Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthesis and Catalytic Application of Ru-Deposited Magnetic Nanoparticles for the Selective Hydrogenation of CO2 Gas

Author(s): Prashant Gautam and Vivek Srivastava*

Volume 19, Issue 9, 2022

Published on: 10 February, 2022

Page: [705 - 710] Pages: 6

DOI: 10.2174/1570178618666211119115822

Price: $65

Abstract

In this report, a hybrid terpyridine (tpy) ligand functionalize with magnetic support was synthesized to obtain well-dispersed Ru NPs with a 2.0±0.5 nm mean size. This material was further analyzed using different analytical techniques before utilizing it as a catalyst for the CO2 hydrogenation reaction. A noticeable application of Ru-deposited magnetic nanoparticles as catalysts was observed during the CO2 hydrogenation. We successfully synthesized the formic acid with a high TON value under high-pressure reaction conditions. Easy recovery of the catalyst under the applied magnetic field helped us to reuse the catalyst up to 6 times with good TON and TOV value.

Keywords: Magnetic support, silica shell, Ru NPs, formic acid, pyridine-based ligand, formic acid.

Graphical Abstract

[1]
Le Quéré, C.; Korsbakken, J.I.; Wilson, C.; Tosun, J.; Andrew, R.; Andres, R.J.; Canadell, J.G.; Jordan, A.; Peters, G.P.; van Vuuren, D.P. Nat. Clim. Chang., 2019, 9, 213-217.
[http://dx.doi.org/10.1038/s41558-019-0419-7]
[2]
Peters, G.P.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Jackson, R.B.; Korsbakken, J.I.; Le Quéré, C.; Peregon, A. Nat. Clim. Chang., 2020, 10, 3-6.
[http://dx.doi.org/10.1038/s41558-019-0659-6]
[3]
Roy, S.; Cherevotan, A.; Peter, S.C. ACS Energy Lett., 2018, 3, 1938-1966.
[http://dx.doi.org/10.1021/acsenergylett.8b00740]
[4]
Bulushev, D.A.; Ross, J.R.H. ChemSusChem, 2018, 11(5), 821-836.
[http://dx.doi.org/10.1002/cssc.201702075] [PMID: 29316342]
[5]
Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. RSC Advances, 2018, 8, 7651-7669.
[http://dx.doi.org/10.1039/C7RA13546G]
[6]
Upadhyay, P.; Srivastava, V. AIP Conference Proceedings, 2016, 1724.
[7]
Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Appl. Sci. (Basel), 2018, 8, 914.
[http://dx.doi.org/10.3390/app8060914]
[8]
Surywanshi, G.D.; Pillai, B.B.K.; Patnaikuni, V.S.; Vooradi, R.; Anne, S.B. Energy Sources, Part A Recover. Util. Environ. Eff., 2019.
[9]
Schubert, U.S.; Eschbaumer, C.; Hien, O.; Andres, P.R. Tetrahedron Lett., 2001, 42, 4705-4707.
[http://dx.doi.org/10.1016/S0040-4039(01)00796-1]
[10]
Liu, H.; Goh, W.P.; Leung, M.Y.; Li, Y.; Norsten, T.B. Sol. Energy Mater. Sol. Cells, 2012, 96, 302-306.
[http://dx.doi.org/10.1016/j.solmat.2011.09.056]
[11]
Grubbs, R.B. Polym. Rev. (Phila. Pa.), 2007, 47, 197-215.
[http://dx.doi.org/10.1080/15583720701271245]
[12]
Lindner, E.; Keppeler, B.; Wegner, P. Inorg. Chim. Acta, 1997, 258, 97-100.
[http://dx.doi.org/10.1016/S0020-1693(96)05497-7]
[13]
Selvam, T.; MacHoke, A.; Schwieger, W. Appl. Catal. A Gen., 2012, 445-446, 92-101.
[http://dx.doi.org/10.1016/j.apcata.2012.08.007]
[14]
Tai, C-C.; Pitts, J.; Linehan, J.C.; Main, A.D.; Munshi, P.; Jessop, P.G. Inorg. Chem., 2002, 41(6), 1606-1614.
[http://dx.doi.org/10.1021/ic010866l] [PMID: 11896731]
[15]
Li, D.; Ichikuni, N.; Shimazu, S.; Uematsu, T. Appl. Catal. A Gen., 1998, 172, 351-358.
[16]
Wang, W.; Wang, S.; Ma, X. Gong. J. Chem. Soc. Rev., 2011, 40(7), 3703-3727.
[http://dx.doi.org/10.1039/c1cs15008a] [PMID: 21505692]
[17]
Olveira, S.; Forster, S.P.; Seeger, S. J. Nanotechnol., 2014, 2014
[18]
Verma, A.; Shukla, M.; Sinha, I. Nanocatalysts; IntechOpen, 2019.
[19]
Ye, R.P.; Ding, J.; Gong, W.; Argyle, M.D.; Zhong, Q.; Wang, Y.; Russell, C.K.; Xu, Z.; Russell, A.G.; Li, Q.; Fan, M.; Yao, Y.G. Nat. Commun., 2019, 10(1), 5698.
[http://dx.doi.org/10.1038/s41467-019-13638-9] [PMID: 31836709]
[20]
Scibioh, M.A.; Viswanathan, B. Carbon Dioxide to Chemicals and Fuels; Elsevier, 2018.
[21]
Gubin, S.P. Magnetic Nanoparticles; Gubin, S.P., Ed.; Wiley, 2009.
[http://dx.doi.org/10.1002/9783527627561]
[22]
Gopalan Sibi, M.; Verma, D. Kim, J. Catal. Rev., Sci. Eng., 2020, 62, 163-311.
[http://dx.doi.org/10.1080/01614940.2019.1659555]
[23]
Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Gonçalves, R.V. Nanotechnol. Rev., 2013, 2, 597-614.
[http://dx.doi.org/10.1515/ntrev-2013-0021]
[24]
Lu, S.M.; Wang, Z.; Li, J.; Xiao, J.; Li, C. Green Chem., 2016, 18, 4553-4558.
[http://dx.doi.org/10.1039/C6GC00856A]
[25]
Wang, L.; Song, B.; Khalife, S.; Li, Y.; Ming, L-J.; Bai, S.; Xu, Y.; Yu, H.; Wang, M.; Wang, H.; Li, X. J. Am. Chem. Soc., 2020, 142(4), 1811-1821.
[http://dx.doi.org/10.1021/jacs.9b09497] [PMID: 31910337]
[26]
Norsten, T.B.; Frankamp, B.L.; Rotello, V.M. Nano Lett., 2002, 2, 1345-1348.
[http://dx.doi.org/10.1021/nl020217m]
[27]
Prusková, M.; Sutrová, V.; Šlouf, M. Vlčková, B.; Vohlídal, J.; Šloufová, I. Langmuir, 2017, 33(17), 4146-4156.
[http://dx.doi.org/10.1021/acs.langmuir.7b00126] [PMID: 28422502]
[28]
Guerrero, M.; Costa, N.J.S.; Vono, L.L.R.; Rossi, L.M.; Gusevskaya, E.V.; Philippot, K. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 1441-1449.
[http://dx.doi.org/10.1039/C2TA00199C]
[29]
Zhu, K.; Ju, Y.; Xu, J.; Yang, Z.; Gao, S.; Hou, Y. Acc. Chem. Res., 2018, 51, 404-413.
[http://dx.doi.org/10.1021/acs.accounts.7b00407] [PMID: 29412634]
[30]
Rossi, L.M.; Fiorio, J.L.; Garcia, M.A.S.; Ferraz, C.P. Dalton Trans., 2018, 47(17), 5889-5915.
[http://dx.doi.org/10.1039/C7DT04728B] [PMID: 29509204]
[31]
Upadhyay, P.R.; Srivastava, V. Catal. Lett., 2017, 147, 1051-1060.
[http://dx.doi.org/10.1007/s10562-017-1995-7]
[32]
Chernyshev, V.M.; Astakhov, A.V.; Chikunov, I.E.; Tyurin, R.V.; Eremin, D.B.; Ranny, G.S.; Khrustalev, V.N.; Ananikov, V.P. ACS Catal., 2019, 9, 2984-2995.
[http://dx.doi.org/10.1021/acscatal.8b03683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy