Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Prognostic and Therapeutic Values of Autophagy-related Genes in Triple-negative Breast Cancer

Author(s): Minling Liu, Lei Li, Shan Huang, Xiaofen Pan, Huiru Dai, Zhe-Sheng Chen*, Yihang Pan* and Shuo Fang*

Volume 17, Issue 4, 2022

Published on: 18 April, 2022

Page: [380 - 386] Pages: 7

DOI: 10.2174/1574892816666211130170149

Price: $65

Abstract

Background: Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with a poor prognosis. Therefore, it is imperative to develop new prognostic or therapeutic biomarkers for TNBC.

Objectives: To explore the prognostic and therapeutic values of autophagy-related genes (ARGs) in TNBC.

Methods: Overall, 157 TNBC patients’ data were obtained from The Cancer Genome Atlas database, and the ARGs were acquired from the Human Autophagy Database. Differentially expressed ARGs (DEGs) between tumor and normal tissues were identified, and the prognostic ARGs were developed using R software. Kaplan-Meier survival curves and receiver operating characteristic (ROC) curves were both used to evaluate the accuracy of the signature. Patents about prognostic ARGs were reviewed through Worldwide Espacenet® and Patentscope®.

Results: We obtained 28 DEGs and two prognostic ARGs (EIF4EBP1 and PARP1). The Kaplan- Meier survival curves showed that the survival rate of patients with low 2-ARG signature risk score was significantly higher than that of patients with high-risk score (P =0.003). ROC at 5 years indicated that the signature had good prognostic accuracy (AUC =0.929). The signature was independent of T, N, M, and TNM stages (P <0.05). The patent review suggested that many mTOR inhibitors alone or in combination with another anticancer agent have been provided for the treatment of many cancers and shown promising results. No drug patents about PARP1 overexpression were disclosed.

Conclusion: We developed a 2-ARG signature (EIF4EBP1 and PARP1), which was an independent prognostic biomarker for TNBC. As EIF4EBP1 was upregulated in TNBC, mTOR inhibitors which blocked the mTOR/4EBP1/eIF4E pathway, may be a promising therapeutic strategy for TNBC.

Keywords: Triple-negative breast cancer, autophagy-related genes, prognostic signature, EIF4EBP1, PARP1, mTOR inhibitor.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Bosch A, Eroles P, Zaragoza R, Viña JR, Lluch A. Triple-negative breast cancer: Molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 2010; 36(3): 206-15.
[http://dx.doi.org/10.1016/j.ctrv.2009.12.002] [PMID: 20060649]
[3]
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363(20): 1938-48.
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[4]
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007; 13(15 Pt 1): 4429-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[5]
Schmid P, Adams S, Rugo HS, et al. IMpassion130 Trial Investigators. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379(22): 2108-21.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[6]
Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017; 377(6): 523-33.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[7]
Robson ME, Tung N, Conte P, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol 2019; 30(4): 558-66.
[http://dx.doi.org/10.1093/annonc/mdz012] [PMID: 30689707]
[8]
Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA Mutation. N Engl J Med 2018; 379(8): 753-63.
[http://dx.doi.org/10.1056/NEJMoa1802905] [PMID: 30110579]
[9]
Litton JK, Hurvitz SA, Mina LA, et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: Final overall survival results from the EMBRACA trial. Ann Oncol 2020; 31(11): 1526-35.
[http://dx.doi.org/10.1016/j.annonc.2020.08.2098] [PMID: 32828825]
[10]
Klionsky DJ. Autophagy revisited: A conversation with Christian de Duve. Autophagy 2008; 4(6): 740-3.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[11]
Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8(11): 931-7.
[http://dx.doi.org/10.1038/nrm2245] [PMID: 17712358]
[12]
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100(25): 15077-82.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[13]
Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112(12): 1809-20.
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[14]
Lorin S, Hamaï A, Mehrpour M, Codogno P. Autophagy regulation and its role in cancer. Semin Cancer Biol 2013; 23(5): 361-79.
[http://dx.doi.org/10.1016/j.semcancer.2013.06.007] [PMID: 23811268]
[15]
Vanzo R, Bartkova J, Merchut-Maya JM, et al. Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ 2020; 27(3): 1134-53.
[http://dx.doi.org/10.1038/s41418-019-0403-9] [PMID: 31409894]
[16]
Samaddar JS, Gaddy VT, Duplantier J, et al. A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol Cancer Ther 2008; 7(9): 2977-87.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0447] [PMID: 18790778]
[17]
Fitzwalter BE, Towers CG, Sullivan KD, et al. Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev Cell 2018; 44(5): 555-565.e3.
[http://dx.doi.org/10.1016/j.devcel.2018.02.014] [PMID: 29533771]
[18]
Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW, Green JE. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun 2018; 9(1): 1944.
[http://dx.doi.org/10.1038/s41467-018-04070-6] [PMID: 29789598]
[19]
Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta 2009; 1793(9): 1516-23.
[http://dx.doi.org/10.1016/j.bbamcr.2008.12.013] [PMID: 19167434]
[20]
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011; 25(14): 1510-27.
[http://dx.doi.org/10.1101/gad.2051011] [PMID: 21764854]
[21]
Huo Y, Cai H, Teplova I, et al. Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov 2013; 3(8): 894-907.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0011] [PMID: 23650262]
[22]
Jiang PD, Zhao YL, Deng XQ, et al. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother 2010; 64(9): 609-14.
[http://dx.doi.org/10.1016/j.biopha.2010.06.004] [PMID: 20888174]
[23]
Bedrosian CL. Pharmaceutical compositions containing mTOR inhibitors. 2007.
[24]
Burke G, Lane H, Linnartz RR, Versace RW. Combinations comprising mTOR inhibitors for treating cancer. 2007.
[25]
Borland M, Brain CT, Doshi S, Kim S, Ma J, Murtie J. Combination comprising a cyclin dependent kinase 4 or cyclin dependent kinase (cdk4/6) inhibitor and an Mtor inhibitor for treating cancer. US20160008367A1, 2011.
[26]
Wong K-K, Shapiro G, Li D, Shimamura T. Combination therapy for treating cancer. 2008.
[27]
Huynh TH, Chow PK-H, Soo KC. Composition and method using a combination of a mammalian target of rapamycin (mTOR) antagonist and an angiogenesis inhibitor to prevent proliferation and treat cancer. 2008.
[28]
Smith PD. Preparation of pyridine and morpholine derivatives as combination products for treatment of cancer. 2009.
[29]
Kim SY, Rha SY, Beom SH, Cho NH, Kwon WS. Combination therapy for cancer metastasis comprising streptonigrin and rapamycin. 2019.
[30]
Gu Y, Li P, Peng F, et al. Autophagy-related prognostic signature for breast cancer. Mol Carcinog 2016; 55(3): 292-9.
[http://dx.doi.org/10.1002/mc.22278] [PMID: 25620657]
[31]
Pourdehnad M, Truitt ML, Siddiqi IN, Ducker GS, Shokat KM, Ruggero D. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci USA 2013; 110(29): 11988-93.
[http://dx.doi.org/10.1073/pnas.1310230110] [PMID: 23803853]
[32]
Li SQ, Feng J, Yang M, Ai XP, He M, Liu F. Sauchinone: a prospective therapeutic agent-mediated EIF4EBP1 down-regulation suppresses proliferation, invasion and migration of lung adenocarcinoma cells. J Nat Med 2020; 74(4): 777-87.
[http://dx.doi.org/10.1007/s11418-020-01435-4] [PMID: 32666278]
[33]
Riquelme I, Tapia O, Espinoza JA, et al. The gene expression status of the PI3K/AKT/mTOR pathway in gastric cancer tissues and cell lines. Pathol Oncol Res 2016; 22(4): 797-805.
[http://dx.doi.org/10.1007/s12253-016-0066-5] [PMID: 27156070]
[34]
Cha YL, Li PD, Yuan LJ, et al. EIF4EBP1 overexpression is associated with poor survival and disease progression in patients with hepatocellular carcinoma. PLoS One 2015; 10(2): e0117493.
[http://dx.doi.org/10.1371/journal.pone.0117493] [PMID: 25658620]
[35]
Zhou L, Yuan D, Zhang ZG, et al. Expression of key mTOR pathway components in pancreatic ductal adenocarcinoma: A multicenter study for clinicopathologic and prognostic significance. Cancer Lett 2017; 395: 45-52.
[http://dx.doi.org/10.1016/j.canlet.2017.02.036] [PMID: 28279716]
[36]
Alabdullah ML, Ahmad DA, Moseley P, Madhusudan S, Chan S, Rakha E. The mTOR downstream regulator (p-4EBP1) is a novel independent prognostic marker in ovarian cancer. J Obstet Gynaecol 2019; 39(4): 522-8.
[http://dx.doi.org/10.1080/01443615.2018.1534091] [PMID: 30712414]
[37]
Rutkovsky AC, Yeh ES, Guest ST, et al., Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer, BMC Cancer 19(2019)491.
[38]
Alqurashi N, Hashimi SM, Alowaidi F, Ivanovski S, Wei MQ. Dual mTOR/PI3K inhibitor NVP-BEZ235 arrests colorectal cancer cell growth and displays differential inhibition of 4E-BP1. Oncol Rep 2018; 40(2): 1083-92.
[http://dx.doi.org/10.3892/or.2018.6457] [PMID: 29845289]
[39]
Li C, Guan XM, Wang RY, et al. Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci 2020; 243: 117277.
[http://dx.doi.org/10.1016/j.lfs.2020.117277] [PMID: 31926252]
[40]
Cao P, Liu B, Du F, et al. Scutellarin suppresses proliferation and promotes apoptosis in A549 lung adenocarcinoma cells via AKT/mTOR/4EBP1 and STAT3 pathways. Thorac Cancer 2019; 10(3): 492-500.
[http://dx.doi.org/10.1111/1759-7714.12962] [PMID: 30666790]
[41]
Yardley DA, Noguchi S, Pritchard KI, et al. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther 2013; 30(10): 870-84.
[http://dx.doi.org/10.1007/s12325-013-0060-1] [PMID: 24158787]
[42]
Bian X, Wang X, Zhang Q, et al. The MYC paralog-PARP1 axis as a potential therapeutic target in MYC paralog-activated small cell lung cancer. Front Oncol 2020; 10: 565820.
[http://dx.doi.org/10.3389/fonc.2020.565820] [PMID: 33134168]
[43]
Bertucci F, Finetti P, Monneur A, et al. PARP1 expression in soft tissue sarcomas is a poor-prognosis factor and a new potential therapeutic target. Mol Oncol 2019; 13(7): 1577-88.
[http://dx.doi.org/10.1002/1878-0261.12522] [PMID: 31131495]
[44]
Murnyák B, Kouhsari MC, Hershkovitch R, et al. PARP1 expression and its correlation with survival is tumour molecular subtype dependent in glioblastoma. Oncotarget 2017; 8(28): 46348-62.
[http://dx.doi.org/10.18632/oncotarget.18013] [PMID: 28654422]
[45]
Mazzotta A, Partipilo G, De Summa S, Giotta F, Simone G, Mangia A. Nuclear PARP1 expression and its prognostic significance in breast cancer patients. Tumour Biol 2016; 37(5): 6143-53.
[http://dx.doi.org/10.1007/s13277-015-4465-0] [PMID: 26614429]
[46]
Donizy P, Wu CL, Mull J, et al. Up-regulation of PARP1 expression significantly correlated with poor survival in mucosal melanomas. Cells 2020; 9(5): E1135.
[http://dx.doi.org/10.3390/cells9051135] [PMID: 32380691]
[47]
Friedlander M, Moore KN, Colombo N, et al. Patient-centred outcomes and effect of disease progression on health status in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation receiving maintenance olaparib or placebo (SOLO1): A randomised, phase 3 trial. Lancet Oncol 2021; 22(5): 632-42.
[http://dx.doi.org/10.1016/S1470-2045(21)00098-X] [PMID: 33862001]
[48]
Poveda A, Floquet A, Ledermann JA, et al. SOLO2/ENGOT-Ov21 investigators. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2021; 22(5): 620-31.
[http://dx.doi.org/10.1016/S1470-2045(21)00073-5] [PMID: 33743851]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy