Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomic Analysis of Early Phosphorylated Proteins in Acute Pancreatitis Model

Author(s): Pengcheng Zhang, Yuan Zhou, Qiangqiang Fang, Houmin Lin and Juan Xiao*

Volume 19, Issue 3, 2022

Published on: 04 February, 2022

Page: [198 - 217] Pages: 20

DOI: 10.2174/1570164618666211130144858

Price: $65

Abstract

Background: The exact mechanism of acute pancreatitis (AP), which is an inflammation of the pancreas, still remains unclear.

Objective: In this study, we examined the protein phosphorylation changes during the early stage of AP in mice using proteomic analysis.

Methods: AP model in mice was constructed using an intraperitoneal injection of cerulein. Blood samples and pancreas were collected at 1, 3, 6, 9h after the final injection (n=3 at each time point). Samples collected 3h after the final injection were separately mixed and named S (saline group) and C1 (cerulein group); samples collected 6h after the final injection from the cerulein group were mixed and named C2. Proteins from S, C1, and C2 were extracted, digested by trypsin, and subjected to LC-MS/MS analysis, bioinformatics analysis, and Western blotting.

Results: A total of 549 sites (426 proteins) were upregulated, and 501 sites (367 proteins) were downregulated in C1 compared to S; while 491 phosphorylation sites (377 proteins) were upregulated and 367 sites (274 proteins) were downregulated in C2 compared to S. Motif analysis showed that proline-directed kinase and basophilic kinase had a key role during early AP. During an early AP stage, the cellular distributions of proteins slightly changed. The types of domains changed with the development of AP. Phosphorylation proteins associated with calcium signaling, especially IP3R mediated calcium release, lysosome and autophagosome pathway, pancreatic digestive activation, and secretion, were found to be involved in the development of early AP independent of NF-kB activation. Moreover, the MAPK family was found to have a greater impact at the early stage of AP. We also found differentially expressed phosphorylations of amylase and trypsinogen and increased phosphorylation of MAPK6 S189 in early AP.

Conclusion: IP3R mediated calcium release and activation of MAPK family are key events promoting the development of early AP.

Keywords: Proteomic analysis, phosphorylation, acute pancreatitis, pancreas, digestive enzymes, TMT label.

Graphical Abstract

[1]
Garg, S.K.; Sarvepalli, S.; Campbell, J.P.; Obaitan, I.; Singh, D.; Bazerbachi, F.; Singh, R.; Sanaka, M.R. Incidence, admission rates, and predictors, and economic burden of adult emergency visits for acute pancreatitis: Data from the national emergency department sample, 2006 to 2012. J. Clin. Gastroenterol., 2019, 53(3), 220-225.
[http://dx.doi.org/10.1097/MCG.0000000000001030] [PMID: 29629907]
[2]
Jakkampudi, A.; Jangala, R.; Reddy, B.R.; Mitnala, S.; Nageshwar Reddy, D.; Talukdar, R. NF-kappaB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology, 2016, 16(4), 477-488.
[http://dx.doi.org/10.1016/j.pan.2016.05.001] [PMID: 27282980]
[3]
Hayden, M.S.; Ghosh, S. NF-κB, the first quarter-century: Remarkable progress and outstanding questions. Genes Dev., 2012, 26(3), 203-234.
[http://dx.doi.org/10.1101/gad.183434.111] [PMID: 22302935]
[4]
Marienfeld, R.; May, M.J.; Berberich, I.; Serfling, E.; Ghosh, S.; Neumann, M. RelB forms transcriptionally inactive complexes with RelA/p65. J. Biol. Chem., 2003, 278(22), 19852-19860.
[http://dx.doi.org/10.1074/jbc.M301945200] [PMID: 12657634]
[5]
Biczo, G.; Vegh, E.T.; Shalbueva, N.; Mareninova, O.A.; Elperin, J.; Lotshaw, E.; Gretler, S.; Lugea, A.; Malla, S.R.; Dawson, D.; Ruchala, P.; Whitelegge, J.; French, S.W.; Wen, L.; Husain, S.Z.; Gorelick, F.S.; Hegyi, P.; Rakonczay, Z., Jr.; Gukovsky, I.; Gukovskaya, A.S. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology, 2018, 154(3), 689-703.
[http://dx.doi.org/10.1053/j.gastro.2017.10.012] [PMID: 29074451]
[6]
Criddle, D.N. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step closer to therapy? Cell Calcium, 2016, 60(3), 180-189.
[http://dx.doi.org/10.1016/j.ceca.2016.04.007] [PMID: 27229361]
[7]
Yuan, J.; Lugea, A.; Zheng, L.; Gukovsky, I.; Edderkaoui, M.; Rozengurt, E.; Pandol, S.J. Protein kinase D1 mediates NF-kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(6), G1190-G1201.
[http://dx.doi.org/10.1152/ajpgi.90452.2008] [PMID: 18845574]
[8]
Sendler, M.; Weiss, F.U.; Golchert, J.; Homuth, G.; van den Brandt, C.; Mahajan, U.M.; Partecke, L.I.; Döring, P.; Gukovsky, I.; Gukovskaya, A.S.; Wagh, P.R.; Lerch, M.M.; Mayerle, J. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology, 2018, 154(3), 704-718.e10.
[http://dx.doi.org/10.1053/j.gastro.2017.10.018] [PMID: 29079517]
[9]
Singh, P.; Garg, P.K. Pathophysiological mechanisms in acute pancreatitis: Current understanding. Indian J. Gastroenterol., 2016, 35(3), 153-166.
[http://dx.doi.org/10.1007/s12664-016-0647-y] [PMID: 27206712]
[10]
Han, B.; Zhou, H.; Jia, G.; Wang, Y.; Song, Z.; Wang, G.; Pan, S.; Bai, X.; Lv, J.; Sun, B. MAPKs and Hsc70 are critical to the protective effect of molecular hydrogen during the early phase of acute pancreatitis. FEBS J., 2016, 283(4), 738-756.
[http://dx.doi.org/10.1111/febs.13629] [PMID: 26683671]
[11]
Gukovsky, I.; Cheng, J.H.; Nam, K.J.; Lee, O.T.; Lugea, A.; Fischer, L.; Penninger, J.M.; Pandol, S.J.; Gukovskaya, A.S. Phosphatidylinositide 3-kinase gamma regulates key pathologic responses to cholecystokinin in pancreatic acinar cells. Gastroenterology, 2004, 126(2), 554-566.
[http://dx.doi.org/10.1053/j.gastro.2003.11.017] [PMID: 14762792]
[12]
Wang, Q.; Zhang, X.; Lei, S.; Wang, Y.; Zhuang, Y.; Chen, Y.; Zeng, C.; Zhang, H.; Liu, C.; Wang, G. RNA sequence analysis reveals pathways and candidate genes associated with liver injury in a rat pancreatitis model. Pancreatology, 2018, 18(7), 753-763.
[http://dx.doi.org/10.1016/j.pan.2018.08.006] [PMID: 30150111]
[13]
Wang, J.; Zhang, C.; Xu, P.; Yang, Z.W.; Weng, C.Z.; Lai, Y.X. Phosphoinositide 3-kinase/protein kinase B regulates inflammation severity via signaling of toll‑like receptor 4 in severe acute pancreatitis. Mol. Med. Rep., 2018, 17(6), 7835-7844.
[http://dx.doi.org/10.3892/mmr.2018.8819] [PMID: 29620213]
[14]
Sah, R.P.; Garg, P.; Saluja, A.K. Pathogenic mechanisms of acute pancreatitis. Curr. Opin. Gastroenterol., 2012, 28(5), 507-515.
[http://dx.doi.org/10.1097/MOG.0b013e3283567f52] [PMID: 22885948]
[15]
Gaiser, S.; Daniluk, J.; Liu, Y.; Tsou, L.; Chu, J.; Lee, W.; Longnecker, D.S.; Logsdon, C.D.; Ji, B. Intracellular activation of trypsinogen in transgenic mice induces acute but not chronic pancreatitis. Gut, 2011, 60(10), 1379-1388.
[http://dx.doi.org/10.1136/gut.2010.226175] [PMID: 21471572]
[16]
Teich, N.; Bödeker, H.; Keim, V. Cathepsin B cleavage of the trypsinogen activation peptide. BMC Gastroenterol., 2002, 2, 16.
[http://dx.doi.org/10.1186/1471-230X-2-16] [PMID: 12102727]
[17]
Németh, B.C.; Wartmann, T.; Halangk, W.; Sahin-Tóth, M. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop. J. Biol. Chem., 2013, 288(33), 24049-24062.
[http://dx.doi.org/10.1074/jbc.M113.478800] [PMID: 23814066]
[18]
Singh, V.P.; Saluja, A.K.; Bhagat, L.; van Acker, G.J.; Song, A.M.; Soltoff, S.P.; Cantley, L.C.; Steer, M.L. Phosphatidylinositol 3-kinase-dependent activation of trypsinogen modulates the severity of acute pancreatitis. J. Clin. Invest., 2001, 108(9), 1387-1395.
[http://dx.doi.org/10.1172/JCI12874] [PMID: 11696584]
[19]
Han, D.; Moon, S.; Kim, Y.; Ho, W.K.; Kim, K.; Kang, Y.; Jun, H.; Kim, Y. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. J. Proteome Res., 2012, 11(4), 2206-2223.
[http://dx.doi.org/10.1021/pr200990b] [PMID: 22276854]
[20]
Paulo, J.A.; Gaun, A.; Gygi, S.P. Global analysis of protein expression and phosphorylation levels in nicotine-treated pancreatic stellate cells. J. Proteome Res., 2015, 14(10), 4246-4256.
[http://dx.doi.org/10.1021/acs.jproteome.5b00398] [PMID: 26265067]
[21]
Pinna, L.A.; Ruzzene, M. How do protein kinases recognize their substrates? Biochim. Biophys. Acta, 1996, 1314(3), 191-225.
[http://dx.doi.org/10.1016/S0167-4889(96)00083-3] [PMID: 8982275]
[22]
Logsdon, C.D.; Ji, B. The role of protein synthesis and digestive enzymes in acinar cell injury. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(6), 362-370.
[http://dx.doi.org/10.1038/nrgastro.2013.36] [PMID: 23507798]
[23]
Antonucci, L.; Fagman, J.B.; Kim, J.Y.; Todoric, J.; Gukovsky, I.; Mackey, M.; Ellisman, M.H.; Karin, M. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc. Natl. Acad. Sci. USA, 2015, 112(45), E6166-E6174.
[http://dx.doi.org/10.1073/pnas.1519384112] [PMID: 26512112]
[24]
Pérez, S.; Pereda, J.; Sabater, L.; Sastre, J. Redox signaling in acute pancreatitis. Redox Biol., 2015, 5, 1-14.
[http://dx.doi.org/10.1016/j.redox.2015.01.014] [PMID: 25778551]
[25]
Fortunato, F.; Kroemer, G. Impaired autophagosome-lysosome fusion in the pathogenesis of pancreatitis. Autophagy, 2009, 5(6), 850-853.
[http://dx.doi.org/10.4161/auto.8839] [PMID: 19458481]
[26]
Mareninova, O.A.; Hermann, K.; French, S.W.; O’Konski, M.S.; Pandol, S.J.; Webster, P.; Erickson, A.H.; Katunuma, N.; Gorelick, F.S.; Gukovsky, I.; Gukovskaya, A.S. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J. Clin. Invest., 2009, 119(11), 3340-3355.
[http://dx.doi.org/10.1172/JCI38674] [PMID: 19805911]
[27]
Halangk, W.; Lerch, M.M.; Brandt-Nedelev, B.; Roth, W.; Ruthenbuerger, M.; Reinheckel, T.; Domschke, W.; Lippert, H.; Peters, C.; Deussing, J. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest., 2000, 106(6), 773-781.
[http://dx.doi.org/10.1172/JCI9411] [PMID: 10995788]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy