Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Therapeutic Potential of Naturally Occurring Benzofuran Derivatives and Hybrids of Benzofurans with other Pharmacophores as Antibacterial Agents

Author(s): Zhi Xu, Dan Xu, Wei Zhou* and Xiaoyan Zhang*

Volume 22, Issue 1, 2022

Published on: 14 December, 2021

Page: [64 - 82] Pages: 19

DOI: 10.2174/1568026621666211122162439

Price: $65

Abstract

Abstract: Gram-positive and Gram-negative pathogens are able to evade the host immune system, persist within the human host, and lead to severe disease and even death. At present, bacterial infections are one of the leading causes of morbidity and mortality across the world. The development of novel antibacterial agents still represents a challenging endeavor, which is mainly attributed to the continuous emergence of more virulent and drug-resistant pathogens. Benzofuran constitutes the core of diverse pharmacologically active compounds, and there are a variety of approved benzofuranbased drugs in the market or currently going through different clinical phases or registration statuses. Benzofurans could exert antibacterial activity through various mechanisms and possess pronounced activity; therefore, benzofuran is a useful skeleton for the discovery of novel antibacterial agents. This review focuses on the recent advancement of naturally occurring benzofuran derivatives and hybrids of benzofurans with other pharmacophores as antibacterial agents, covering articles published between January 2015 and July 2021. The chemical structures and structure-activity relationships are also discussed.

Keywords: Benzofuran, Naturally occurring derivatives, Hybrid compounds, Antibacterial, Drug resistance, Structure-activity relationship.

« Previous
Graphical Abstract

[1]
McCulloch, T.R.; Wells, T.J.; Souza-Fonseca-Guimaraes, F. Towards efficient immunotherapy for bacterial infection., 2021.
[2]
Hu, Y.Q.; Zhang, S.; Xu, Z.; Lv, Z.S.; Liu, M.L.; Feng, L.S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 2017, 141, 335-345.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.050] [PMID: 29031077]
[3]
Arukovic, E.; Fetahovic, D.; Pehlivanovic, B. Impact of antibiotic misuse on genetics alterations of bacteria. IFMBE Proc., 2020, 73, 617-621.
[http://dx.doi.org/10.1007/978-3-030-17971-7_93]
[4]
Taati Moghadam, M.; Amirmozafari, N.; Shariati, A.; Hallajzadeh, M.; Mirkalantari, S.; Khoshbayan, A.; Masjedian Jazi, F. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect. Drug Resist., 2020, 13, 45-61.
[http://dx.doi.org/10.2147/IDR.S234353] [PMID: 32021319]
[5]
Bennani, H.; Mateus, A.; Mays, N.; Eastmure, E.; Stärk, K.D.C.; Häsler, B. Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics (Basel), 2020, 9(2)e49
[http://dx.doi.org/10.3390/antibiotics9020049] [PMID: 32013023]
[6]
Wang, C.H.; Hsieh, Y.H.; Powers, Z.M.; Kao, C.Y. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci., 2020, 21(3)e1061
[http://dx.doi.org/10.3390/ijms21031061] [PMID: 32033477]
[7]
Pacios, O.; Blasco, L.; Bleriot, I.; Fernandez-Garcia, L.; González Bardanca, M.; Ambroa, A.; López, M.; Bou, G.; Tomás, M. Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics (Basel), 2020, 9(2)e65
[http://dx.doi.org/10.3390/antibiotics9020065] [PMID: 32041137]
[8]
Charon, J.; Manteca, A.; Innis, C.A. Using the bacterial ribosome as a discovery platform for peptide-based antibiotics. Biochemistry, 2019, 58(2), 75-84.
[http://dx.doi.org/10.1021/acs.biochem.8b00927] [PMID: 30372045]
[9]
Chand, K.; Rajeshwari, C.; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep., 2017, 69(2), 281-295.
[http://dx.doi.org/10.1016/j.pharep.2016.11.007] [PMID: 28171830]
[10]
Dawood, K.M. An update on benzofuran inhibitors: A patent review. Expert Opin. Ther. Pat., 2019, 29(11), 841-870.
[http://dx.doi.org/10.1080/13543776.2019.1673727] [PMID: 31560232]
[11]
Bhargava, S.; Rathore, D. Synthetic routes and biological activities of benzofuran and its derivatives: A review. Lett. Org. Chem., 2017, 14(6), 381-402.
[http://dx.doi.org/10.2174/1570178614666170321125853]
[12]
Lavanya, A.; Narasimhan, K.; Padmini, V. Benzofuran: A key heterocycle - Ring closure and beyond. Mini Rev. Org. Chem., 2020, 17(3), 224-276.
[http://dx.doi.org/10.2174/1570193X16666190710122912]
[13]
Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur. J. Med. Chem., 2019, 162, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.025] [PMID: 30448416]
[14]
Alizadeh, M.; Jalal, M.; Hamed, K.; Saber, A.; Kheirouri, S.; Pourteymour Fard Tabrizi, F.; Kamari, N. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. J. Inflamm. Res., 2020, 13, 451-463.
[http://dx.doi.org/10.2147/JIR.S262132] [PMID: 32884326]
[15]
Vila, J.; Moreno-Morales, J.; Ballesté-Delpierre, C. Current landscape in the discovery of novel antibacterial agents. Clin. Microbiol. Infect., 2020, 26(5), 596-603.
[http://dx.doi.org/10.1016/j.cmi.2019.09.015] [PMID: 31574341]
[16]
Vila, J.; Sanchez-Cespedes, J.; Giralt, E. Old and new strategies for the discovery of antibacterial agents. Antiinfect. Agents Med. Chem., 2005, 4(4), 337-353.
[http://dx.doi.org/10.2174/156801205774322269]
[17]
Bate, P.N.N.; Orock, A.E.; Nyongbela, K.D.; Babiaka, S.B.; Kukwah, A.; Ngemenya, M.N. In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. J. King Saud Univ. Sci., 2020, 32(1), 614-619.
[http://dx.doi.org/10.1016/j.jksus.2018.09.001]
[18]
Moloney, M.G. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci., 2016, 37(8), 689-701.
[http://dx.doi.org/10.1016/j.tips.2016.05.001] [PMID: 27267698]
[19]
Nocedo-Mena, D.; Garza-González, E.; González-Ferrara, M.; Del Rayo Camacho-Corona, M. Antibacterial activity of cissus incisa extracts against multidrug-resistant bacteria. Curr. Top. Med. Chem., 2020, 20(4), 318-323.
[http://dx.doi.org/10.2174/1568026619666191121123926] [PMID: 31755390]
[20]
Wang, S.X.; Zhao, R.L.; Guo, C.; Chen, B.S.; Dai, H.Q.; Liu, G.Q.; Liu, H.W. New meroterpenoid compounds from the culture of mushroom Panus lecomtei. Chin. J. Nat. Med., 2020, 18(4), 268-272.
[http://dx.doi.org/10.1016/S1875-5364(20)30033-9] [PMID: 32402403]
[21]
Li, F.; Yan, T.T.; Fu, Y.Y.; Zhang, N.L.; Wang, L.; Zhang, Y.B.; Du, J.; Liu, J.F. New phenylpropanoid glycosides from Illicium majus and their radical scavenging activities. Chem. Biodivers., 2021, 18(4)e2001012
[http://dx.doi.org/10.1002/cbdv.202001012] [PMID: 33644937]
[22]
Ortiz, S.; Lecsö-Bornet, M.; Bonnal, C.; Houze, S.; Michel, S.; Grougnet, R.; Boutefnouchet, S. Bioguided identification of triterpenoids and neolignans as bioactive compounds from anti-infectious medicinal plants of the Taira Atacama’s community (Calama, Chile). J. Ethnopharmacol., 2019, 231, 217-229.
[http://dx.doi.org/10.1016/j.jep.2018.10.029] [PMID: 30412750]
[23]
Fouseki, M.M.; Damianakos, H.; Karikas, G.A.; Roussakis, C.; Gupta, P. M.; Chinou, I. Chemical constituents from Cordia alliodora and C. colloccoca (Boraginaceae) and their biological activities. Fitoterapia, 2016, 115, 9-14.
[http://dx.doi.org/10.1016/j.fitote.2016.09.004] [PMID: 27659390]
[24]
Cheng, M.J.; Yang, X.Y.; Cao, J.Q.; Liu, C.; Zhong, L.P.; Wang, Y.; You, X.F.; Li, C.C.; Wang, L.; Ye, W.C. Isolation, structure elucidation, and total synthesis of myrtuspirone A from Myrtus communis. Org. Lett., 2019, 21(6), 1583-1587.
[http://dx.doi.org/10.1021/acs.orglett.9b00108] [PMID: 30799624]
[25]
Prompanya, C.; Dethoup, T.; Gales, L.; Lee, M.; Pereira, J.A.C.; Silva, A.M.S.; Pinto, M.M.M.; Kijjoa, A. New polyketides and new benzoic acid derivatives from the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. Mar. Drugs, 2016, 14(7)e134
[http://dx.doi.org/10.3390/md14070134] [PMID: 27438842]
[26]
Lin, S.; Liu, R.H.; Ma, G.Q.; Mei, D.Y.; Shao, F.; Chen, L.Y. Two new compounds from the heartwood of Dalbergia melanoxylon. Nat. Prod. Res., 2020, 34(19), 2794-2801.
[http://dx.doi.org/10.1080/14786419.2019.1591397] [PMID: 30990102]
[27]
Fang, Z.; Jiang, X.; Zhang, Q.; Zhang, L.; Zhang, W.; Yang, C.; Zhang, H.; Zhu, Y.; Zhang, C. S-Bridged thioether and structure-diversified angucyclinone derivatives from the South China sea-derived Micromonospora echinospora SCSIO 04089. J. Nat. Prod., 2020, 83(10), 3122-3130.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00719] [PMID: 32970433]
[28]
Noviany, N.; Samadi, A.; Yuliyan, N.; Hadi, S.; Aziz, M.; Purwitasari, N.; Mohamad, S.; Ismail, N.N.; Gable, K.P.; Mahmud, T. Structure characterization and biological activity of 2-arylbenzofurans from an Indonesian plant, Sesbania grandiflora (L.). Pers. Phytochem. Lett., 2020, 35, 211-215.
[http://dx.doi.org/10.1016/j.phytol.2019.12.008] [PMID: 32863985]
[29]
Mouafon, I.L.; Tiani, G.L.M.; Mountessou, B.Y.G.; Lateef, M.; Ali, M.S.; Green, I.R.; Ngadjui, B.T.; Kouam, S.F. Chemical constituents of the medicinal plant Indigofera spicata Forsk (Fabaceae) and their chemophenetic significance. Biochem. Syst. Ecol., 2021, 95e104230
[http://dx.doi.org/10.1016/j.bse.2021.104230]
[30]
Borah, P.; Shivling, V.D.; Banik, B.K.; Sahoo, B.M. An overview on steroids and microwave energy in multi-component reactions towards the synthesis of novel hybrid molecules. Curr. Org. Synth., 2020, 17(8), 594-609.
[http://dx.doi.org/10.2174/1570179417666200503050106] [PMID: 32359339]
[31]
Abdolmaleki, A.; Ghasemi, J.B. Dual-acting of hybrid compounds - a new dawn in the discovery of multi-target drugs: Lead generation approaches. Curr. Top. Med. Chem., 2017, 17(9), 1096-1114.
[http://dx.doi.org/10.2174/1568026616666160927151144] [PMID: 27697056]
[32]
Parkes, A.L.; Yule, I.A. Hybrid antibiotics - clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680.
[http://dx.doi.org/10.1080/17460441.2016.1187597] [PMID: 27169483]
[33]
Malki, Y.; Martinez, J.; Masurier, N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med. Res. Rev., 2021, 41(4), 2247-2315.
[http://dx.doi.org/10.1002/med.21795] [PMID: 33645848]
[34]
Rashid, M.A.; Ashraf, A.; Rehman, S.S.; Shahid, S.A.; Mahmood, A.; Faruq, M. 1,4-Diazepines: A review on synthesis, reactions and biological significance. Curr. Org. Synth., 2019, 16(5), 709-729.
[http://dx.doi.org/10.2174/1570179416666190703113807] [PMID: 31984889]
[35]
Picconi, P.; Hind, C.K.; Nahar, K.S.; Jamshidi, S.; Di Maggio, L.; Saeed, N.; Evans, B.; Solomons, J.; Wand, M.E.; Sutton, J.M.; Rahman, K.M. New broad-spectrum antibiotics containing a pyrrolobenzodiazepine ring with activity against multidrug-resistant Gram-negative bacteria. J. Med. Chem., 2020, 63(13), 6941-6958.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00328] [PMID: 32515951]
[36]
Andriollo, P.; Hind, C.K.; Picconi, P.; Nahar, K.S.; Jamshidi, S.; Varsha, A.; Clifford, M.; Sutton, J.M.; Rahman, K.M. C8-Linked pyrrolobenzodiazepine monomers with inverted building blocks show selective activity against multidrug resistant Gram-positive bacteria. ACS Infect. Dis., 2018, 4(2), 158-174.
[http://dx.doi.org/10.1021/acsinfecdis.7b00130] [PMID: 29260545]
[37]
Shankar, B.; Jalapathi, P.; Ramesh, M.; Kumar, A.K.; Ragavender, M.; Bharath, G. Synthesis, antimicrobial evaluation, and docking studies of some novel benzofuran based analogues of chalcone and 1,4-benzodiazepine. Russ. J. Gen. Chem., 2016, 86(7), 1711-1721.
[http://dx.doi.org/10.1134/S107036321607029X]
[38]
Mostofi, M.; Mohammadi Ziarani, G.; Lashgari, N. Design, synthesis and biological evaluation of benzofuran appended benzothiazepine derivatives as inhibitors of butyrylcholinesterase and antimicrobial agents. Bioorg. Med. Chem., 2018, 26(12), 3076-3095.
[http://dx.doi.org/10.1016/j.bmc.2018.02.049] [PMID: 29866481]
[39]
Li, H.T.; Zhu, X. Quinoline-based compounds with potential activity against drug-resistant cancers. Curr. Top. Med. Chem., 2021, 21(5), 426-437.
[http://dx.doi.org/10.2174/1568026620666200618113957] [PMID: 32552650]
[40]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109104639
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[41]
Kumar, P. A review on quinoline derivatives as anti-methicillin resistant Staphylococcus aureus (MRSA) agents. BMC Chem., 2020, 14(1), 17.
[http://dx.doi.org/10.1186/s13065-020-00669-3] [PMID: 32190843]
[42]
Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm. (Weinheim), 2021, 354(3)e2000232
[http://dx.doi.org/10.1002/ardp.202000232] [PMID: 33210348]
[43]
Rajpurohit, A.; Satyanarayan, N.D.; Patil, S.; Mahadevan, K.M.; Adarsha, H.J. In vitro antioxidant, antimicrobial and admet study of novel furan/benzofuran C-2 coupled quinoline hybrids. Int. J. Pharm. Pharm. Sci., 2017, 9(11), 144-153.
[http://dx.doi.org/10.22159/ijpps.2017v9i11.21413]
[44]
Bodke, Y.D.; Shankerrao, S.; Kenchappa, R.; Telkar, S. Synthesis, antibacterial and antitubercular activity of novel Schiff bases of 2-(1-benzofuran-2-yl)quinoline-4-carboxylic acid derivatives. Russ. J. Gen. Chem., 2017, 87(8), 1843-1849.
[http://dx.doi.org/10.1134/S1070363217080321]
[45]
Li, Y.; Xu, Q.; Li, Z.; Gao, W.; Chen, Y. Application of 2,4-bis(halomethyl)quinoline: synthesis and biological activities of 2,4-bis(benzofuran-2-yl)- and 2,4-bis(aroxymethyl)quinolines. Mol. Divers., 2020, 24(1), 167-178.
[http://dx.doi.org/10.1007/s11030-019-09938-3] [PMID: 30895448]
[46]
Bodkhe, Y.G.; Idrees, M.; Kola, S.S.; Siddiqui, N.J. Synthesis, characterization and in vitro antimicrobial screening of some novel series of 2-azetidinone derivatives integrated with quinoline, pyrazole and benzofuran moieties. Asian J. Chem., 2020, 32(4), 896-900.
[http://dx.doi.org/10.14233/ajchem.2020.22490]
[47]
Idrees, M.; Bodkhe, Y.G.; Siddiqui, N.J. Synthesis and antimicrobial assay of some novel 4-thiazolidinone derivatives possessing benzofuran, quinoline and pyrazole moieties. Asian J. Chem., 2018, 30(10), 2361-2364.
[http://dx.doi.org/10.14233/ajchem.2018.21522]
[48]
Idrees, M.; Bodkhe, Y.G.; Siddiqui, N.J.; Kola, S.S. Synthesis of few 1,3,4-oxadiazole derivatives blended with different heterocycles and their in-vitro antibacterial activities. Rasayan J. Chem., 2020, 13(1), 291-297.
[http://dx.doi.org/10.31788/RJC.2020.1315593]
[49]
Takahashi, E.; Fujinami, C.; Kuroda, T.; Takeuchi, Y.; Miyoshi, S.; Arimoto, S.; Negishi, T.; Okamoto, K. Indolo[3,2-b]quinoline derivatives suppressed the hemolytic activity of beta-pore forming toxins, aerolysin-like hemolysin produced by aeromonas sobria and alpha-hemolysin produced by Staphylococcus aureus. Biol. Pharm. Bull., 2016, 39(1), 114-120.
[http://dx.doi.org/10.1248/bpb.b15-00708] [PMID: 26725434]
[50]
Varpe, B.D.; Kulkarni, A.A.; Jadhav, S.B.; Mali, A.S.; Jadhav, S.Y. Isatin hybrids and their pharmacological investigations. Mini Rev. Med. Chem., 2021, 21(10), 1182-1225.
[http://dx.doi.org/10.2174/1389557520999201209213029] [PMID: 33302835]
[51]
Nath, P.; Mukherjee, A.; Mukherjee, S.; Banerjee, S.; Das, S.; Banerjee, S. Isatin: A scaffold with immense biodiversity. Mini Rev. Med. Chem., 2021, 21(9), 1096-1112.
[http://dx.doi.org/10.2174/2211536609666201125115559] [PMID: 33238872]
[52]
Kumar, G.; Singh, N.P.; Kumar, K. Recent advancement of synthesis of isatins as a versatile pharmacophore: A review. Drug Res. (Stuttg.), 2021, 71(3), 115-121.
[http://dx.doi.org/10.1055/a-1238-2639] [PMID: 33296925]
[53]
Kenchappa, R.; Bodke, Y.D.; Telkar, S.; Nagaraja, O. Synthesis and antimicrobial activity of fused isatin and diazepine derivatives derived from 2-acetyl benzofuran. Russ. J. Gen. Chem., 2017, 87(9), 2027-2038.
[http://dx.doi.org/10.1134/S1070363217090195]
[54]
Ugale, V.; Patel, H.; Patel, B.; Bari, S. Benzofurano-isatins: Search for antimicrobial agents. Arab. J. Chem., 2017, 10, S389-S396.
[http://dx.doi.org/10.1016/j.arabjc.2012.09.011]
[55]
Santoshkumar, S.; Satyanarayan, N.D.; Anantacharya, R.; Sameer, P. Synthesis, antimicrobial, antitubercular and cheminformatic studies of 2-(1-benzofuran-2-YL)-N′-[(3Z)-2-oxo-1, 2-dihydro-3H-indol-3-ylidene] quinoline-4-carbohydrazide and its derivatives. Int. J. Pharm. Pharm. Sci., 2017, 9(5), 260-267.
[http://dx.doi.org/10.22159/ijpps.2017v9i5.17564]
[56]
Gao, F.; Wang, T.; Gao, M.; Zhang, X.; Liu, Z.; Zhao, S.; Lv, Z.; Xiao, J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur. J. Med. Chem., 2019, 165, 323-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.042] [PMID: 30690301]
[57]
Wang, Y.L.; Zhao, S.J.; Liu, Y.; Xu, Z. Design, synthesis and in vitro anti-bacterial activities of benzofuran-isatin hybrids. Rev. Roum. Chim., 2019, 64(8), 687-710.
[http://dx.doi.org/10.33224/rrch/2019.64.8.6]
[58]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 206112686
[http://dx.doi.org/10.1016/j.ejmech.2020.112686] [PMID: 32795773]
[59]
Tabassum, K.; Ekta, P.; Kavitkumar, P. Imidazole and pyrazole: Privileged scaffolds for anti-infective activity. Mini Rev. Org. Chem., 2018, 15(6), 459-475.
[http://dx.doi.org/10.2174/1570193X15666171211170100]
[60]
Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole ring-A biologically active scaffold. Molecules, 2021, 26(11)e3166
[http://dx.doi.org/10.3390/molecules26113166] [PMID: 34070661]
[61]
Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2017, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[62]
Othman, A.A.; Kihel, M.; Amara, S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arab. J. Chem., 2019, 12(7), 1660-1675.
[http://dx.doi.org/10.1016/j.arabjc.2014.09.003]
[63]
Kumar, A.K.; Sunitha, V.; Shankaraiah, P.; Siddhartha, M.; Jalapathi, P. Synthesis and antibacterial activity of some {6-[(1H-1,2,3-triazol-4-yl)methoxy]-3-methylbenzofuran-2-yl}(4-bromophenyl)methanone derivatives. Russ. J. Gen. Chem., 2018, 88(4), 789-796.
[http://dx.doi.org/10.1134/S1070363218040254]
[64]
Sanjeeva, P.; Rao, B.S.; Prasad, V.K.; Ramana, P.V. Synthesis, characterization and antimicrobial activities of 1-((5-bromobenzofuran-2yl)methyl)-4-substituted phenyl-1H-1,2,3-triazoles. Asian J. Chem., 2021, 33(3), 565-569.
[http://dx.doi.org/10.14233/ajchem.2021.23040]
[65]
Sunitha, V.; Kumar, A.K.; Shankaraiah, P.; Jalapathi, P.; Lincoln, C.A. Synthesis and antibacterial evaluation of benzofuran based di-1,2,3-triazoles. Russ. J. Gen. Chem., 2018, 88(7), 1515-1524.
[http://dx.doi.org/10.1134/S1070363218070265]
[66]
Abdel-Wahab, C.F.; Khidre, R.E.; Awad, G.E.A. Design and synthesis of novel 6-(5-methyl-1H-1,2,3-triazol-4-yl)-5-[(2-(thiazol-2-yl)hydrazono)methyl]imidazo[2,1-b]thiazoles as antimicrobial agents. J. Heterocycl. Chem., 2017, 54(1), 489-494.
[http://dx.doi.org/10.1002/jhet.2610]
[67]
Vani, I.; Sireesha, R.; Mak, K.K.; Rao, P.M.; Prasad, K.R.S.; Rao, M.V.B. Microwave assisted synthesis and antimicrobial and antioxidant activities of dimers of 1,2,3-triazole-benzofuran bearing alkyl spacer derivatives. Chem. Data Collect., 2021, 31e100605
[http://dx.doi.org/10.1016/j.cdc.2020.100605]
[68]
Faiz, S.; Zahoor, A.F.; Ajmal, M.; Kamal, S.; Ahmad, S.; Abdelgawad, A.M.; Elnaggar, M.E. Design, synthesis, antimicrobial evaluation, and laccase catalysis effect of novel benzofuran-oxadiazole and benzofuran-triazole hybrids. J. Heterocycl. Chem., 2019, 56(10), 2839-2852.
[http://dx.doi.org/10.1002/jhet.3674]
[69]
Tafelska-Kaczmarek, A.; Kołodziejska, R.; Kwit, M.; Stasiak, B.; Wypij, M.; Golińska, P. Synthesis, absolute configuration, antibacterial, and antifungal activities of novel benzofuryl β-amino alcohols. Materials (Basel), 2020, 13(18)e4080
[http://dx.doi.org/10.3390/ma13184080] [PMID: 32937873]
[70]
Shankar, B.; Jalapathi, P.; Saikrishna, B.; Perugu, S.; Manga, V. Synthesis, anti-microbial activity, cytotoxicity of some novel substituted (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs. Chem. Cent. J., 2018, 12(1), 1.
[http://dx.doi.org/10.1186/s13065-017-0364-3] [PMID: 29318401]
[71]
Erol, M.; Celik, I.; Temiz-Arpaci, O.; Goker, H.; Kaynak-Onurdag, F.; Okten, S. Synthesis, molecular docking and ADME prediction of some new benzimidazole carboxamidines derivatives as antimicrobial agents. Med. Chem. Res., 2020, 29(11), 2028-2038.
[http://dx.doi.org/10.1007/s00044-020-02621-5]
[72]
Sanad, S.M.H.; Hanna, D.H.; Mekky, A.E.M. Regioselective synthesis of novel antibacterial pyrazole-benzofuran hybrids: 2D NMR spectroscopy studies and molecular docking. J. Mol. Struct., 2019, 1188, 214-226.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.088]
[73]
Lingaraju, G.S.; Rakesh, S.; Kumar, K.S.V.; Rao, K.P.; Sreenivasa, M.Y.; Sadashiva, M.P. Synthesis of new benzofuran-pyrazole hybrids as potential antibiofilm agents. Lett. Drug Des. Discov., 2017, 14(2), 186-194.
[http://dx.doi.org/10.2174/1570180813666160923170414]
[74]
Mekky, A.E.M.; Sanad, S.M.H. Novel bis(pyrazole-benzofuran) hybrids possessing piperazine linker: Synthesis of potent bacterial biofilm and MurB inhibitors. Bioorg. Chem., 2020, 102104094
[http://dx.doi.org/10.1016/j.bioorg.2020.104094] [PMID: 32711085]
[75]
Sangshetti, J.N.; Joshi, S.S.; Patil, R.H.; Moloney, M.G.; Shinde, D.B. Mur ligase inhibitors as anti-bacterials: A comprehensive review. Curr. Pharm. Des., 2017, 23(21), 3164-3196.
[http://dx.doi.org/10.2174/1381612823666170214115048] [PMID: 28201974]
[76]
Kaczor, A.A.; Polski, A.; Sobótka-Polska, K.; Pachuta-Stec, A.; Makarska-Bialokoz, M.; Pitucha, M. Novel antibacterial compounds and their drug targets - successes and challenges. Curr. Med. Chem., 2017, 24(18), 1948-1982.
[http://dx.doi.org/10.2174/0929867323666161213102127] [PMID: 27978802]
[77]
Andres, C.J.; Bronson, J.J.; D’Andrea, S.V.; Deshpande, M.S.; Falk, P.J.; Grant-Young, K.A.; Harte, W.E.; Ho, H.T.; Misco, P.F.; Robertson, J.G.; Stock, D.; Sun, Y.; Walsh, A.W. 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme MurB. Bioorg. Med. Chem. Lett., 2000, 10(8), 715-717.
[http://dx.doi.org/10.1016/S0960-894X(00)00073-1] [PMID: 10782671]
[78]
Zhang, W.; Liu, J.; Macho, J.M.; Jiang, X.; Xie, D.; Jiang, F.; Liu, W.; Fu, L. Design, synthesis and antimicrobial evaluation of novel benzoxazole derivatives. Eur. J. Med. Chem., 2017, 126, 7-14.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.010] [PMID: 27744188]
[79]
Baba, H.H.K.; Ashok, D.; Rao, B.A.; Madderla, S.; Murthy, N.Y.S. Microwave-assisted synthesis and biological evaluation of thiazole-substituted dibenzofurans. Heterocycl. Commun., 2018, 24(3), 171-176.
[http://dx.doi.org/10.1515/hc-2017-0247]
[80]
Idrees, M.; Nasare, R.D.; Siddiqui, N.J. Synthesis of some novel 1,3,4-thiadiazoles: Acid catalyzed cyclodehydration of thiosemicabazides bearing benzofuran and pyrazole moiety and their antibacterial screening. Pharma Chem., 2016, 8(14), 209-215.
[81]
Idrees, M.; Kola, S.; Siddiqui, N.J. Synthesis, characterization and antimicrobial screening of some novel 5-(benzofuran-2-yl)-N′-(2-substituted-4-oxothiazolidin-3-YL)-1-phenyl-1hpyrazole- 3-carboxamide derivatives. Rasayan J. Chem., 2019, 12(4), 1725-1733.
[http://dx.doi.org/10.31788/RJC.2019.1245467]
[82]
Shankerrao, S.; Bodke, Y.D.; Santoshkumar, S. Synthesis and antimicrobial activity of some imidazothiazole derivatives of benzofuran. Arab. J. Chem., 2017, 10, S554-S558.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.018]
[83]
Kawai, T.; Kazuhiko, I.; Takaya, N.; Yamaguchi, Y.; Kishii, R.; Kohno, Y.; Kurasaki, H. Sulfonamide-based non-alkyne LpxC inhibitors as Gram-negative antibacterial agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1045-1049.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.059] [PMID: 28082037]
[84]
Hessein, S.A.; El-Sharief, M.A.M.S.; Abbas, S.Y.; Thabet, H.K.; Ammar, Y.A. Synthesis and antimicrobial activity of furochromone, benzofuran and furocoumarin derivatives bearing sulfonyl moiety. Croat. Chem. Acta, 2016, 89(1), 91-100.
[http://dx.doi.org/10.5562/cca2811]
[85]
Venkatesh, T.; Bodke, Y.D.; Joy, M.N.; Dhananjaya, B.L.; Venkataraman, S.D.; Joy, M.N.; Dhananjaya, B.L.; Venkataraman, S. Synthesis of some benzofuran derivatives containing pyrimidine moiety as potent antimicrobial agents. Iran. J. Pharm. Res., 2018, 17(1), 75-86.
[86]
Ashok, D.; Ziauddin, M.; Lakshmi, B.V.; Sarasija, M. Solvent-free microwave assisted synthesis of substituted (E)-phenyl{3-(2-[1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl]vinyl)benzofuran-2-yl}methanones and their antimicrobial activity. Russ. J. Gen. Chem., 2017, 87(4), 857-862.
[http://dx.doi.org/10.1134/S1070363217040314]
[87]
Budhwani, S.N.; Sharma, S.; Kalyane, N.V. Synthesis of 1-(5-substituted benzofuran-2-yl)-3-arylurea derivatives as antimicrobial agents. J. Pharm. Res., 2016, 10(11), 703-708.
[88]
Torres, M.D.T.; Cao, J.; Franco, O.L.; Lu, T.K.; de la Fuente-Nunez, C. Synthetic biology and computer-based frameworks for antimicrobial peptide discovery. ACS Nano, 2021, 15(2), 2143-2164.
[http://dx.doi.org/10.1021/acsnano.0c09509] [PMID: 33538585]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy