroptosis against tumor cells: Usher in the next chapter. Life Sci., 2021, 285, 119958.
[http://dx.doi.org/10.1016/j.lfs.2021.119958] [PMID: 34534562]
[6]
Wu, Y.; Yu, C.; Luo, M.; Cen, C.; Qiu, J.; Zhang, S.; Hu, K. Ferroptosis in cancer treatment: Another way to Rome. Front. Oncol., 2020, 10, 571127.
[http://dx.doi.org/10.3389/fonc.2020.571127] [PMID: 33102227]
[7]
Takashi, Y.; Tomita, K.; Kuwahara, Y.; Roudkenar, M.H.; Roushandeh, A.M.; Igarashi, K.; Nagasawa, T.; Nishitani, Y.; Sato, T. Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic. Biol. Med., 2020, 161, 60-70.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.09.027] [PMID: 33017631]
[8]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296.
[http://dx.doi.org/10.1038/s41571-020-00462-0] [PMID: 33514910]
[9]
Kuang, F.; Liu, J.; Tang, D.; Kang, R. Oxidative damage and antioxidant defense in ferroptosis. Front. Cell Dev. Biol., 2020, 8, 586578.
[http://dx.doi.org/10.3389/fcell.2020.586578] [PMID: 33043019]
[10]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[11]
Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296.
[http://dx.doi.org/10.1016/S1535-6108(03)00050-3] [PMID: 12676586]
[12]
Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol., 2020, 8, 590226.
[http://dx.doi.org/10.3389/fcell.2020.590226] [PMID: 33117818]
[13]
Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell, 2015, 59(2), 298-308.
[http://dx.doi.org/10.1016/j.molcel.2015.06.011] [PMID: 26166707]
[14]
Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245.
[http://dx.doi.org/10.1016/j.chembiol.2008.02.010] [PMID: 18355723]
[15]
Feng, H.; Schorpp, K.; Jin, J.; Yozwiak, C.E.; Hoffstrom, B.G.; Decker, A.M.; Rajbhandari, P.; Stokes, M.E.; Bender, H.G.; Csuka, J.M.; Upadhyayula, P.S.; Canoll, P.; Uchida, K.; Soni, R.K.; Hadian, K.; Stockwell, B.R. Transferrin receptor is a specific ferroptosis marker. Cell Rep., 2020, 30(10), 3411-3423.e7.
[http://dx.doi.org/10.1016/j.celrep.2020.02.049] [PMID: 32160546]
[16]
Geng, N.; Shi, B.J.; Li, S.L.; Zhong, Z.Y.; Li, Y.C.; Xua, W.L.; Zhou, H.; Cai, J.H. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3826-3836.
[PMID: 29949159]
[17]
Hou, W.; Xie, Y.; Song, X.; Sun, X.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Tang, D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12(8), 1425-1428.
[http://dx.doi.org/10.1080/15548627.2016.1187366] [PMID: 27245739]
[18]
Gao, M.; Monian, P.; Pan, Q.; Zhang, W.; Xiang, J.; Jiang, X. Ferroptosis is an autophagic cell death process. Cell Res., 2016, 26(9), 1021-1032.
[http://dx.doi.org/10.1038/cr.2016.95] [PMID: 27514700]
[19]
Wang, Y-Q.; Chang, S-Y.; Wu, Q.; Gou, Y-J.; Jia, L.; Cui, Y-M.; Yu, P.; Shi, Z-H.; Wu, W-S.; Gao, G.; Chang, Y-Z. The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front. Aging Neurosci., 2016, 8, 308.
[http://dx.doi.org/10.3389/fnagi.2016.00308] [PMID: 28066232]
[20]
Brown, C.W.; Amante, J.J.; Chhoy, P.; Elaimy, A.L.; Liu, H.; Zhu, L.J.; Baer, C.E.; Dixon, S.J.; Mercurio, A.M. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell, 2019, 51(5), 575-586.e4.
[http://dx.doi.org/10.1016/j.devcel.2019.10.007] [PMID: 31735663]
[21]
Kwon, M-Y.; Park, E.; Lee, S-J.; Chung, S.W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, 2015, 6(27), 24393-24403.
[http://dx.doi.org/10.18632/oncotarget.5162] [PMID: 26405158]
[22]
Adedoyin, O.; Boddu, R.; Traylor, A.; Lever, J.M.; Bolisetty, S.; George, J.F.; Agarwal, A. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am. J. Physiol. Renal Physiol., 2018, 314(5), F702-F714.
[http://dx.doi.org/10.1152/ajprenal.00044.2017] [PMID: 28515173]
[23]
Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184.
[http://dx.doi.org/10.1002/hep.28251] [PMID: 26403645]
[24]
Wiernicki, B.; Dubois, H.; Tyurina, Y.Y.; Hassannia, B.; Bayir, H.; Kagan, V.E.; Vandenabeele, P.; Wullaert, A.; Vanden Berghe, T. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis., 2020, 11(10), 922.
[http://dx.doi.org/10.1038/s41419-020-03118-0] [PMID: 33110056]
[25]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[26]
Conrad, M.; Pratt, D.A. The chemical basis of ferroptosis. Nat. Chem. Biol., 2019, 15(12), 1137-1147.
[http://dx.doi.org/10.1038/s41589-019-0408-1] [PMID: 31740834]
[27]
Yan, B.; Ai, Y.; Sun, Q.; Ma, Y.; Cao, Y.; Wang, J.; Zhang, Z.; Wang, X. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell, 2021, 81(2), 355-369.e10.
[http://dx.doi.org/10.1016/j.molcel.2020.11.024] [PMID: 33321093]
[28]
Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol., 2020, 16(3), 302-309.
[http://dx.doi.org/10.1038/s41589-020-0472-6] [PMID: 32080622]
[29]
Chu, B.; Kon, N.; Chen, D.; Li, T.; Liu, T.; Jiang, L.; Song, S.; Tavana, O.; Gu, W. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol., 2019, 21(5), 579-591.
[http://dx.doi.org/10.1038/s41556-019-0305-6] [PMID: 30962574]
[30]
Wenzel, S.E.; Tyurina, Y.Y.; Zhao, J.; St Croix, C.M.; Dar, H.H.; Mao, G.; Tyurin, V.A.; Anthonymuthu, T.S.; Kapralov, A.A.; Amoscato, A.A.; Mikulska-Ruminska, K.; Shrivastava, I.H.; Kenny, E.M.; Yang, Q.; Rosenbaum, J.C.; Sparvero, L.J.; Emlet, D.R.; Wen, X.; Minami, Y.; Qu, F.; Watkins, S.C.; Holman, T.R.; VanDemark, A.P.; Kellum, J.A.; Bahar, I.; Bayır, H.; Kagan, V.E. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell, 2017, 171(3), 628-641.e26.
[http://dx.doi.org/10.1016/j.cell.2017.09.044] [PMID: 29053969]
[31]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[32]
Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun., 2016, 478(3), 1338-1343.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.124] [PMID: 27565726]
[33]
Tesfay, L.; Paul, B.T.; Konstorum, A.; Deng, Z.; Cox, A.O.; Lee, J.; Furdui, C.M.; Hegde, P.; Torti, F.M.; Torti, S.V. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res., 2019, 79(20), 5355-5366.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0369] [PMID: 31270077]
[34]
Magtanong, L.; Ko, P-J.; To, M.; Cao, J.Y.; Forcina, G.C.; Tarangelo, A.; Ward, C.C.; Cho, K.; Patti, G.J.; Nomura, D.K.; Olzmann, J.A.; Dixon, S.J. Exogenous - monounsaturated fatty acids promote a ferroptosis resistant cell state. Cell Chem. Biol., 2019, 26(3), 420-432.e9.
[http://dx.doi.org/10.1016/j.chembiol.2018.11.016] [PMID: 30686757]
[35]
Lu, S.C. Regulation of glutathione synthesis. Mol. Aspects Med., 2009, 30(1-2), 42-59.
[http://dx.doi.org/10.1016/j.mam.2008.05.005] [PMID: 18601945]
[36]
Proneth, B.; Conrad, M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ., 2019, 26(1), 14-24.
[http://dx.doi.org/10.1038/s41418-018-0173-9] [PMID: 30082768]
[37]
Sato, H.; Tamba, M.; Ishii, T.; Bannai, S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem., 1999, 274(17), 11455-11458.
[http://dx.doi.org/10.1074/jbc.274.17.11455] [PMID: 10206947]
[38]
Badgley, M.A.; Kremer, D.M.; Maurer, H.C.; DelGiorno, K.E.; Lee, H-J.; Purohit, V.; Sagalovskiy, I.R.; Ma, A.; Kapilian, J.; Firl, C.E.M.; Decker, A.R.; Sastra, S.A.; Palermo, C.F.; Andrade, L.R.; Sajjakulnukit, P.; Zhang, L.; Tolstyka, Z.P.; Hirschhorn, T.; Lamb, C.; Liu, T.; Gu, W.; Seeley, E.S.; Stone, E.; Georgiou, G.; Manor, U.; Iuga, A.; Wahl, G.M.; Stockwell, B.R.; Lyssiotis, C.A.; Olive, K.P. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368(6486), 85-89.
[http://dx.doi.org/10.1126/science.aaw9872] [PMID: 32241947]
[39]
Roh, J-L.; Kim, E.H.; Jang, H.J.; Park, J.Y.; Shin, D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett., 2016, 381(1), 96-103.
[http://dx.doi.org/10.1016/j.canlet.2016.07.035] [PMID: 27477897]
[40]
Warner, G.J.; Berry, M.J.; Moustafa, M.E.; Carlson, B.A.; Hatfield, D.L.; Faust, J.R. Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. J. Biol. Chem., 2000, 275(36), 28110-28119.
[http://dx.doi.org/10.1074/jbc.M001280200] [PMID: 10821829]
[41]
Friedmann Angeli, J.P.; Conrad, M. Selenium and GPX4, a vital symbiosis. Free Radic. Biol. Med., 2018, 127, 153.
[42]
Llabani, E.; Hicklin, R.W.; Lee, H.Y.; Motika, S.E.; Crawford, L.A.; Weerapana, E.; Hergenrother, P.J. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nat. Chem., 2019, 11(6), 521-532.
[http://dx.doi.org/10.1038/s41557-019-0261-6] [PMID: 31086302]
[43]
Lovatt, M.; Adnan, K.; Kocaba, V.; Dirisamer, M.; Peh, G.S.L.; Mehta, J.S. Peroxiredoxin-1 regulates lipid peroxidation in corneal endothelial cells. Redox Biol., 2020, 30, 101417.
[http://dx.doi.org/10.1016/j.redox.2019.101417] [PMID: 31901729]
[44]
Lu, B.; Chen, X.B.; Hong, Y.C.; Zhu, H.; He, Q.J.; Yang, B.; Ying, M.D.; Cao, J. Identification of PRDX6 as a regulator of ferroptosis. Acta Pharmacol. Sin., 2019, 40(10), 1334-1342.
[http://dx.doi.org/10.1038/s41401-019-0233-9] [PMID: 31036877]
[45]
Dai, E.; Zhang, W.; Cong, D.; Kang, R.; Wang, J.; Tang, D. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem. Biophys. Res. Commun., 2020, 523(4), 966-971.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.066] [PMID: 31964528]
[46]
Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698.
[http://dx.doi.org/10.1038/s41586-019-1707-0] [PMID: 31634899]
[47]
Anandhan, A.; Dodson, M.; Schmidlin, C.J.; Liu, P.; Zhang, D.D. Breakdown of an ironclad defense system: The critical role of NRF2 in mediating ferroptosis. Cell Chem. Biol., 2020, 27(4), 436-447.
[http://dx.doi.org/10.1016/j.chembiol.2020.03.011] [PMID: 32275864]
[48]
Gu, Y.; Albuquerque, C.P.; Braas, D.; Zhang, W.; Villa, G.R.; Bi, J.; Ikegami, S.; Masui, K.; Gini, B.; Yang, H.; Gahman, T.C.; Shiau, A.K.; Cloughesy, T.F.; Christofk, H.R.; Zhou, H.; Guan, K-L.; Mischel, P.S. mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT. Mol. Cell, 2017, 67(1), 128-138.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.05.030] [PMID: 28648777]
[49]
Yi, J.; Zhu, J.; Wu, J.; Thompson, C.B.; Jiang, X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. USA, 2020, 117(49), 31189-31197.
[http://dx.doi.org/10.1073/pnas.2017152117] [PMID: 33229547]
[50]
Wang, N.; Zeng, G-Z.; Yin, J-L.; Bian, Z-X. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt’s Lymphoma. Biochem. Biophys. Res. Commun., 2019, 519(3), 533-539.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.023] [PMID: 31537387]
[51]
Zhu, S.; Zhang, Q.; Sun, X.; Zeh, H.J., III; Lotze, M.T.; Kang, R.; Tang, D. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res., 2017, 77(8), 2064-2077.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1979] [PMID: 28130223]
[52]
Chen, D.; Fan, Z.; Rauh, M.; Buchfelder, M.; Eyupoglu, I.Y.; Savaskan, N. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene, 2017, 36(40), 5593-5608.
[http://dx.doi.org/10.1038/onc.2017.146] [PMID: 28553953]
[53]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[54]
Antoszczak, M.; Huczyński, A. Salinomycin and its derivatives - A new class of multiple-targeted “magic bullets”. Eur. J. Med. Chem., 2019, 176, 208-227.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.031] [PMID: 31103901]
[55]
Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 2009, 138(4), 645-659.
[http://dx.doi.org/10.1016/j.cell.2009.06.034] [PMID: 19682730]
[56]
Gruber, M.; Handle, F.; Culig, Z. The stem cell inhibitor salinomycin decreases colony formation potential and tumor-initiating population in docetaxel-sensitive and docetaxel-resistant prostate cancer cells. Prostate, 2020, 80(3), 267-273.
[http://dx.doi.org/10.1002/pros.23940] [PMID: 31834633]
[57]
Michalak, M.; Lach, M.S.; Antoszczak, M.; Huczyński, A.; Suchorska, W.M. Overcoming resistance to platinum-based drugs in ovarian cancer by salinomycin and its derivatives-an in vitro study. Molecules, 2020, 25(3), 537.
[http://dx.doi.org/10.3390/molecules25030537] [PMID: 31991882]
[58]
Dewangan, J.; Srivastava, S.; Mishra, S.; Divakar, A.; Kumar, S.; Rath, S.K. Salinomycin inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vitro and in vivo. Biochem. Pharmacol., 2019, 164, 326-335.
[http://dx.doi.org/10.1016/j.bcp.2019.04.026] [PMID: 31028743]
[59]
Schenk, M.; Aykut, B.; Teske, C.; Giese, N.A.; Weitz, J.; Welsch, T. Salinomycin inhibits growth of pancreatic cancer and cancer cell migration by disruption of actin stress fiber integrity. Cancer Lett., 2015, 358(2), 161-169.
[http://dx.doi.org/10.1016/j.canlet.2014.12.037] [PMID: 25529011]
[60]
Li, T.; Su, L.; Zhong, N.; Hao, X.; Zhong, D.; Singhal, S.; Liu, X. Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy, 2013, 9(7), 1057-1068.
[http://dx.doi.org/10.4161/auto.24632] [PMID: 23670030]
[61]
Yu, S-N.; Kim, S-H.; Kim, K-Y.; Ji, J-H.; Seo, Y-K.; Yu, H.S.; Ahn, S-C. Salinomycin induces endoplasmic reticulum stress‑mediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells. Oncol. Rep., 2017, 37(6), 3321-3328.
[http://dx.doi.org/10.3892/or.2017.5615] [PMID: 28498472]
[62]
Zhang, G.; Wang, W.; Yao, C.; Ren, J.; Zhang, S.; Han, M. Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation. Biomed. Pharmacother., 2017, 91, 147-154.
[http://dx.doi.org/10.1016/j.biopha.2017.04.095] [PMID: 28453992]
[63]
Klose, J.; Trefz, S.; Wagner, T.; Steffen, L.; Preißendörfer Charrier, A.; Radhakrishnan, P.; Volz, C.; Schmidt, T.; Ulrich, A.; Dieter, S.M.; Ball, C.; Glimm, H.; Schneider, M. Salinomycin: Anti- tumor activity in a pre-clinical colorectal cancer model. PLoS One, 2019, 14(2), e0211916.
[http://dx.doi.org/10.1371/journal.pone.0211916] [PMID: 30763370]
[64]
Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; Ryo, A.; Ginestier, C.; Birnbaum, D.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem., 2017, 9(10), 1025-1033.
[http://dx.doi.org/10.1038/nchem.2778] [PMID: 28937680]
[65]
Hamaï, A.; Cañeque, T.; Müller, S.; Mai, T.T.; Hienzsch, A.; Ginestier, C.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. An iron hand over cancer stem cells. Autophagy, 2017, 13(8), 1465-1466.
[http://dx.doi.org/10.1080/15548627.2017.1327104] [PMID: 28613094]
[66]
Zhao, Y.; Zhao, W.; Lim, Y.C.; Liu, T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol. Pharm., 2019, 16(6), 2532-2539.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00132] [PMID: 31009228]
[67]
Xuhong, J-C.; Qi, X-W.; Zhang, Y.; Jiang, J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am. J. Cancer Res., 2019, 9(10), 2103-2119.
[PMID: 31720077]
[68]
Ryan, Q.; Ibrahim, A.; Cohen, M.H.; Johnson, J.; Ko, C.W.; Sridhara, R.; Justice, R.; Pazdur, R. FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist, 2008, 13(10), 1114-1119.
[http://dx.doi.org/10.1634/theoncologist.2008-0816] [PMID: 18849320]
[69]
Chintalaramulu, N.; Vadivelu, R.; Nguyen, N-T.; Cock, I.E. Lapatinib inhibits doxorubicin induced migration of HER2-positive breast cancer cells. Inflammopharmacology, 2020, 28(5), 1375-1386.
[http://dx.doi.org/10.1007/s10787-020-00711-9] [PMID: 32378049]
[70]
Heading, C.; Siramesine, H Lundbeck Current Opin. Investig. Drugs, 2001, 2(2), 266-270.
[71]
Ostenfeld, M.S.; Fehrenbacher, N.; Høyer-Hansen, M.; Thomsen, C.; Farkas, T.; Jäättelä, M. Effective tumor cell death by σ-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res., 2005, 65(19), 8975-8983.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0269] [PMID: 16204071]
[72]
Petersen, N.H.T.; Olsen, O.D.; Groth-Pedersen, L.; Ellegaard, A.M.; Bilgin, M.; Redmer, S.; Ostenfeld, M.S.; Ulanet, D.; Dovmark, T.H.; Lønborg, A.; Vindeløv, S.D.; Hanahan, D.; Arenz, C.; Ejsing, C.S.; Kirkegaard, T.; Rohde, M.; Nylandsted, J.; Jäättelä, M. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell, 2013, 24(3), 379-393.
[http://dx.doi.org/10.1016/j.ccr.2013.08.003] [PMID: 24029234]
[73]
Fassl, A.; Brain, C.; Abu-Remaileh, M.; Stukan, I.; Butter, D.; Stepien, P.; Feit, A.S.; Bergholz, J.; Michowski, W.; Otto, T.; Sheng, Q.; Loo, A.; Michael, W.; Tiedt, R.; DeAngelis, C.; Schiff, R.; Jiang, B.; Jovanovic, B.; Nowak, K.; Ericsson, M.; Cameron, M.; Gray, N.; Dillon, D.; Zhao, J.J.; Sabatini, D.M.; Jeselsohn, R.; Brown, M.; Polyak, K.; Sicinski, P. Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci. Adv., 2020, 6(25), eabb2210.
[http://dx.doi.org/10.1126/sciadv.abb2210] [PMID: 32704543]
[74]
Liu, J.; Tang, M.; Zhou, Y.; Long, Y.; Cheng, Y.; Zheng, H. A siramesine-loaded metal organic framework nanoplatform for overcoming multidrug resistance with efficient cancer cell targeting. RSC Adv, 2020, 10, 6919.
[http://dx.doi.org/10.1039/C9RA09923A]
[75]
Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7, e2307.
[http://dx.doi.org/10.1038/cddis.2016.208] [PMID: 27441659]
[76]
Ma, S.; Dielschneider, R.F.; Henson, E.S.; Xiao, W.; Choquette, T.R.; Blankstein, A.R.; Chen, Y.; Gibson, S.B. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells. PLoS One, 2017, 12(8), e0182921.
[http://dx.doi.org/10.1371/journal.pone.0182921] [PMID: 28827805]
[77]
Villalpando-Rodriguez, G.E.; Blankstein, A.R.; Konzelman, C.; Gibson, S.B. Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced Heme Oxygenase-1 (HO-1) Levels. Oxid. Med. Cell. Longev., 2019, 2019, 9561281.
[http://dx.doi.org/10.1155/2019/9561281] [PMID: 31636810]
[78]
Chen, H.; Shi, L.; Yang, X.; Li, S.; Guo, X.; Pan, L. Artesunate inhibiting angiogenesis induced by human myeloma RPMI8226 cells. Int. J. Hematol., 2010, 92(4), 587-597.
[http://dx.doi.org/10.1007/s12185-010-0697-3] [PMID: 20945119]
[79]
Zhou, H-J.; Wang, W-Q.; Wu, G-D.; Lee, J.; Li, A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul. Pharmacol., 2007, 47(2-3), 131-138.
[http://dx.doi.org/10.1016/j.vph.2007.05.002] [PMID: 17581794]
[80]
Zhao, F.; Vakhrusheva, O.; Markowitsch, S.D.; Slade, K.S.; Tsaur, I.; Cinatl, J., Jr; Michaelis, M.; Efferth, T.; Haferkamp, A.; Juengel, E. Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction. Cells, 2020, 9(12), 2643.
[http://dx.doi.org/10.3390/cells9122643] [PMID: 33316936]
[81]
Wang, Z.; Wang, Q.; He, T.; Li, W.; Liu, Y.; Fan, Y.; Wang, Y.; Wang, Q.; Chen, J. The combination of artesunate and carboplatin exerts a synergistic anti-tumour effect on non-small cell lung cancer. Clin. Exp. Pharmacol. Physiol., 2020, 47(6), 1083-1091.
[http://dx.doi.org/10.1111/1440-1681.13287] [PMID: 32072678]
[82]
Wang, B.; Hou, D.; Liu, Q.; Wu, T.; Guo, H.; Zhang, X.; Zou, Y.; Liu, Z.; Liu, J.; Wei, J.; Gong, Y.; Shao, C. Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol. Ther., 2015, 16(10), 1548-1556.
[http://dx.doi.org/10.1080/15384047.2015.1071738] [PMID: 26176175]
[83]
Nunes, J.J.; Pandey, S.K.; Yadav, A.; Goel, S.; Ateeq, B. Targeting NF-kappa B signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens. Neoplasia, 2017, 19(4), 333-345.
[http://dx.doi.org/10.1016/j.neo.2017.02.002] [PMID: 28319807]
[84]
Ishikawa, C.; Senba, M.; Mori, N. Evaluation of artesunate for the treatment of adult T-cell leukemia/lymphoma. Eur. J. Pharmacol., 2020, 872, 172953.
[http://dx.doi.org/10.1016/j.ejphar.2020.172953] [PMID: 31996318]
[85]
Wang, K.; Zhang, Z.; Wang, M.; Cao, X.; Qi, J.; Wang, D.; Gong, A.; Zhu, H. Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Des. Devel. Ther., 2019, 13, 2135-2144.
[http://dx.doi.org/10.2147/DDDT.S199459] [PMID: 31456633]
[86]
Greenshields, A.L.; Shepherd, T.G.; Hoskin, D.W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol. Carcinog., 2017, 56(1), 75-93.
[http://dx.doi.org/10.1002/mc.22474] [PMID: 26878598]
[87]
Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532.
[http://dx.doi.org/10.18632/oncoscience.160] [PMID: 26097885]
[88]
Yang, N-D.; Tan, S-H.; Ng, S.; Shi, Y.; Zhou, J.; Tan, K.S.W.; Wong, W-S.F.; Shen, H-M. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J. Biol. Chem., 2014, 289(48), 33425-33441.
[http://dx.doi.org/10.1074/jbc.M114.564567] [PMID: 25305013]
[89]
Kong, Z.; Liu, R.; Cheng, Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother., 2019, 109, 2043-2053.
[http://dx.doi.org/10.1016/j.biopha.2018.11.030] [PMID: 30551460]
[90]
Li, Z.J.; Dai, H.Q.; Huang, X.W.; Feng, J.; Deng, J.H.; Wang, Z.X.; Yang, X.M.; Liu, Y.J.; Wu, Y.; Chen, P.H.; Shi, H.; Wang, J.G.; Zhou, J.; Lu, G.D. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol. Sin., 2021, 42(2), 301-310.
[http://dx.doi.org/10.1038/s41401-020-0478-3] [PMID: 32699265]
[91]
Crawford, R.R.; Prescott, E.T.; Sylvester, C.F.; Higdon, A.N.; Shan, J.; Kilberg, M.S.; Mungrue, I.N. Human CHAC1 protein degrades glutathione, and mRNA induction is regulated by the transcription factors ATF4 and ATF3 and a bipartite ATF/CRE regulatory element. J. Biol. Chem., 2015, 290(25), 15878-15891.
[http://dx.doi.org/10.1074/jbc.M114.635144] [PMID: 25931127]
[92]
Roh, J-L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11, 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[93]
Hua, H.; Zhu, Y.; Song, Y-H. Ruscogenin suppressed the hepatocellular carcinoma metastasis via PI3K/Akt/mTOR signaling pathway. Biomed. Pharmacother., 2018, 101, 115-122.
[http://dx.doi.org/10.1016/j.biopha.2018.02.031] [PMID: 29477471]
[94]
Song, Z.; Xiang, X.; Li, J.; Deng, J.; Fang, Z.; Zhang, L.; Xiong, J. Ruscogenin induces ferroptosis in pancreatic cancer cells. Oncol. Rep., 2020, 43(2), 516-524.
[PMID: 31894321]
[95]
Deeks, E.D. Neratinib:First global approval Drugs, 2017, 77(15), 1695-1704.
[http://dx.doi.org/10.1007/s40265-017-0811-4] [PMID: 28884417]
[96]
Booth, L.; Poklepovic, A.; Dent, P. Neratinib decreases pro-survival responses of [sorafenib + vorinostat] in pancreatic cancer. Biochem. Pharmacol., 2020, 178, 114067.
[http://dx.doi.org/10.1016/j.bcp.2020.114067] [PMID: 32504550]
[97]
Nagpal, A.; Redvers, R.P.; Ling, X.; Ayton, S.; Fuentes, M.; Tavancheh, E.; Diala, I.; Lalani, A.; Loi, S.; David, S.; Anderson, R.L.; Smith, Y.; Merino, D.; Denoyer, D.; Pouliot, N. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res., 2019, 21(1), 94.
[http://dx.doi.org/10.1186/s13058-019-1177-1] [PMID: 31409375]
[98]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J-L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J-F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[99]
Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612.
[http://dx.doi.org/10.1016/S0076-6879(05)07047-3] [PMID: 16757355]
[100]
Tai, W.T.; Shiau, C.W.; Chen, H.L.; Liu, C.Y.; Lin, C.S.; Cheng, A.L.; Chen, P.J.; Chen, K.F. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis., 2013, 4, e485.
[http://dx.doi.org/10.1038/cddis.2013.18] [PMID: 23392173]
[101]
Rodríguez-Hernández, M.A.; González, R.; de la Rosa, Á.J.; Gallego, P.; Ordóñez, R.; Navarro-Villarán, E.; Contreras, L.; Rodríguez-Arribas, M.; González-Gallego, J.; Álamo-Martínez, J.M.; Marín-Gómez, L.M.; Del Campo, J.A.; Quiles, J.L.; Fuentes, J.M.; de la Cruz, J.; Mauriz, J.L.; Padillo, F.J.; Muntané, J. Molecular characterization of autophagic and apoptotic signaling induced by sorafenib in liver cancer cells. J. Cell. Physiol., 2018, 234(1), 692-708.
[http://dx.doi.org/10.1002/jcp.26855] [PMID: 30132846]
[102]
Louandre, C.; Ezzoukhry, Z.; Godin, C.; Barbare, J-C.; Mazière, J-C.; Chauffert, B.; Galmiche, A. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer, 2013, 133(7), 1732-1742.
[http://dx.doi.org/10.1002/ijc.28159] [PMID: 23505071]
[103]
Lachaier, E.; Louandre, C.; Godin, C.; Saidak, Z.; Baert, M.; Diouf, M.; Chauffert, B.; Galmiche, A. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res., 2014, 34(11), 6417-6422.
[PMID: 25368241]
[104]
Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 2014, 3, e02523.
[http://dx.doi.org/10.7554/eLife.02523] [PMID: 24844246]
[105]
Sun, X.; Niu, X.; Chen, R.; He, W.; Chen, D.; Kang, R.; Tang, D. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016, 64(2), 488-500.
[http://dx.doi.org/10.1002/hep.28574] [PMID: 27015352]
[106]
Louandre, C.; Marcq, I.; Bouhlal, H.; Lachaier, E.; Godin, C.; Saidak, Z.; François, C.; Chatelain, D.; Debuysscher, V.; Barbare, J-C.; Chauffert, B.; Galmiche, A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett., 2015, 356(2 Pt B), 971-977.
[http://dx.doi.org/10.1016/j.canlet.2014.11.014] [PMID: 25444922]
[107]
Suzuki, T.; Motohashi, H.; Yamamoto, M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci., 2013, 34(6), 340-346.
[http://dx.doi.org/10.1016/j.tips.2013.04.005] [PMID: 23664668]
[108]
Feng, J.; Lu, P.Z.; Zhu, G.Z.; Hooi, S.C.; Wu, Y.; Huang, X.W.; Dai, H.Q.; Chen, P.H.; Li, Z.J.; Su, W.J.; Han, C.Y.; Ye, X.P.; Peng, T.; Zhou, J.; Lu, G.D. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol. Sin., 2021, 42(1), 160-170.
[http://dx.doi.org/10.1038/s41401-020-0439-x] [PMID: 32541921]
[109]
Li, Y.; Xia, J.; Shao, F.; Zhou, Y.; Yu, J.; Wu, H.; Du, J.; Ren, X. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis. Biochem. Biophys. Res. Commun., 2021, 534, 877-884.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.083] [PMID: 33162029]
[110]
Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis., 2014, 5, e1257.
[http://dx.doi.org/10.1038/cddis.2013.428] [PMID: 24874729]
[111]
Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis:A novel anti-tumor action for cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460.
[http://dx.doi.org/10.4143/crt.2016.572] [PMID: 28494534]
[112]
Wang And, X.; Guo, Z. The role of sulfur in platinum anticancer chemotherapy. Anticancer. Agents Med. Chem., 2007, 7(1), 19-34.
[http://dx.doi.org/10.2174/187152007779314062] [PMID: 17266503]
[113]
Godwin, A.K.; Meister, A.; O’Dwyer, P.J.; Huang, C.S.; Hamilton, T.C.; Anderson, M.E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. USA, 1992, 89(7), 3070-3074.
[http://dx.doi.org/10.1073/pnas.89.7.3070] [PMID: 1348364]
[114]
Plosker, G.L.; Croom, K.F. Sulfasalazine: a review of its use in the management of rheumatoid arthritis. Drugs, 2005, 65(13), 1825-1849.
[http://dx.doi.org/10.2165/00003495-200565130-00008] [PMID: 16114981]
[115]
Arlt, A.; Gehrz, A.; Müerköster, S.; Vorndamm, J.; Kruse, M-L.; Fölsch, U.R.; Schäfer, H. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 2003, 22(21), 3243-3251.
[http://dx.doi.org/10.1038/sj.onc.1206390] [PMID: 12761494]
[116]
Sleire, L.; Skeie, B.S.; Netland, I.A.; Førde, H.E.; Dodoo, E.; Selheim, F.; Leiss, L.; Heggdal, J.I.; Pedersen, P.H.; Wang, J.; Enger, P.Ø. Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene, 2015, 34(49), 5951-5959.
[http://dx.doi.org/10.1038/onc.2015.60] [PMID: 25798841]
[117]
Gout, P.W.; Buckley, A.R.; Simms, C.R.; Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: A new action for an old drug. Leukemia, 2001, 15(10), 1633-1640.
[http://dx.doi.org/10.1038/sj.leu.2402238] [PMID: 11587223]
[118]
Guan, J.; Lo, M.; Dockery, P.; Mahon, S.; Karp, C.M.; Buckley, A.R.; Lam, S.; Gout, P.W.; Wang, Y-Z. The xc- cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: Use of sulfasalazine. Cancer Chemother. Pharmacol., 2009, 64(3), 463-472.
[http://dx.doi.org/10.1007/s00280-008-0894-4] [PMID: 19104813]
[119]
Lo, M.; Ling, V.; Low, C.; Wang, Y.Z.; Gout, P.W. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr. Oncol., 2010, 17(3), 9-16.
[http://dx.doi.org/10.3747/co.v17i3.485] [PMID: 20567622]
[120]
Ma, M.Z.; Chen, G.; Wang, P.; Lu, W.H.; Zhu, C.F.; Song, M.; Yang, J.; Wen, S.; Xu, R.H.; Hu, Y.; Huang, P. Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett., 2015, 368(1), 88-96.
[http://dx.doi.org/10.1016/j.canlet.2015.07.031] [PMID: 26254540]
[121]
Yu, H.; Yang, C.; Jian, L.; Guo, S.; Chen, R.; Li, K.; Qu, F.; Tao, K.; Fu, Y.; Luo, F.; Liu, S. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol. Rep., 2019, 42(2), 826-838.
[http://dx.doi.org/10.3892/or.2019.7189] [PMID: 31173262]
[122]
Zhang, Q.; Bykov, V.J.N.; Wiman, K.G.; Zawacka-Pankau, J. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis., 2018, 9(5), 439.
[http://dx.doi.org/10.1038/s41419-018-0463-7] [PMID: 29670092]
[123]
Perdrix, A.; Najem, A.; Saussez, S.; Awada, A.; Journe, F.; Ghanem, G.; Krayem, M. PRIMA-1 and PRIMA-1Met (APR-246): From mutant/wild type p53 reactivation to unexpected mechanisms underlying their potent anti-tumor effect in combinatorial therapies. Cancers (Basel), 2017, 9(12), 172.
[http://dx.doi.org/10.3390/cancers9120172] [PMID: 29258181]
[124]
Haffo, L.; Lu, J.; Bykov, V.J.N.; Martin, S.S.; Ren, X.; Coppo, L.; Wiman, K.G.; Holmgren, A. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53- targeting compound APR-246. Sci. Rep., 2018, 8(1), 12671.
[http://dx.doi.org/10.1038/s41598-018-31048-7] [PMID: 30140002]
[125]
Mohell, N.; Alfredsson, J.; Fransson, Å.; Uustalu, M.; Byström, S.; Gullbo, J.; Hallberg, A.; Bykov, V.J.N.; Björklund, U.; Wiman, K.G. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis., 2015, 6, e1794.
[http://dx.doi.org/10.1038/cddis.2015.143] [PMID: 26086967]
[126]
Birsen, R.; Larrue, C.; Decroocq, J.; Johnson, N.; Guiraud, N.; Gotanegre, M.; Cantero-Aguilar, L.; Grignano, E.; Huynh, T.; Fontenay, M.; Kosmider, O.; Mayeux, P.; Chapuis, N.; Sarry, J.E.; Tamburini, J.; Bouscary, D. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica, 2021. [online ahead of print].
[http://dx.doi.org/10.3324/haematol.2020.259531] [PMID: 33406814]
[127]
Griffith, O.W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem., 1982, 257(22), 13704-13712.
[http://dx.doi.org/10.1016/S0021-9258(18)33504-X] [PMID: 6128339]
[128]
Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; O’Donnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191.
[http://dx.doi.org/10.1038/ncb3064] [PMID: 25402683]
[129]
Sun, Y.; Zheng, Y.; Wang, C.; Liu, Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis., 2018, 9(7), 753.
[http://dx.doi.org/10.1038/s41419-018-0794-4] [PMID: 29988039]
[130]
Li, Q.; Yin, X.; Wang, W.; Zhan, M.; Zhao, B.; Hou, Z.; Wang, J. The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol. Lett., 2016, 11(1), 474-480.
[http://dx.doi.org/10.3892/ol.2015.3879] [PMID: 26870236]
[131]
Tagde, A.; Singh, H.; Kang, M.H.; Reynolds, C.P. The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood Cancer J., 2014, 4, e229.
[http://dx.doi.org/10.1038/bcj.2014.45] [PMID: 25036800]
[132]
Lee, H.M.; Kim, D.H.; Lee, H.L.; Cha, B.; Kang, D.H.; Jeong, Y-I.L. Synergistic effect of buthionine sulfoximine on the chlorin e6-based photodynamic treatment of cancer cells. Arch. Pharm. Res., 2019, 42(11), 990-999.
[http://dx.doi.org/10.1007/s12272-019-01179-0] [PMID: 31482490]
[133]
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C.W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.
[http://dx.doi.org/10.1016/j.ccell.2014.11.019] [PMID: 25620030]
[134]
Whitt, J.D.; Keeton, A.B.; Gary, B.D.; Sklar, L.A.; Sodani, K.; Chen, Z-S.; Piazza, G.A. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion. J. Biomed. Res., 2016, 30(2), 120-133.
[PMID: 28276667]
[135]
Tessoulin, B.; Descamps, G.; Moreau, P.; Maïga, S.; Lodé, L.; Godon, C.; Marionneau-Lambot, S.; Oullier, T.; Le Gouill, S.; Amiot, M.; Pellat-Deceunynck, C. PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood, 2014, 124(10), 1626-1636.
[http://dx.doi.org/10.1182/blood-2014-01-548800] [PMID: 25006124]
[136]
Mandal, P.K.; Seiler, A.; Perisic, T.; Kölle, P.; Banjac Canak, A.; Förster, H.; Weiss, N.; Kremmer, E.; Lieberman, M.W.; Bannai, S.; Kuhlencordt, P.; Sato, H.; Bornkamm, G.W.; Conrad, M. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J. Biol. Chem., 2010, 285(29), 22244-22253.
[http://dx.doi.org/10.1074/jbc.M110.121327] [PMID: 20463017]
[137]
Wang, L.; Hu, T.; Shen, J.; Zhang, L.; Chan, R.L-Y.; Lu, L.; Li, M.; Cho, C.H.; Wu, W.K.K. Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomedicine, 2015, 22(12), 1079-1087.
[http://dx.doi.org/10.1016/j.phymed.2015.08.009] [PMID: 26547530]
[138]
Tsai, S-L.; Suk, F-M.; Wang, C-I.; Liu, D-Z.; Hou, W-C.; Lin, P-J.; Hung, L-F.; Liang, Y-C. Anti-tumor potential of 15,16-dihydrotanshinone I against breast adenocarcinoma through inducing G1 arrest and apoptosis. Biochem. Pharmacol., 2007, 74(11), 1575-1586.
[http://dx.doi.org/10.1016/j.bcp.2007.08.009] [PMID: 17869226]
[139]
Cheng, R.; Chen, J.; Wang, Y.; Ge, Y.; Huang, Z.; Zhang, G. Dihydrotanshinone induces apoptosis of SGC7901 and MGC803 cells via activation of JNK and p38 signalling pathways. Pharm. Biol., 2016, 54(12), 3019-3025.
[http://dx.doi.org/10.1080/13880209.2016.1199045] [PMID: 27431278]
[140]
Lee, I.Y.; Lin, Y-Y.; Yang, Y-H.; Lin, Y-S.; Lin, C-L.; Lin, W-Y.; Cheng, Y-C.; Shu, L-H.; Wu, C-Y. Dihydroisotanshinone I combined with radiation inhibits the migration ability of prostate cancer cells through DNA damage and CCL2 pathway. BMC Pharmacol. Toxicol., 2018, 19(1), 5.
[http://dx.doi.org/10.1186/s40360-018-0195-4] [PMID: 29386061]
[141]
Lin, Y-S.; Shen, Y-C.; Wu, C-Y.; Tsai, Y-Y.; Yang, Y-H.; Lin, Y-Y.; Kuan, F-C.; Lu, C-N.; Chang, G-H.; Tsai, M-S.; Hsu, C-M.; Yeh, R-A.; Yang, P-R.; Lee, I.Y.; Shu, L-H.; Cheng, Y-C.; Liu, H-T.; Wu, Y-H.; Wu, Y-H.; Chang, D-C. Danshen improves survival of patients with breast cancer and dihydroisotanshinone I induces ferroptosis and apoptosis of breast cancer cells. Front. Pharmacol., 2019, 10, 1226.
[http://dx.doi.org/10.3389/fphar.2019.01226] [PMID: 31736748]
[142]
Tan, S.; Hou, X.; Mei, L. Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol. Lett., 2020, 20(4), 122.
[http://dx.doi.org/10.3892/ol.2020.11980] [PMID: 32863935]
[143]
Wu, C-Y.; Yang, Y-H.; Lin, Y-S.; Chang, G-H.; Tsai, M-S.; Hsu, C-M.; Yeh, R-A.; Shu, L-H.; Cheng, Y-C.; Liu, H-T. Dihydroisotanshinone I induced ferroptosis and apoptosis of lung cancer cells. Biomed. Pharmacother., 2021, 139, 111585.
[http://dx.doi.org/10.1016/j.biopha.2021.111585] [PMID: 33862493]
[144]
Hassannia, B.; Logie, E.; Vandenabeele, P.; Vanden Berghe, T.; Vanden Berghe, W.; Withaferin, A. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem. Pharmacol., 2020, 173, 113602.
[http://dx.doi.org/10.1016/j.bcp.2019.08.004] [PMID: 31404528]
[145]
Cohen, S.M.; Mukerji, R.; Timmermann, B.N.; Samadi, A.K.; Cohen, M.S. A novel combination of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic thyroid cancers. Am. J. Surg., 2012, 204(6), 895-900.
[http://dx.doi.org/10.1016/j.amjsurg.2012.07.027] [PMID: 23231932]
[146]
Lee, J.; Hahm, E-R.; Marcus, A.I.; Singh, S.V. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol. Carcinog., 2015, 54(6), 417-429.
[http://dx.doi.org/10.1002/mc.22110] [PMID: 24293234]
[147]
Amin, H.; Nayak, D.; Ur Rasool, R.; Chakraborty, S.; Kumar, A.; Yousuf, K.; Sharma, P.R.; Ahmed, Z.; Sharma, N.; Magotra, A.; Mukherjee, D.; Kumar, L.D.; Goswami, A. Par-4 dependent modulation of cellular β-catenin by medicinal plant natural product derivative 3-azido Withaferin A. Mol. Carcinog., 2016, 55(5), 864-881.
[http://dx.doi.org/10.1002/mc.22328] [PMID: 25969134]
[148]
Lv, T-Z.; Wang, G-S. Antiproliferation potential of withaferin A on human osteosarcoma cells via the inhibition of G2/M checkpoint proteins. Exp. Ther. Med., 2015, 10(1), 323-329.
[http://dx.doi.org/10.3892/etm.2015.2480] [PMID: 26170956]
[149]
Okamoto, S.; Tsujioka, T.; Suemori, S.; Kida, J.; Kondo, T.; Tohyama, Y.; Tohyama, K. Withaferin A suppresses the growth of myelodysplasia and leukemia cell lines by inhibiting cell cycle progression. Cancer Sci., 2016, 107(9), 1302-1314.
[http://dx.doi.org/10.1111/cas.12988] [PMID: 27311589]
[150]
Alnuqaydan, A.M.; Rah, B.; Almutary, A.G.; Chauhan, S.S. Synergistic antitumor effect of 5-fluorouracil and withaferin-A induces endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am. J. Cancer Res., 2020, 10(3), 799-815.
[PMID: 32266092]
[151]
Hassannia, B.; Wiernicki, B.; Ingold, I.; Qu, F.; Van Herck, S.; Tyurina, Y.Y.; Bayır, H.; Abhari, B.A.; Angeli, J.P.F.; Choi, S.M.; Meul, E.; Heyninck, K.; Declerck, K.; Chirumamilla, C.S.; Lahtela-Kakkonen, M.; Van Camp, G.; Krysko, D.V.; Ekert, P.G.; Fulda, S.; De Geest, B.G.; Conrad, M.; Kagan, V.E.; Vanden Berghe, W.; Vandenabeele, P.; Vanden Berghe, T. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest., 2018, 128(8), 3341-3355.
[http://dx.doi.org/10.1172/JCI99032] [PMID: 29939160]
[152]
He, Z.; Liu, X.; Wu, F.; Wu, S.; Rankin, G.O.N.; Martinez, I.; Rojanasakul, Y.; Chen, Y.C.; Gallic Acid Induces, S. Gallic acid induces S and G2 phase arrest and apoptosis in human ovarian cancer cells in vitro. Appl. Sci. (Basel), 2021, 11(9), 3807.
[http://dx.doi.org/10.3390/app11093807] [PMID: 34386269]
[153]
Jang, Y-G.; Ko, E-B.; Choi, K-C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem., 2020, 84, 108444.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108444] [PMID: 32615369]
[154]
Zeng, M.; Su, Y.; Li, K.; Jin, D.; Li, Q.; Li, Y.; Zhou, B. Gallic acid inhibits bladder cancer t24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression. Front. Pharmacol., 2020, 11, 1222.
[http://dx.doi.org/10.3389/fphar.2020.01222] [PMID: 32973496]
[155]
Aborehab, N.M.; Osama, N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int., 2019, 19, 154.
[http://dx.doi.org/10.1186/s12935-019-0868-0] [PMID: 31171918]
[156]
Tang, H.M.; Cheung, P.C.K. Gallic acid triggers iron-dependent cell death with apoptotic, ferroptotic, and necroptotic features. Toxins (Basel), 2019, 11(9), 492.
[http://dx.doi.org/10.3390/toxins11090492] [PMID: 31455047]
[157]
Khorsandi, K.; Kianmehr, Z.; Hosseinmardi, Z.; Hosseinzadeh, R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int., 2020, 20, 18.
[http://dx.doi.org/10.1186/s12935-020-1100-y] [PMID: 31956296]
[158]
Hong, Z.; Tang, P.; Liu, B.; Ran, C.; Yuan, C.; Zhang, Y.; Lu, Y.; Duan, X.; Yang, Y.; Wu, H. Ferroptosis-related genes for overall survival prediction in patients with colorectal cancer can be inhibited by gallic acid. Int. J. Biol. Sci., 2021, 17(4), 942-956.
[http://dx.doi.org/10.7150/ijbs.57164] [PMID: 33867820]
[159]
Xu, J.; Chen, Y.; Yang, R.; Zhou, T.; Ke, W.; Si, Y.; Yang, S.; Zhang, T.; Liu, X.; Zhang, L.; Xiang, K.; Guo, Y.; Liu, Y. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch. Biochem. Biophys., 2020, 684, 108314.
[http://dx.doi.org/10.1016/j.abb.2020.108314] [PMID: 32088220]
[160]
Zhang, Z.R.; Gao, M.X.; Yang, K. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp. Ther. Med., 2017, 14(1), 805-812.
[http://dx.doi.org/10.3892/etm.2017.4547] [PMID: 28673003]
[161]
Marostica, L.L.; de Barros, A.L.B.; Oliveira, J.; Salgado, B.S.; Cassali, G.D.; Leite, E.A.; Cardoso, V.N.; Lang, K.L.; Caro, M.S.B.; Durán, F.J.; Schenkel, E.P.; de Oliveira, M.C.; Simões, C.M.O. Antitumor effectiveness of a combined therapy with a new cucurbitacin B derivative and paclitaxel on a human lung cancer xenograft model. Toxicol. Appl. Pharmacol., 2017, 329, 272-281.
[http://dx.doi.org/10.1016/j.taap.2017.06.007] [PMID: 28610991]
[162]
Huang, S.; Cao, B.; Zhang, J.; Feng, Y.; Wang, L.; Chen, X.; Su, H.; Liao, S.; Liu, J.; Yan, J.; Liang, B. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: Molecular mechanism and therapeutic potential. Cell Death Dis., 2021, 12(3), 237.
[http://dx.doi.org/10.1038/s41419-021-03516-y] [PMID: 33664249]
[163]
Damia, G.; D’Incalci, M. Clinical pharmacokinetics of altretamine. Clin. Pharmacokinet., 1995, 28(6), 439-448.
[http://dx.doi.org/10.2165/00003088-199528060-00002] [PMID: 7656502]
[164]
Woo, J.H.; Shimoni, Y.; Yang, W.S.; Subramaniam, P.; Iyer, A.; Nicoletti, P.; Rodríguez Martínez, M.; López, G.; Mattioli, M.; Realubit, R.; Karan, C.; Stockwell, B.R.; Bansal, M.; Califano, A. Elucidating compound mechanism of action by network perturbation analysis. Cell, 2015, 162(2), 441-451.
[http://dx.doi.org/10.1016/j.cell.2015.05.056] [PMID: 26186195]
[165]
Osmak, M. Statins and cancer: Current and future prospects. Cancer Lett., 2012, 324(1), 1-12.
[http://dx.doi.org/10.1016/j.canlet.2012.04.011] [PMID: 22542807]
[166]
Tu, Y-S.; Kang, X-L.; Zhou, J-G.; Lv, X-F.; Tang, Y-B.; Guan, Y-Y. Involvement of Chk1-Cdc25A-cyclin A/CDK2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells. Eur. J. Pharmacol., 2011, 670(2-3), 356-364.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.031] [PMID: 21958871]
[167]
Bil, J.; Zapala, L.; Nowis, D.; Jakobisiak, M.; Golab, J. Statins potentiate cytostatic/cytotoxic activity of sorafenib but not sunitinib against tumor cell lines in vitro. Cancer Lett., 2010, 288(1), 57-67.
[http://dx.doi.org/10.1016/j.canlet.2009.06.022] [PMID: 19632769]
[168]
Kretzer, I.F.; Maria, D.A.; Guido, M.C.; Contente, T.C.; Maranhão, R.C. Simvastatin increases the antineoplastic actions of paclitaxel carried in lipid nanoemulsions in melanoma-bearing mice. Int. J. Nanomedicine, 2016, 11, 885-904.
[PMID: 27022257]
[169]
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y-Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[170]
Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers (Basel), 2019, 11(7), 948.
[http://dx.doi.org/10.3390/cancers11070948] [PMID: 31284458]
[171]
Pisanu, M.E.; Noto, A.; De Vitis, C.; Morrone, S.; Scognamiglio, G.; Botti, G.; Venuta, F.; Diso, D.; Jakopin, Z.; Padula, F.; Ricci, A.; Mariotta, S.; Giovagnoli, M.R.; Giarnieri, E.; Amelio, I.; Agostini, M.; Melino, G.; Ciliberto, G.; Mancini, R. Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett., 2017, 406, 93-104.
[http://dx.doi.org/10.1016/j.canlet.2017.07.027] [PMID: 28797843]
[172]
Chen, L.; Ren, J.; Yang, L.; Li, Y.; Fu, J.; Li, Y.; Tian, Y.; Qiu, F.; Liu, Z.; Qiu, Y. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis. Sci. Rep., 2016, 6, 19665.
[http://dx.doi.org/10.1038/srep19665] [PMID: 26813308]
[173]
Huang, G-M.; Jiang, Q-H.; Cai, C.; Qu, M.; Shen, W. SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett., 2015, 358(2), 180-190.
[http://dx.doi.org/10.1016/j.canlet.2014.12.036] [PMID: 25528629]
[174]
Noto, A.; De Vitis, C.; Pisanu, M.E.; Roscilli, G.; Ricci, G.; Catizone, A.; Sorrentino, G.; Chianese, G.; Taglialatela-Scafati, O.; Trisciuoglio, D.; Del Bufalo, D.; Di Martile, M.; Di Napoli, A.; Ruco, L.; Costantini, S.; Jakopin, Z.; Budillon, A.; Melino, G.; Del Sal, G.; Ciliberto, G.; Mancini, R. Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ. Oncogene, 2017, 36(32), 4573-4584.
[http://dx.doi.org/10.1038/onc.2017.75] [PMID: 28368399]
[175]
Angelucci, C.; Maulucci, G.; Colabianchi, A.; Iacopino, F.; D’Alessio, A.; Maiorana, A.; Palmieri, V.; Papi, M.; De Spirito, M.; Di Leone, A.; Masetti, R.; Sica, G. Stearoyl-CoA desaturase 1 and paracrine diffusible signals have a major role in the promotion of breast cancer cell migration induced by cancer-associated fibroblasts. Br. J. Cancer, 2015, 112(10), 1675-1686.
[http://dx.doi.org/10.1038/bjc.2015.135] [PMID: 25880005]
[176]
Gao, J.; Zhang, Z.; Liu, Y.; Zhang, Z.; Wang, M.; Gong, A.; Xia, L.; Liao, X.; Wang, D.; Zhu, H. Stearoyl-CoA desaturase 1 potentiates hypoxic plus nutrient-deprived pancreatic cancer cell ferroptosis resistance. Oxid. Med. Cell. Longev., 2021, 2021, 6629804.
[http://dx.doi.org/10.1155/2021/6629804] [PMID: 33868572]
[177]
Mohamad, N.E.; Abu, N.; Yeap, S.K.; Alitheen, N.B. Bromelain enhances the anti-tumor effects of cisplatin on 4T1 breast tumor model in vivo. Integr. Cancer Ther., 2019, 18, 1534735419880258.
[http://dx.doi.org/10.1177/1534735419880258] [PMID: 31752555]
[178]
Romano, B.; Fasolino, I.; Pagano, E.; Capasso, R.; Pace, S.; De Rosa, G.; Milic, N.; Orlando, P.; Izzo, A.A.; Borrelli, F. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Mol. Nutr. Food Res., 2014, 58(3), 457-465.
[http://dx.doi.org/10.1002/mnfr.201300345] [PMID: 24123777]
[179]
Chang, T-C.; Wei, P-L.; Makondi, P.T.; Chen, W-T.; Huang, C-Y.; Chang, Y-J. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One, 2019, 14(1), e0210274.
[http://dx.doi.org/10.1371/journal.pone.0210274] [PMID: 30657763]
[180]
Park, S.; Oh, J.; Kim, M.; Jin, E-J. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis. Anim. Cells Syst., 2018, 22(5), 334-340.
[http://dx.doi.org/10.1080/19768354.2018.1512521] [PMID: 30460115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy