Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Role of Lipid Nanoparticles in COVID-19 in Repurposing Drugs and Vaccines

Author(s): Rajesh Basnet*, Til Bahadur Basnet, Buddha Bahadur Basnet, Sandhya Khadka and Sanjeep Sapkota

Volume 18, Issue 6, 2022

Published on: 14 January, 2022

Page: [717 - 725] Pages: 9

DOI: 10.2174/1573413717666211117150153

Price: $65

Abstract

Background: The spread of new coronavirus 2019, the causative agent of viral pneumonia documented in Wuhan, brought a recent public health crisis globally. The best solution to overcome this pandemic is developing suitable and effective vaccines and therapeutics. However, discovering and creating a new drug is a lengthy process requiring rigorous testing and validation.

Objective: Despite many newly discovered and old repurposed COVID-19 drugs under clinical trial, more emphasis should be given to research on COVID-19 NPs-based medicines, which could improve the efficacy of antiviral drugs to reduce their side effects. The use of NPs as carriers can reduce the frequency and duration of drug ingestion, enhance approved antiviral therapeutics' effectiveness, and overcome their limitations, such as low bioavailability. Besides, they can play a crucial role in fighting against the COVID-19 pandemic. In this regard, nanotechnology provides opportunities to develop new strategies for preventing, diagnosing, and treating COVID-19.

Conclusion: This review highlighted the importance of NMs-based technical solutions in antiviral drugs for testing against the SARS-CoV-2 virus emergencies in the form of nanotherapeutics.

Keywords: COVID-19, nanoparticles, siRNA, antiviral agent, clinical trial, chloroquine, nanotherapy.

Graphical Abstract

[1]
Liu, J.; Zheng, X.; Tong, Q.; Li, W.; Wang, B.; Sutter, K.; Trilling, M.; Lu, M.; Dittmer, U.; Yang, D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol., 2020, 92(5), 491-494.
[http://dx.doi.org/10.1002/jmv.25709] [PMID: 32056249]
[2]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[3]
Basnet, B.B.; Basnet, R.; Panday, R. Prospects for controlling future pandemics of SARS in highlights of SARS-CoV-2. Virusdisease, 2021, 1-4.
[PMID: 34307770]
[4]
Sportelli, M.C.; Izzi, M.; Kukushkina, E.A.; Hossain, S.I.; Picca, R.A.; Ditaranto, N.; Cioffi, N. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials (Basel), 2020, 10(4), 802.
[http://dx.doi.org/10.3390/nano10040802] [PMID: 32326343]
[5]
Chan, W.C.W. Nano research for COVID-19. ACS Nano, 2020, 14(4), 3719-3720.
[http://dx.doi.org/10.1021/acsnano.0c02540] [PMID: 32227916]
[6]
Tasleem, A.; Mohammad, A. How safe are nanoparticles? A review. Pharm. Nanotechnol., 2016, 4(4), 249-254.
[http://dx.doi.org/10.2174/2211738504666160618090118]
[7]
Sharma, S.; Javed, M.N.; Pottoo, F.H.; Rabbani, S.A.; Barkat, M.A. Harshita, Sarafroz, M.; Amir, M. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm. Nanotechnol., 2019, 7(3), 220-233.
[http://dx.doi.org/10.2174/2211738507666190429103814] [PMID: 31486751]
[8]
Kheirollahpour, M.; Mehrabi, M.; Dounighi, N.M.; Mohammadi, M.; Masoudi, A. Nanoparticles and vaccine development. Pharm. Nanotechnol., 2020, 8(1), 6-21.
[http://dx.doi.org/10.2174/2211738507666191024162042] [PMID: 31647394]
[9]
Saifi, M.A.; Khan, W.; Godugu, C. Cytotoxicity of nanomaterials: using nanotoxicology to address the safety concerns of nanoparticles. Pharm. Nanotechnol., 2018, 6(1), 3-16.
[http://dx.doi.org/10.2174/2211738505666171023152928] [PMID: 29065848]
[10]
Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine-challenge and perspectives. Angew. Chem. Int. Ed. Engl., 2009, 48(5), 872-897.
[http://dx.doi.org/10.1002/anie.200802585] [PMID: 19142939]
[11]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[12]
Szunerits, S.; Barras, A.; Khanal, M.; Pagneux, Q.; Boukherroub, R. Nanostructures for the inhibition of viral infections. Molecules, 2015, 20(8), 14051-14081.
[http://dx.doi.org/10.3390/molecules200814051] [PMID: 26247927]
[13]
Abraham, A.M.; Kannangai, R.; Sridharan, G. Nanotechnology: A new frontier in virus detection in clinical practice. Indian J. Med. Microbiol., 2008, 26(4), 297-301.
[http://dx.doi.org/10.1016/S0255-0857(21)01804-1] [PMID: 18974480]
[14]
Saylan, Y.; Denizli, A. Virus detection using nanosensors; Nanosensors for Smart Cities, 2020, pp. 501-511.
[15]
Kondel, R.; Shafiq, N.; Kaur, I.P.; Singh, M.P.; Pandey, A.K.; Ratho, R.K.; Malhotra, S. Effect of acyclovir solid lipid nanoparticles for the treatment of herpes simplex virus (HSV) Infection in an animal model of HSV-1 infection. Pharm. Nanotechnol., 2019, 7(5), 389-403.
[http://dx.doi.org/10.2174/2211738507666190829161737] [PMID: 31465287]
[16]
Milovanovic, M.; Arsenijevic, A.; Milovanovic, J.; Kanjevac, T.; Arsenijevic, N. Antimicrobial nanoarchitectonics; Elsevier, 2017, pp. 383-410.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00014-8]
[17]
Koudelka, K.J.; Pitek, A.S.; Manchester, M.; Steinmetz, N.F. Virus-based nanoparticles as versatile nanomachines. Annu. Rev. Virol., 2015, 2(1), 379-401.
[http://dx.doi.org/10.1146/annurev-virology-100114-055141] [PMID: 26958921]
[18]
Satish, S.; Kapil, K. Gold nanoparticles as carrier(s) for drug targeting and imaging. Pharm. Nanotechnol., 2015, 3(3), 154-170.
[19]
Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7), 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[20]
Medhi, R.; Srinoi, P.; Ngo, N.; Tran, H-V.; Lee, T.R. Nanoparticle-based strategies to combat COVID-19. ACS Appl. Nano Mater., 2020, 3(9), 8557-8580.
[http://dx.doi.org/10.1021/acsanm.0c01978]
[21]
Chintagunta, A.D.; Nalluru, S. Nanotechnology: An emerging approach to combat COVID-19. Emergent Materials, 2021, 1-12.
[22]
Turkyilmazoglu, M. On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus, 2021, 136(4), 1-15.
[http://dx.doi.org/10.1140/epjp/s13360-021-01359-2]
[23]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 29(6), 04016049.
[http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000643]
[24]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135(10), 1-13.
[http://dx.doi.org/10.1140/epjp/s13360-020-00812-y]
[25]
Turkyilmazoglu, M. Explicit formulae for the peak time of an epidemic from the SIR model. Physica D, 2021, 422, 132902.
[http://dx.doi.org/10.1016/j.physd.2021.132902] [PMID: 33814655]
[26]
Sax, P.E. FDA approval: darunavir. AIDS Clin. Care, 2006, 18(8), 71.
[PMID: 16906668]
[27]
Duan, J.; Freeling, J.P.; Koehn, J.; Shu, C.; Ho, R.J.Y. Evaluation of atazanavir and darunavir interactions with lipids for developing pH-responsive anti-HIV drug combination nanoparticles. J. Pharm. Sci., 2014, 103(8), 2520-2529.
[http://dx.doi.org/10.1002/jps.24046] [PMID: 24948204]
[28]
Hillaker, E.; Belfer, J.J.; Bondici, A.; Murad, H.; Dumkow, L.E. Delayed initiation of remdesivir in a COVID-19-positive patient. Pharmacotherapy, 2020, 40(6), 592-598.
[http://dx.doi.org/10.1002/phar.2403] [PMID: 32281114]
[29]
Al-Tawfiq, J.A.; Al-Homoud, A.H.; Memish, Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis., 2020, 34, 101615.
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[30]
Cao, Y.C.; Deng, Q.X.; Dai, S.X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis., 2020, 35, 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[31]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of remdesivir for patients with severe covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[32]
Yin, J.; Noda, Y.; Hazemoto, N.; Yotsuyanagi, T. Distribution of protease inhibitors in lipid emulsions: gabexate mesilate and camostat mesilate. Chem. Pharm. Bull. (Tokyo), 2005, 53(8), 893-898.
[http://dx.doi.org/10.1248/cpb.53.893] [PMID: 16079515]
[33]
Coote, K.; Atherton-Watson, H.C.; Sugar, R.; Young, A.; MacKenzie-Beevor, A.; Gosling, M.; Bhalay, G.; Bloomfield, G.; Dunstan, A.; Bridges, R.J.; Sabater, J.R.; Abraham, W.M.; Tully, D.; Pacoma, R.; Schumacher, A.; Harris, J.; Danahay, H. Camostat attenuates airway epithelial sodium channel function in vivo through the inhibition of a channel-activating protease. J. Pharmacol. Exp. Ther., 2009, 329(2), 764-774.
[http://dx.doi.org/10.1124/jpet.108.148155] [PMID: 19190233]
[34]
Yin, J.; Noda, Y.; Yotsuyanagi, T. Properties of poly(lactic-co-glycolic acid) nanospheres containing protease inhibitors: camostat mesilate and nafamostat mesilate. Int. J. Pharm., 2006, 314(1), 46-55.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.047] [PMID: 16551494]
[35]
Mogul, A.; Corsi, K.; McAuliffe, L. Baricitinib: The second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis. Ann. Pharmacother., 2019, 53(9), 947-953.
[http://dx.doi.org/10.1177/1060028019839650] [PMID: 30907116]
[36]
Ansari, M.J.; Alshahrani, S.M. Nano-encapsulation and characterization of baricitinib using poly-lactic-glycolic acid co-polymer. Saudi Pharm. J., 2019, 27(4), 491-501.
[http://dx.doi.org/10.1016/j.jsps.2019.01.012] [PMID: 31061617]
[37]
Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res., 2013, 100(2), 446-454.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[38]
Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules, 2011, 16(10), 8894-8918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[39]
Mishra, P.; Florian, J.; Qi, K.; Zeng, W.; Naeger, L.K.; Donaldson, E.; Connelly, S.; O’Rear, J.; Price, D.; Murray, J.; Birnkrant, D. FDA perspective on sofosbuvir therapy for patients with chronic hepatitis C virus genotype 1 infection who did not respond to treatment with pegylated interferon and ribavirin. Gastroenterology, 2014, 147(6), 1196-1200.
[http://dx.doi.org/10.1053/j.gastro.2014.10.027] [PMID: 25449024]
[40]
Abo-zeid, Y.; Garnett, M.C. Polymer nanoparticle as a delivery system for ribavirin: Do nanoparticle avoid uptake by Red Blood Cells? J. Drug Deliv. Sci. Technol., 2020, 56, 101552.
[http://dx.doi.org/10.1016/j.jddst.2020.101552]
[41]
Moore, N. Chloroquine for COVID-19 Infection. Drug Saf., 2020, 43(5), 393-394.
[http://dx.doi.org/10.1007/s40264-020-00933-4] [PMID: 32266694]
[42]
Rahman, K.; Khan, S.U.; Fahad, S.; Chang, M.X.; Abbas, A.; Khan, W.U.; Rahman, L.; Haq, Z.U.; Nabi, G.; Khan, D. Nano-biotechnology: A new approach to treat and prevent malaria. Int. J. Nanomedicine, 2019, 14, 1401-1410.
[http://dx.doi.org/10.2147/IJN.S190692] [PMID: 30863068]
[43]
Jasenosky, L.D.; Cadena, C.; Mire, C.E.; Borisevich, V.; Haridas, V.; Ranjbar, S.; Nambu, A.; Bavari, S.; Soloveva, V.; Sadukhan, S.; Cassell, G.H.; Geisbert, T.W.; Hur, S.; Goldfeld, A.E. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits ebola virus. iScience, 2019, 19, 1279-1290.
[http://dx.doi.org/10.1016/j.isci.2019.07.003] [PMID: 31402258]
[44]
Abbasalipourkabir, R.; Fallah, M.; Sedighi, F.; Maghsood, A.H.; Javid, S. Nanocapsulation of nitazoxanide in solid lipid nanoparticles as a new drug delivery system and in vitro release study. J. Biol. Sci., 2016, 16(4), 120-127.
[http://dx.doi.org/10.3923/jbs.2016.120.127]
[45]
Zhang, S.; Zhi, C.; Li, H.; Huang, D.; Fan, Q.; Cui, J.; Liang, C. Umifenovir effectively inhibits IL-10 dependent persistent Coxsackie B4 virus infection. Antiviral Res., 2017, 141, 165-173.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.018] [PMID: 28263801]
[46]
Proskurnina, E.V.; Izmailov, D.Y.; Sozarukova, M.M.; Zhuravleva, T.A.; Leneva, I.A.; Poromov, A.A. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules, 2020, 25(7), E1577.
[http://dx.doi.org/10.3390/molecules25071577] [PMID: 32235534]
[47]
Park, T-Y.; Jang, Y.; Kim, W.; Shin, J.; Toh, H.T.; Kim, C-H.; Yoon, H.S.; Leblanc, P.; Kim, K-S. Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci. Rep., 2019, 9(1), 15559.
[http://dx.doi.org/10.1038/s41598-019-52085-w] [PMID: 31664129]
[48]
Savarino, A.; Di Trani, L.; Donatelli, I.; Cauda, R.; Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis., 2006, 6(2), 67-69.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[49]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[50]
Mackenzie, A.H. Pharmacologic actions of 4-aminoquinoline compounds. Am. J. Med., 1983, 75(1A), 5-10.
[http://dx.doi.org/10.1016/0002-9343(83)91264-0] [PMID: 6603166]
[51]
Mackenzie, A.H. Dose refinements in long-term therapy of rheumatoid arthritis with antimalarials. Am. J. Med., 1983, 75(1A), 40-45.
[http://dx.doi.org/10.1016/0002-9343(83)91269-X] [PMID: 6869410]
[52]
Mackenzie, A.H. Antimalarial drugs for rheumatoid arthritis. Am. J. Med., 1983, 75(6A), 48-58.
[http://dx.doi.org/10.1016/0002-9343(83)90474-6] [PMID: 6362406]
[53]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[54]
Ochsendorf, F.R.; Runne, U. Chloroquine and hydroxychloroquine: side effect profile of important therapeutic drugs. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete, 1991, 42(3), 140-146.
[55]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6(1), 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 33731711]
[56]
Simpson, L.L. The interaction between aminoquinolines and presynaptically acting neurotoxins. J. Pharmacol. Exp. Ther., 1982, 222(1), 43-48.
[PMID: 6283072]
[57]
Furst, D.E. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus, 1996, 5(1)(Suppl. 1), S11-S15.
[http://dx.doi.org/10.1177/0961203396005001041] [PMID: 8803904]
[58]
Grassmann, F.; Bergholz, R.; Mändl, J.; Jägle, H.; Ruether, K.; Weber, B.H.F. Common synonymous variants in ABCA4 are protective for chloroquine induced maculopathy (toxic maculopathy). BMC Ophthalmol., 2015, 15, 18-18.
[http://dx.doi.org/10.1186/s12886-015-0008-0] [PMID: 25884411]
[59]
Huang, M.; Tang, T.; Pang, P.; Li, M.; Ma, R.; Lu, J.; Shu, J.; You, Y.; Chen, B.; Liang, J.; Hong, Z.; Chen, H.; Kong, L.; Qin, D.; Pei, D.; Xia, J.; Jiang, S.; Shan, H. Treating COVID-19 with Chloroquine. J. Mol. Cell Biol., 2020, 12(4), 322-325.
[http://dx.doi.org/10.1093/jmcb/mjaa014] [PMID: 32236562]
[60]
Fact Sheet for Patients and Parent/Caregivers Emergency Use Authorization (EUA) of Chloroquine Phosphate for Treatment of COVID-19 in Certain Hospitalized Patients. FDA. 2020.
[61]
Hu, T.Y.; Frieman, M.; Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol., 2020, 15(4), 247-249.
[http://dx.doi.org/10.1038/s41565-020-0674-9] [PMID: 32203437]
[62]
Pelt, J.; Busatto, S.; Ferrari, M.; Thompson, E.A.; Mody, K.; Wolfram, J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol. Ther., 2018, 191, 43-49.
[http://dx.doi.org/10.1016/j.pharmthera.2018.06.007] [PMID: 29932886]
[63]
Browning, D.J. In Hydroxychloroquine and chloroquine retinopathy; Springer, 2014, pp. 35-63.
[http://dx.doi.org/10.1007/978-1-4939-0597-3_2]
[64]
Hubin, T.J.; Amoyaw, P.N-A.; Roewe, K.D.; Simpson, N.C.; Maples, R.D.; Carder Freeman, T.N.; Cain, A.N.; Le, J.G.; Archibald, S.J.; Khan, S.I.; Tekwani, B.L.; Khan, M.O. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorg. Med. Chem., 2014, 22(13), 3239-3244.
[http://dx.doi.org/10.1016/j.bmc.2014.05.003] [PMID: 24857776]
[65]
Rohde, W.; Mikelens, P.; Jackson, J.; Blackman, J.; Whitcher, J.; Levinson, W. Hydroxyquinolines inhibit ribonucleic acid-dependent deoxyribonucleic acid polymerase and inactivate Rous sarcoma virus and herpes simplex virus. Antimicrob. Agents Chemother., 1976, 10(2), 234-240.
[http://dx.doi.org/10.1128/AAC.10.2.234] [PMID: 185949]
[66]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-e00218.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[67]
Leneva, I.A.; Russell, R.J.; Boriskin, Y.S.; Hay, A.J. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res., 2009, 81(2), 132-140.
[http://dx.doi.org/10.1016/j.antiviral.2008.10.009] [PMID: 19028526]
[68]
Lian, N.; Xie, H.; Lin, S.; Huang, J.; Zhao, J.; Lin, Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin. Microbiol. Infect., 2020, 26(7), 917-921.
[http://dx.doi.org/10.1016/j.cmi.2020.04.026] [PMID: 32344167]
[69]
Busse, K.H.; Penzak, S.R. Darunavir: A second-generation protease inhibitor. Am. J. Health Syst. Pharm., 2007, 64(15), 1593-1602.
[70]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[71]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[72]
Nabila, N.; Suada, N.K.; Denis, D.; Yohan, B.; Adi, A.C.; Veterini, A.S.; Anindya, A.L.; Sasmono, R.T.; Rachmawati, H. Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharm. Nanotechnol., 2020, 8(1), 54-62.
[http://dx.doi.org/10.2174/2211738507666191210163408] [PMID: 31858909]
[73]
Govindaraju, R.; Karki, R.; Chandrashekarappa, J.; Santhanam, M.; Shankar, A.K.K.; Joshi, H.K.; Divakar, G. Enhanced water dispersibility of curcumin encapsulated in alginate-polysorbate 80 nano particles and bioavailability in healthy human volunteers. Pharm. Nanotechnol., 2019, 7(1), 39-56.
[http://dx.doi.org/10.2174/2211738507666190122121242] [PMID: 30666922]
[74]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[75]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019, 2019
[http://dx.doi.org/10.1155/2019/3702518]
[76]
Cojocaru, F-D.; Botezat, D.; Gardikiotis, I.; Uritu, C-M.; Dodi, G.; Trandafir, L.; Rezus, C.; Rezus, E.; Tamba, B-I.; Mihai, C-T. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics, 2020, 12(2), 171.
[http://dx.doi.org/10.3390/pharmaceutics12020171] [PMID: 32085535]
[77]
Rathor, S.; Bhatt, D.C.; Aamir, S.; Singh, S.K.; Kumar, V. A Comprehensive review on role of nanoparticles in therapeutic delivery of medicine. Pharm. Nanotechnol., 2017, 5(4), 263-275.
[PMID: 29141578]
[78]
Amid Ongoing COVID-19 Pandemic, Governor Cuomo Accepts Recommendation of Army Corps of Engineers for Four Temporary Hospital Sites in New York. Available from: governor.ny.gov 22 March 2020.
[79]
Carr, A.C. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit. Care, 2020, 24(1), 133-133.
[http://dx.doi.org/10.1186/s13054-020-02851-4] [PMID: 32264963]
[80]
Telang, P.S. Vitamin C in dermatology. Indian Dermatol. Online J., 2013, 4(2), 143-146.
[http://dx.doi.org/10.4103/2229-5178.110593] [PMID: 23741676]
[81]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[82]
Alkilani, A.Z.; McCrudden, M.T.; Donnelly, R.F. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[83]
Ueda, M.; Uchimura, K.; Narita, Y.; Miyasato, Y.; Mizumoto, T.; Morinaga, J.; Hayata, M.; Kakizoe, Y.; Adachi, M.; Miyoshi, T.; Shiraishi, N.; Kadowaki, D.; Sakai, Y.; Mukoyama, M.; Kitamura, K. The serine protease inhibitor camostat mesilate attenuates the progression of chronic kidney disease through its antioxidant effects. Nephron, 2015, 129(3), 223-232.
[http://dx.doi.org/10.1159/000375308] [PMID: 25766432]
[84]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[85]
Uno, Y. Camostat mesilate therapy for COVID-19. Intern. Emerg. Med., 2020, 15(8), 1577-1578.
[http://dx.doi.org/10.1007/s11739-020-02345-9] [PMID: 32347443]
[86]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect, 2020, S0163-4453(0120), 30228-30220.
[87]
SNEH. L.; PREETI, K. Application of nanostructures in antimicrobial therapy. Int. J. App. Pharm., 2018, 10(4), 11-25.
[http://dx.doi.org/10.22159/ijap.2018v10i4.25803]
[88]
Amanat, F.; Krammer, F. SARS-CoV-2 vaccines: status report. Immunity, 2020, 52(4), 583-589.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[89]
Cowling, B.J.; Ali, S.T.; Ng, T.W.Y.; Tsang, T.K.; Li, J.C.M.; Fong, M.W.; Liao, Q.; Kwan, M.Y.; Lee, S.L.; Chiu, S.S.; Wu, J.T.; Wu, P.; Leung, G.M. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: An observational study. Lancet Public Health, 2020, 5(5), e279-e288.
[http://dx.doi.org/10.1016/S2468-2667(20)30090-6] [PMID: 32311320]
[90]
Gudbjartsson, D.F.; Helgason, A.; Jonsson, H.; Magnusson, O.T.; Melsted, P.; Norddahl, G.L.; Saemundsdottir, J.; Sigurdsson, A.; Sulem, P.; Agustsdottir, A.B. Spread of SARS-CoV-2 in the icelandic population. N. Engl. J. Med., 2020.
[http://dx.doi.org/10.1056/NEJMoa2006100]
[91]
Gouglas, D.; Thanh Le, T.; Henderson, K.; Kaloudis, A.; Danielsen, T.; Hammersland, N.C.; Robinson, J.M.; Heaton, P.M.; Røttingen, J.A. Estimating the cost of vaccine development against epidemic infectious diseases: A cost minimisation study. Lancet Glob. Health, 2018, 6(12), e1386-e1396.
[http://dx.doi.org/10.1016/S2214-109X(18)30346-2] [PMID: 30342925]
[92]
COVID-19 vaccine development pipeline.Vaccine Centre; London School of Hygiene and Tropical Medicine, 2020.
[93]
Yang, L.; Tian, D.; Liu, W. Strategies for vaccine development of COVID-19. Sheng wu gong cheng xue bao =. Chin. J. Biotechnol., 2020, 36(4), 593-604.
[94]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[95]
Shah, M. Solid lipid nanoparticles (SLN) for oral drug delivery: An overview. J Nanomed Nanosci, 2017, 2, 1-2.
[96]
Masserini, M. Nanoparticles for brain drug delivery. International Scholarly Research Notices, 2013, 2013
[http://dx.doi.org/10.1155/2013/238428]
[97]
Sarangi, M.K.; Padhi, S. Solid lipid nanoparticles–a review. drugs, 2016, 5, 7.
[98]
Abu-Farha, M.; Thanaraj, T.A.; Qaddoumi, M.G.; Hashem, A.; Abubaker, J.; Al-Mulla, F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int. J. Mol. Sci., 2020, 21(10), 3544.
[http://dx.doi.org/10.3390/ijms21103544] [PMID: 32429572]
[99]
Medioni, C.; Mowry, K.; Besse, F. Principles and roles of mRNA localization in animal development. Development, 2012, 139(18), 3263-3276.
[http://dx.doi.org/10.1242/dev.078626] [PMID: 22912410]
[100]
Reichmuth, A.M.; Oberli, M.A.; Jaklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv., 2016, 7(5), 319-334.
[http://dx.doi.org/10.4155/tde-2016-0006] [PMID: 27075952]
[101]
Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A.; Mehmandoost, N.; Moazzen, F.; Mazraeh, A.; Marmari, V.; Ebrahimi, M.; Rashno, M.M.; Abadi, S.J.; Gharagouzlo, E. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci., 2017, 13(2), 48-57.
[PMID: 28824341]
[102]
Prajakta, T.; Pramod, K.; Virendra, G.; Paknikar, K.M. SiRNA mediated gene silencing: hurdles, strategies and applications. Pharm. Nanotechnol., 2015, 3(4), 322-333.
[103]
Buyens, K.; De Smedt, S.C.; Braeckmans, K.; Demeester, J.; Peeters, L.; van Grunsven, L.A.; de Mollerat du Jeu, X.; Sawant, R.; Torchilin, V.; Farkasova, K.; Ogris, M.; Sanders, N.N. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J. Control. Release, 2012, 158(3), 362-370.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.009] [PMID: 22023849]
[104]
Weiss, S.R.; Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 2005, 69(4), 635-664.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[105]
Sohrab, S.S.; El-Kafrawy, S.A.; Mirza, Z.; Kamal, M.A.; Azhar, E.I. Design and delivery of therapeutic siRNAs: Application to MERS-coronavirus. Curr. Pharm. Des., 2018, 24(1), 62-77.
[http://dx.doi.org/10.2174/1381612823666171109112307] [PMID: 29119921]
[106]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Publications, ACS 2020.
[107]
Masters, P.S.; Perlman, S. Coronaviridae.Fields Virology, 6th ed; Knipe, D.M.; Howley, P.M., Eds.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2013, pp. 825-858.
[108]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[109]
Frie, K.; Gbinigie, K. Chloroquine and hydroxychloroquine: Current evidence for their effectiveness in treating COVID-19. 2020.
[110]
Gendrot, M.; Javelle, E.; Clerc, A.; Savini, H.; Pradines, B. Chloroquine as a prophylactic agent against COVID-19? Int. J. Antimicrob. Agents, 2020, 55(6), 105980-105980.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105980] [PMID: 32294495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy