Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Inhibition of Influenza A (H1N1) Virus Infection by Pt/TiO2-SiO2 Bionanocatalysts

Author(s): Tessy López-Goerne*, Gabriela de la Rosa-Gutiérrez, Francisco J. Padilla-Godínez, Jaime Bustos-Martínez, Susana López, Beatriz Xoconostle-Cázares and José Manuel de la Rosa

Volume 18, Issue 6, 2022

Published on: 14 January, 2022

Page: [733 - 742] Pages: 10

DOI: 10.2174/1573413717666211118110801

Price: $65

Abstract

Background: The rapid mutation of the H1N1 strain of the Influenza virus makes it quite difficult to treat once the infection has spread. The development of new treatments based on the destabilization of the genetic material, regardless of the sequence, is necessary.

Objective: The study aims to evaluate the antiviral properties of Pt/TiO2-SiO2 bionanocatalysts against Influenza A (H1N1) virus in a post-infection model and to characterize the morphology of the nanoparticles.

Methods: The bionanocatalysts were synthesized by the sol-gel method. Electron Microscopy studies were performed to evaluate the grain size and morphology of pure nanoparticles. Madin-Darby Canine Kidney (MDCK) epithelial cells were infected with Influenza A (H1N1) virus. They were treated with 500 μL of three viral suspensions (1:50, 1:100, and 1:1000) and 500 μL of a nanoparticle suspension (2 ng/mL). The presence of the virus was identified by Polymerase Chain Reaction (PCR) endpoint and the antiviral properties of the nanoparticles were identified in terms of infection reduction calculated by real-time PCR using Influenza A and H1N1 subtype primers. The percentage of infection reduction was calculated by comparing control samples and samples treated with the bionanocatalysts.

Results: The Pt/TiO2-SiO2 bionanocatalysts showed highly surface-dispersed platinum nanoparticles with an average particle size of 1.23 ± 0.36 nm in the amorphous oxide matrix. The nanoparticles showed antiviral properties with a maximum reduction in viral proliferation of 65.2 ± 3.3%.

Conclusion: Pt/TiO2-SiO2 bionanocatalysts were able to reduce Influenza A (H1N1) viral infection 65.2 ± 3.3%; the results suggest the biocompatibility with healthy tissues and in vitro antiviral properties. Further studies should be conducted to identify the concentration required to achieve total virus clearance. However, the outcome of the present work suggests the possibility of implementing bionanocatalysts as treatments for Influenza A (H1N1) virus infection, especially at an advanced stage of infection.

Keywords: Antiviral, virus, influenza A (H1N1), Pt/TiO2-SiO2, bionanocatalyst, MDCK.

Graphical Abstract

[1]
Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev., 1992, 56(1), 152-179.
[http://dx.doi.org/10.1128/mr.56.1.152-179.1992] [PMID: 1579108]
[2]
Hutchinson, E.C. Influenza Virus. Trends Microbiol., 2018, 26(9), 809-810.
[http://dx.doi.org/10.1016/j.tim.2018.05.013] [PMID: 29909041]
[3]
Centers for Disease Control and Prevention (CDC). Types of Influenza Viruses. Available from: www.cdc.gov/flu/about/viruses/types.html (Accessed May 25, 2021).
[4]
Su, S.; Fu, X.; Li, G.; Kerlin, F.; Veit, M. Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics. Virulence, 2017, 8(8), 1580-1591.
[http://dx.doi.org/10.1080/21505594.2017.1365216] [PMID: 28812422]
[5]
Horimoto, T.; Kawaoka, Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol., 2005, 3(8), 591-600.
[http://dx.doi.org/10.1038/nrmicro1208] [PMID: 16064053]
[6]
García-García, J.; Ramos, C. Influenza, an existing public health problem. Salud Publica Mex., 2006, 48(3), 244-267.
[PMID: 16813133]
[7]
International Committee on Taxonomy of Viruses (ICTV). Virus Taxonomy: 2020 Release. 2020. Available from: talk.ictvonline.org/taxonomy (Accessed May 25, 2021).
[8]
Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J.; Chen, L.M.; Johnson, A.; Tao, Y.; Dreyfus, C.; Yu, W.; McBride, R.; Carney, P.J.; Gilbert, A.T.; Chang, J.; Guo, Z.; Davis, C.T.; Paulson, J.C.; Stevens, J.; Rupprecht, C.E.; Holmes, E.C.; Wilson, I.A.; Donis, R.O. New world bats harbor diverse influenza A viruses. PLoS Pathog., 2013, 9(10), e1003657.
[http://dx.doi.org/10.1371/journal.ppat.1003657] [PMID: 24130481]
[9]
Butler, D. How severe will the flu outbreak be? Nature, 2009, 459(7243), 14-15.
[http://dx.doi.org/10.1038/459014a] [PMID: 19424121]
[10]
Cohen, J.; Enserink, M. Infectious diseases. As swine flu circles globe, scientists grapple with basic questions. Science, 2009, 324(5927), 572-573.
[http://dx.doi.org/10.1126/science.324_572] [PMID: 19407164]
[11]
World Health Organization (WHO). World now at the start of 2009 influenza pandemic. 2009. Available from: https://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en (Accessed May 25, 2021).
[12]
WHO. Pandemic (H1N1) 2009 – update 112. 2009. Available from: https://www.who.int/csr/don/2010_08_06/en/ (Accessed May 25, 2021).
[13]
CDC. Fist global estimates of 2009 H1N1 pandemic mortality released by CDC-Led collaboration. 2009. Available from: https://www.cdc.gov/flu/spotlights/pandemic-global-estimates.htm (Accessed May 25, 2021).
[14]
Murhekar, M.; Mehendale, S. The 2015 influenza A (H1N1) pdm09 outbreak in India. Indian J. Med. Res., 2016, 143(6), 821-823.
[http://dx.doi.org/10.4103/0971-5916.192077] [PMID: 27748308]
[15]
Kyaw Win, S.M.; Saito, R.; Win, N.C.; Lasham, D.J.; Kyaw, Y.; Lin, N.; Thein, K.N.; Chon, I.; Odagiri, T.; Thein, W.; Kyaw, L.L.; Tin, O.S.; Saitoh, A.; Tamura, T.; Hirokawa, C.; Uchida, Y.; Saito, T.; Watanabe, S.; Odagiri, T.; Kamata, K.; Osada, H.; Dapat, C.; Watanabe, H.; Tin, H.H. Epidemic of influenza A(H1N1)pdm09 analyzed by full genome sequences and the first case of oseltamivir-resistant strain in Myanmar 2017. PLoS One, 2020, 15(3), e0229601.
[http://dx.doi.org/10.1371/journal.pone.0229601] [PMID: 32130243]
[16]
The Nation. Toll rises to 42 as 3 more succumb to swine flu. Available from: nation.com.pk/24-Jan-2018/toll-rises-to-42-as-3-more-succumb-to-swine-flu (Accessed May 25, 2021).
[17]
Caruana, C.; Xuereb, M. Swine flu outbreak at Mater Dei hostpial, St. Vincent de Paul. Available from: timesofmal-ta.com/articles/view/swine-flu-outbreak-at-mater-dei-hospital-st-vincent-de-paul.699511 (Accessed May 25, 2021).
[18]
Al Arabiya. Swine flue outbreak kills 9 in Morocco. Available from: english.alarabiya.net/en/News/north-africa/2019/02/02/Swine-flu-outbreak-kills-9-in-Morocco.html (Accessed May 25, 2021).
[19]
Chang, L.Y.; Shih, S.R.; Shao, P.L.; Huang, D.T.; Huang, L.M. Novel swine-origin influenza virus A (H1N1): the first pandemic of the 21st century. J. Formos. Med. Assoc., 2009, 108(7), 526-532.
[http://dx.doi.org/10.1016/S0929-6646(09)60369-7] [PMID: 19586825]
[20]
Parmar, S.; Shah, N.; Nasawala, M.; Virpura, M.; Prajapati, D.D. A review on swine flu. J.P.S.B.R, 2011, 1(1), 11-17.
[21]
Härter, G.; Zimmermann, O.; Maier, L.; Schubert, A.; Mertens, T.; Kern, P.; Wöhrle, J. Intravenous zanamivir for patients with pneumonit-is due to pandemic (H1N1) 2009 influenza virus. Clin. Infect. Dis., 2010, 50(9), 1249-1251.
[http://dx.doi.org/10.1086/651604] [PMID: 20367227]
[22]
Tumpey, T.M.; García-Sastre, A.; Mikulasova, A.; Taubenberger, J.K.; Swayne, D.E.; Palese, P.; Basler, C.F. Existing antivirals are effec-tive against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA, 2002, 99(21), 13849-13854.
[http://dx.doi.org/10.1073/pnas.212519699] [PMID: 12368467]
[23]
Dharan, N.J.; Gubareva, L.V.; Meyer, J.J.; Okomo-Adhiambo, M.; McClinton, R.C.; Marshall, S.A.; St George, K.; Epperson, S.; Brammer, L.; Klimov, A.I.; Bresee, J.S.; Fry, A.M. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. JAMA, 2009, 301(10), 1034-1041.
[http://dx.doi.org/10.1001/jama.2009.294] [PMID: 19255110]
[24]
Cheng, P.K.C.; Leung, T.W.; Ho, E.C.; Leung, P.C.; Ng, A.Y.; Lai, M.Y.; Lim, W.W. Oseltamivir- and amantadine-resistant influenza vi-ruses A (H1N1). Emerg. Infect. Dis., 2009, 15(6), 966-968.
[http://dx.doi.org/10.3201/eid1506.081357] [PMID: 19523305]
[25]
Renaud, C.; Kuypers, J.; Englund, J.A. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J. Clin. Virol., 2011, 52(2), 70-78.
[http://dx.doi.org/10.1016/j.jcv.2011.05.019] [PMID: 21684202]
[26]
Hurt, A.C.; Holien, J.K.; Parker, M.; Kelso, A.; Barr, I.G. Zanamivir-resistant influenza viruses with a novel neuraminidase mutation. J. Virol., 2009, 83(20), 10366-10373.
[http://dx.doi.org/10.1128/JVI.01200-09] [PMID: 19641000]
[27]
Hurt, A.C.; Lee, R.T.; Leang, S.K.; Cui, L.; Deng, Y.M.; Phuah, S.P.; Caldwell, N.; Freeman, K.; Komadina, N.; Smith, D.; Speers, D.; Kel-so, A.; Lin, R.T.; Maurer-Stroh, S.; Barr, I.G. Increased detection in Australia and Singapore of a novel influenza A(H1N1) 2009 variant with reduced oseltamivir and zanamivir sensitivity due to a S247N neuraminidase mutation. Euro Surveill., 2011, 16(23), 19884.
[http://dx.doi.org/10.2807/ese.16.23.19884-en] [PMID: 21679678]
[28]
Mackie, A.; Gourcy, S.; Rigby, N.; Moffat, J.; Capron, I.; Bajka, B. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. Nanoscale, 2019, 11(6), 2991-2998.
[http://dx.doi.org/10.1039/C8NR05860A] [PMID: 30698181]
[29]
Jain, N.; Bhargava, A.; Rathi, M.; Dilip, R.V.; Panwar, J. Removal of protein capping enhances the antibacterial efficiency of biosynthe-sized silver nanoparticles. PLoS One, 2015, 10(7), e0134337.
[http://dx.doi.org/10.1371/journal.pone.0134337] [PMID: 26226385]
[30]
Brandelli, A.; Ritter, A.C.; Veras, F.F. Antimicrobial activities of metal nanoparticles.In: Metal Nanoparticles in Pharma; Rai, D.M.; She-gokar, D.R., Eds.; Springer: Cham, 2017, pp. 337-363.
[http://dx.doi.org/10.1007/978-3-319-63790-7_15]
[31]
López, T.; Jardon, G.; Gómez, E.; Gracia, A.; Hamdan, A.; Cuevas, J.L.; Quintana, P.; Novaro, O. Ag/TiO2-SiO2 sol gel nanoparticles to use in hospital-acquired infections (HAI). J. Mater. Res. Technol., 2015, 4(6), 1-6.
[32]
González-Larraza, P.G.; López-Goerne, T.M.; Padilla-Godínez, F.J.; González-López, M.A.; Hamdan-Partida, A.; Gómez, E. IC50 evalua-tion of platinum nanocatalysts for cancer treatment in fibroblast, HeLa, and DU-145 cell lines. ACS Omega, 2020, 5(39), 25381-25389.
[http://dx.doi.org/10.1021/acsomega.0c03759] [PMID: 33043218]
[33]
López, T.; Ortiz, E.; Guevara, P.; Gómez, E.; Monroy-Ramírez, H.C.; Novaro, O. Cu/TiO2-SiO2 nanostructured materials for brain cancer treatment. TechConnect Briefs, 2014, 2, 371-374.
[34]
López-Goerne, T.; Ramírez, P.; Álvarez, D.; Rodríguez-Reinoso, F.; Silvestre-Albero, A.M.; Gómez, E.; Rodríguez-Castellon, E. Physico-chemical properties and in vivo evaluation of Pt/TiO2-SiO2 nanopowders. Nanomedicine (Lond.), 2018, 13(17), 2171-2185.
[http://dx.doi.org/10.2217/nnm-2018-0078] [PMID: 30277422]
[35]
López-Goerne, T.M.; Padilla-Godínez, F.J.; Álvarez, D.; Gómez, E.; Ramírez, P.; Barragán, E.; Chico-Ponce de León, F.; González-Carranza, V.; García-Beristain, J.C.; Dies-Suárez, P.; Manrique, J.C. Titania-platinum nanobiocatalysts as treatment for central nervous system tumors: a case report on a pediatric ependymoma. J. Neurol. Neurocrit. Care, 2020, 3(1), 1-8.
[36]
Tsai, H-C.; Lehman, C.W.; Lin, C-C.; Tsai, S-W.; Chen, C-M. Functional evaluation for adequacy of MDCK-lineage cells in influenza re-search. BMC Res. Notes, 2019, 12(1), 101.
[http://dx.doi.org/10.1186/s13104-019-4134-2] [PMID: 30808400]
[37]
WHO. CDC protocol of realtime RTPCR for swine influenza A (H1N1). Available from: www.who.int/csr/resources/publications/swine-flu/CDCrealtimeRTPCRprotocol_20090428.pdf (Accessed: May 25, 2021).
[39]
Tsushima, Y.; Uno, N.; Sasaki, D.; Morinaga, Y.; Hasegawa, H.; Yanagihara, K. Quantitative RT-PCR evaluation of a rapid influenza anti-gen test for efficient diagnosis of influenza virus infection. J. Virol. Methods, 2015, 212, 76-79.
[http://dx.doi.org/10.1016/j.jviromet.2014.10.019] [PMID: 25449113]
[40]
López-Goerne, T.M. Nanotecnología y nanomedicina: la ciencia del futuro… hoy; Arkhé Ediciones: Mexico City, 2011.
[41]
López-Goerne, T.M. Nanomedicina catalítica: Ciencia y cáncer; Arkhé Ediciones: Mexico City, 2013.
[42]
López, T.; Figueras, F.; Manjarrez, J.; Bustos, J.; Álvarez, M.; Silvestre-Albero, J.; Rodríguez-Reinoso, F.; Martínez-Ferre, A.; Martínez, E. Catalytic nanomedicine: a new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. Eur. J. Med. Chem., 2010, 45(5), 1982-1990.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.043] [PMID: 20153564]
[43]
Manríquez, M.E.; López, T.; Gómez, R.; Picquart, M.; Hernández-Cortez, J.G. Sol-gel silica modified with phosphate and sulfate ions. J. Non-Cryst. Solids, 2004, 345-346, 643-646.
[http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.115]
[44]
Klimpel, G.R. Immune Defeneses. In: Medical Microbiology; University of texas medical branch of galveston: United States, 1996.
[45]
Nelson, M.I.; Holmes, E.C. The evolution of epidemic influenza. Nat. Rev. Genet., 2007, 8(3), 196-205.
[http://dx.doi.org/10.1038/nrg2053] [PMID: 17262054]
[46]
Fuller, T.L.; Gilbert, M.; Martin, V.; Cappelle, J.; Hosseini, P.; Njabo, K.Y.; Abdel Aziz, S.; Xiao, X.; Daszak, P.; Smith, T.B. Predicting hotspots for influenza virus reassortment. Emerg. Infect. Dis., 2013, 19(4), 581-588.
[http://dx.doi.org/10.3201/eid1904.120903] [PMID: 23628436]
[47]
Cohen, F.S. How viruses invade cells. Biophys. J., 2016, 110(5), 1028-1032.
[http://dx.doi.org/10.1016/j.bpj.2016.02.006] [PMID: 26958878]
[48]
Lopez, T.; Cuevas, J.L.; Ilharco, I.; Ramírez, P.; Rodríguez-Reinoso, F.; Rodríguez-Castellón, E. XPS characterization and E. coli DNA degradation using functionalized Cu/TiO2 nanobiocatalysts. Mol. Catal., 2018, 62-71.
[49]
Dean, P.M. Molecular Foundations of Drug-Receptor Interaction; Cambridge University Press: Cambridge, 1987.
[50]
Haasnoot, P.C.; Cupac, D.; Berkhout, B. Inhibition of virus replication by RNA interference. J. Biomed. Sci., 2003, 10(6 Pt 1), 607-616.
[http://dx.doi.org/10.1007/BF02256311] [PMID: 14576463]
[51]
Kim, J.; Yeom, M.; Lee, T.; Kim, H-O.; Na, W.; Kang, A.; Lim, J-W.; Park, G.; Park, C.; Song, D.; Haam, S. Porous gold nanoparticles for attenuating infectivity of influenza A virus. J. Nanobiotechnology, 2020, 18(1), 54.
[http://dx.doi.org/10.1186/s12951-020-00611-8] [PMID: 32209114]
[52]
Matharu, R.K.; Porwal, H.; Chen, B.; Ciric, L.; Edirisinghe, M. Viral filtration using carbon-based materials. Med. Devices Sens., 2020, 3(4), e10107.
[http://dx.doi.org/10.1002/mds3.10107] [PMID: 32838209]
[53]
Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; Zbořil, R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol., 2018, 13(1), 65-71.
[http://dx.doi.org/10.1038/s41565-017-0013-y] [PMID: 29203912]
[54]
López, T.; Recillas, S.; Guevara, P.; Sotelo, J.; Álvarez, M.; Odriozola, J.A. Pt/TiO2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats. Acta Biomater., 2008, 4(6), 2037-2044.
[http://dx.doi.org/10.1016/j.actbio.2008.05.027] [PMID: 18640082]
[55]
López, T.; Álvarez, M.; González, R.D.; Uddin, M.J.; Bustos, J.; Arroyo, S.; Sánchez, A. Synthesis, characterization and in vitro cytotoxici-ty of Pt-TiO2 nanoparticles. Adsorption, 2011, 573-581.
[http://dx.doi.org/10.1007/s10450-011-9330-x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy