Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

How to Optimize the Effectiveness and Safety of Parkinson’s Disease Therapy? – A Systematic Review of Drugs Interactions with Food and Dietary Supplements

Author(s): Wiesner Agnieszka, Paśko Paweł and Kujawska Małgorzata*

Volume 20, Issue 7, 2022

Published on: 21 April, 2022

Page: [1427 - 1447] Pages: 21

DOI: 10.2174/1570159X19666211116142806

Price: $65

Abstract

Background: Despite increasing worldwide incidence of Parkinson’s disease, the therapy is still suboptimal due to the diversified clinical manifestations, lack of sufficient treatment, the poor adherence in advanced patients, and varied response. Proper intake of medications regarding food and managing drug-food interactions may optimize Parkinson’s disease treatment.

Objectives: We investigated potential effects that food, beverages, and dietary supplements may have on the pharmacokinetics and pharmacodynamics of drugs used by parkinsonian patients; identified the most probable interactions; and shaped recommendations for the optimal intake of drugs regarding food.

Methods: We performed a systematic review in adherence to PRISMA guidelines, and included a total of 81 studies in the qualitative synthesis.

Results and Conclusion: We found evidence for levodopa positive interaction with coffee, fiber and vitamin C, as well as for the potential beneficial impact of low-fat and protein redistribution diet. Contrastingly, high-protein diet and ferrous sulfate supplements can negatively affect levodopa pharmacokinetics and effectiveness. For other drugs, the data of food impact are scarce. Based on the available limited evidence, all dopamine agonists (bromocriptine, cabergoline, ropinirole), tolcapone, rasagiline, selegiline in tablets, safinamide, amantadine and pimavanserin can be taken with or without a meal. Opicapone and orally disintegrating selegiline tablets should be administered on an empty stomach. Of monoamine oxidase B inhibitors, safinamide is the least susceptible for interaction with the tyramine-rich food, whereas selegiline and rasagiline may lose selectivity to monoamine oxidase B when administered in supratherapeutic doses. The level of presented evidence is low due to the poor studies design, their insufficient actuality, and missing data.

Keywords: Parkinson, interaction, food, meal, levodopa, protein, fiber.

« Previous
Graphical Abstract

[1]
Mhyre TR, Boyd JT, Hamill RW, Maguire-Zeiss KA. Parkinson’s disease. Subcell Biochem 2012; 65: 389-455.
[http://dx.doi.org/10.1007/978-94-007-5416-4_16] [PMID: 23225012]
[2]
Up To Date: Clinical manifestations of Parkinson disease. Available from: https://www.uptodate.com/contents/clinical-manifesta-tions-of-parkinson-disease (Accessed Mar 16, 2021).
[3]
Kalf JG, de Swart BJ, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord 2012; 18(4): 311-5.
[http://dx.doi.org/10.1016/j.parkreldis.2011.11.006] [PMID: 22137459]
[4]
Takizawa C, Gemmell E, Kenworthy J, Speyer R. A systematic review of the prevalence of oropharyngeal dysphagia in stroke, Par-kinson’s disease, Alzheimer’s disease, head injury, and pneumonia. Dysphagia 2016; 31(3): 434-41.
[http://dx.doi.org/10.1007/s00455-016-9695-9] [PMID: 26970760]
[5]
Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967; 17(5): 427-42.
[http://dx.doi.org/10.1212/WNL.17.5.427] [PMID: 6067254]
[6]
Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018; 17(11): 939-53.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[7]
Dorsey ER, Bloem BR. The parkinson pandemic-A call to action. JAMA Neurol 2018; 75(1): 9-10.
[http://dx.doi.org/10.1001/jamaneurol.2017.3299] [PMID: 29131880]
[8]
National Institute for Health and Care Excellence: Parkinson’s disease in adults - NICE guidelines. Available from: https://www.nice.org.uk/guidance/ng71 (Accessed Mar 16, 2021).
[9]
Grimes D, Fitzpatrick M, Gordon J, et al. Canadian guideline for Parkinson disease. CMAJ 2019; 191(36): E989-E1004.
[http://dx.doi.org/10.1503/cmaj.181504] [PMID: 31501181]
[10]
UpToDate Management of nonmotor symptoms in Parkinson disease Available from: https://www.uptodate.com/contents/management-of-nonmotor-symptoms-in-parkinson-disease (Accessed Mar 16, 2021).
[11]
Straka I, Minár M, Gažová A. Valkovič P.; Kyselovič J. Clinical aspects of adherence to pharmacotherapy in Parkinson disease: A PRISMA-compliant systematic review. Medicine (Baltimore) 2018; 97(23): e10962.
[http://dx.doi.org/10.1097/MD.0000000000010962] [PMID: 29879046]
[12]
Véronneau-Veilleux F, Ursino M, Robaey P, Lévesque D, Nekka F. Nonlinear pharmacodynamics of levodopa through Parkinson’s disease progression. Chaos 2020; 30(9): 093146.
[http://dx.doi.org/10.1063/5.0014800] [PMID: 33003902]
[13]
Paśko, P. Drugs and food interactions: food–drug interactions among the elderly: Risk assessment and recommendations for patients. In: Encyclopedia of Biomedical Gerontology. Oxford: Academic Press 2020; pp. 107-14.
[14]
UpToDate Medical management of motor fluctuations and dyskinesia in Parkinson disease Available from: https://www.uptodate. com/contents/medical-management-of-motor-fluctuations-and-dyskinesia-in-parkinson-disease (Accessed Apr 30, 2021).
[15]
Jimenez-Shahed J. A review of current and novel levodopa formulations for the treatment of Parkinson’s disease. Ther Deliv 2016; 7(3): 179-91.
[http://dx.doi.org/10.4155/tde.15.96] [PMID: 26893250]
[16]
Wirdefeldt K, Odin P, Nyholm D. Levodopa-carbidopa intestinal gel in patients with Parkinson’s disease: A systematic review. CNS Drugs 2016; 30(5): 381-404.
[http://dx.doi.org/10.1007/s40263-016-0336-5] [PMID: 27138916]
[17]
Nutt JG, Woodward WR, Hammerstad JP, Carter JH, Anderson JL. The “on-off” phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. N Engl J Med 1984; 310(8): 483-8.
[http://dx.doi.org/10.1056/NEJM198402233100802] [PMID: 6694694]
[18]
Baruzzi A, Contin M, Riva R, et al. Influence of meal ingestion time on pharmacokinetics of orally administered levodopa in parkinsonian patients. Clin Neuropharmacol 1987; 10(6): 527-37.
[http://dx.doi.org/10.1097/00002826-198712000-00004] [PMID: 3427559]
[19]
Malcolm SL, Allen JG, Bird H, et al. Single-dose pharmacokinetics of Madopar HBS in patients and effect of food and antacid on the absorption of Madopar HBS in volunteers. Eur Neurol 1987; 27(Suppl. 1): 28-35.
[http://dx.doi.org/10.1159/000116172] [PMID: 3428307]
[20]
Wilding IR, Hardy JG, Davis SS, et al. Characterisation of the in vivo behaviour of a controlled-release formulation of levodopa (Sinemet CR). Clin Neuropharmacol 1991; 14(4): 305-21.
[http://dx.doi.org/10.1097/00002826-199108000-00003] [PMID: 1913698]
[21]
Madopar (Roche) Product characteristics. Available from: https://www.medicines.org.uk/emc/product/1111/pil#gref (accessed May 13, 2021).
[22]
Roos RA, Tijssen MA, van der Velde EA, Breimer DD. The influence of a standard meal on Sinemet CR absorption in patients with Parkinson’s disease. Clin Neurol Neurosurg 1993; 95(3): 215-9.
[http://dx.doi.org/10.1016/0303-8467(93)90126-2] [PMID: 8242964]
[23]
Contin M, Riva R, Martinelli P, Albani F, Baruzzi A. Effect of meal timing on the kinetic-dynamic profile of levodopa/carbidopa controlled release [corrected] in parkinsonian patients. Eur J Clin Pharmacol 1998; 54(4): 303-8.
[http://dx.doi.org/10.1007/s002280050464] [PMID: 9696954]
[24]
Crevoisier C, Zerr P, Calvi-Gries F, Nilsen T. Effects of food on the pharmacokinetics of levodopa in a dual-release formulation. Eur J Pharm Biopharm 2003; 55(1): 71-6.
[http://dx.doi.org/10.1016/S0939-6411(02)00124-8] [PMID: 12551706]
[25]
Yao HM, Hsu A, Gupta S, Modi NB. Clinical pharmacokinetics of IPX066: Evaluation of dose proportionality and effect of food in healthy volunteers. Clin Neuropharmacol 2016; 39(1): 10-7.
[http://dx.doi.org/10.1097/WNF.0000000000000126] [PMID: 26626430]
[26]
Miyaue N, Hosokawa Y, Yoshida A, et al. Fasting state is one of the factors associ-ated with plasma levodopa fluctuations during levodopa‒carbidopa intestinal gel treatment. Parkinsonism Relat Disord 2021; 91: 55-8.
[http://dx.doi.org/10.1016/j.parkreldis.2021.09.001] [PMID: 34509136]
[27]
Juncos JL, Fabbrini G, Mouradian MM, Serrati C, Chase TN. Dietary influences on the antiparkinsonian response to levodopa. Arch Neurol 1987; 44(10): 1003-5.
[http://dx.doi.org/10.1001/archneur.1987.00520220009006] [PMID: 3632369]
[28]
Frankel JP, Kempster PA, Bovingdon M, Webster R, Lees AJ, Stern GM. The effects of oral protein on the absorption of intra-duodenal levodopa and motor performance. J Neurol Neurosurg Psychiatry 1989; 52(9): 1063-7.
[http://dx.doi.org/10.1136/jnnp.52.9.1063] [PMID: 2795076]
[29]
Berry EM, Growdon JH, Wurtman JJ, Caballero B, Wurtman RJ. A balanced carbohydrate: protein diet in the management of Par-kinson’s disease. Neurology 1991; 41(8): 1295-7.
[http://dx.doi.org/10.1212/WNL.41.8.1295] [PMID: 1866021]
[30]
Mena I, Cotzias GC. Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med 1975; 292(4): 181-4.
[http://dx.doi.org/10.1056/NEJM197501232920404] [PMID: 1109209]
[31]
Pincus JH, Barry K. Influence of dietary protein on motor fluctuations in Parkinson’s disease. Arch Neurol 1987; 44(3): 270-2.
[http://dx.doi.org/10.1001/archneur.1987.00520150026014] [PMID: 3827678]
[32]
Pincus JH, Barry KM. Plasma levels of amino acids correlate with motor fluctuations in parkinsonism. Arch Neurol 1987; 44(10): 1006-9.
[http://dx.doi.org/10.1001/archneur.1987.00520220012007] [PMID: 3632370]
[33]
Pincus JH, Barry KM. Dietary method for reducing fluctuations in Parkinson’s disease. Yale J Biol Med 1987; 60(2): 133-7.
[PMID: 3577210]
[34]
Simon N, Gantcheva R, Bruguerolle B, Viallet F. The effects of a normal protein diet on levodopa plasma kinetics in advanced Parkin-son’s disease. Parkinsonism Relat Disord 2004; 10(3): 137-42.
[http://dx.doi.org/10.1016/j.parkreldis.2003.10.004] [PMID: 15036167]
[35]
Robertson DR, Higginson I, Macklin BS, Renwick AG, Waller DG, George CF. The influence of protein containing meals on the pharmacokinetics of levodopa in healthy volunteers. Br J Clin Pharmacol 1991; 31(4): 413-7.
[http://dx.doi.org/10.1111/j.1365-2125.1991.tb05555.x] [PMID: 2049250]
[36]
Gillespie NG, Mena I, Cotzias GC, Bell MA. Diets affecting treatment of parkinsonism with levodopa. J Am Diet Assoc 1973; 62(5): 525-8.
[PMID: 4572702]
[37]
Eriksson T, Granérus AK, Linde A, Carlsson A. ‘On-off’ phenomenon in Parkinson’s disease: relationship between dopa and other large neutral amino acids in plasma. Neurology 1988; 38(8): 1245-8.
[http://dx.doi.org/10.1212/WNL.38.8.1245] [PMID: 3135513]
[38]
Tsui JK, Ross S, Poulin K, et al. The effect of dietary protein on the effi-cacy of L-dopa: a double-blind study. Neurology 1989; 39(4): 549-52.
[http://dx.doi.org/10.1212/WNL.39.4.549] [PMID: 2494567]
[39]
Carter JH, Nutt JG, Woodward WR, Hatcher LF, Trotman TL. Amount and distribution of dietary protein affects clinical response to levodopa in Parkinson’s disease. Neurology 1989; 39(4): 552-6.
[http://dx.doi.org/10.1212/WNL.39.4.552] [PMID: 2648188]
[40]
Barichella M, Marczewska A, De Notaris R, et al. Special low-protein foods amelio-rate postprandial off in patients with advanced Parkinson’s disease. Mov Disord 2006; 21(10): 1682-7.
[http://dx.doi.org/10.1002/mds.21003] [PMID: 16773618]
[41]
Barichella M, Savardi C, Mauri A, et al. Diet with LPP for renal patients increases daily energy expenditure and improves motor function in parkinsonian patients with motor fluctuations. Nutr Neurosci 2007; 10(3-4): 129-35.
[http://dx.doi.org/10.1080/10284150701414046] [PMID: 18019394]
[42]
Wang L, Xiong N, Huang J, et al. Protein-restricted diets for ameliorating motor fluctuations in Parkinson’s disease. Front Aging Neurosci 2017; 9: 206.
[http://dx.doi.org/10.3389/fnagi.2017.00206] [PMID: 28701947]
[43]
Pincus JH, Barry K. Protein redistribution diet restores motor function in patients with dopa-resistant “off” periods. Neurology 1988; 38(3): 481-3.
[http://dx.doi.org/10.1212/WNL.38.3.481] [PMID: 3126411]
[44]
Riley D, Lang AE. Practical application of a low-protein diet for Parkinson’s disease. Neurology 1988; 38(7): 1026-31.
[http://dx.doi.org/10.1212/WNL.38.7.1026] [PMID: 3386817]
[45]
Bracco F, Malesani R, Saladini M, Battistin L. Protein redistribution diet and antiparkinsonian response to levodopa. Eur Neurol 1991; 31(2): 68-71.
[http://dx.doi.org/10.1159/000116649] [PMID: 2044618]
[46]
Karstaedt PJ, Pincus JH. Protein redistribution diet remains effective in patients with fluctuating parkinsonism. Arch Neurol 1992; 49(2): 149-51.
[http://dx.doi.org/10.1001/archneur.1992.00530260049018] [PMID: 1736847]
[47]
Giménez-Roldán S, Mateo D. Predicting beneficial response to a protein-redistribution diet in fluctuating Parkinson’s disease. Acta Neurol Belg 1991; 91(4): 189-200.
[PMID: 1746241]
[48]
Virmani T, Tazan S, Mazzoni P, Ford B, Greene PE. Motor fluctuations due to interaction between dietary protein and levodopa in Parkinson’s disease. J Clin Mov Disord 2016; 3: 8.
[http://dx.doi.org/10.1186/s40734-016-0036-9] [PMID: 27231577]
[49]
Cereda E, Barichella M, Pedrolli C, Pezzoli G. Low-protein and protein-redistribution diets for Parkinson’s disease patients with mo-tor fluctuations: a systematic review. Mov Disord 2010; 25(13): 2021-34.
[http://dx.doi.org/10.1002/mds.23226] [PMID: 20669318]
[50]
Gordon PH, Frucht SJ. Neuroleptic malignant syndrome in advanced Parkinson’s disease. Mov Disord 2001; 16(5): 960-2.
[http://dx.doi.org/10.1002/mds.1166] [PMID: 11746631]
[51]
Cooper MK, Brock DG, McDaniel CM. Interaction between levodopa and enteral nutrition. Ann Pharmacother 2008; 42(3): 439-42.
[http://dx.doi.org/10.1345/aph.1K450] [PMID: 18272698]
[52]
Bonnici A, Ruiner CE, St-Laurent L, Hornstein D. An interaction between levodopa and enteral nutrition resulting in neuroleptic ma-lignant-like syndrome and prolonged ICU stay. Ann Pharmacother 2010; 44(9): 1504-7.
[http://dx.doi.org/10.1345/aph.1P242] [PMID: 20628041]
[53]
Hong CT, Chan L, Bai CH. The Effect of Caffeine on the Risk and Progression of Parkinson’s Disease: A Meta-Analysis. Nutrients 2020; 12(6): E1860.
[http://dx.doi.org/10.3390/nu12061860] [PMID: 32580456]
[54]
Camandola S, Plick N, Mattson MP. Impact of Coffee and Cacao Purine Metabolites on Neuroplasticity and Neurodegenerative Dis-ease. Neurochem Res 2019; 44(1): 214-27.
[http://dx.doi.org/10.1007/s11064-018-2492-0] [PMID: 29417473]
[55]
Canas PM, Porciúncula LO, Cunha GM, et al. Adenosine A2A re-ceptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein ki-nase pathway. J Neurosci 2009; 29(47): 14741-51.
[http://dx.doi.org/10.1523/JNEUROSCI.3728-09.2009] [PMID: 19940169]
[56]
Batalha VL, Pego JM, Fontinha BM, et al. Adenosine A(2A) receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Mol Psychiatry 2013; 18(3): 320-31.
[http://dx.doi.org/10.1038/mp.2012.8] [PMID: 22371048]
[57]
Shoulson I, Chase T. Caffeine and the antiparkinsonian response to levodopa or piribedil. Neurology 1975; 25(8): 722-4.
[http://dx.doi.org/10.1212/WNL.25.8.722] [PMID: 125389]
[58]
Nicoletti A, Zappia M, Group FS. Coffee consumption and risk of levodopa-induced dyskinesia in Parkinson’s disease: The FRAGAMP study. Mov Disord 2015; 30(13): 1854-6.
[http://dx.doi.org/10.1002/mds.26459] [PMID: 26769461]
[59]
Wills AM, Eberly S, Tennis M, et al. Caffeine consumption and risk of dyskinesia in CALM-PD. Mov Disord 2013; 28(3): 380-3.
[http://dx.doi.org/10.1002/mds.25319] [PMID: 23339054]
[60]
Deleu D, Jacob P, Chand P, Sarre S, Colwell A. Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkin-son disease. Neurology 2006; 67(5): 897-9.
[http://dx.doi.org/10.1212/01.wnl.0000233916.57415.9d] [PMID: 16966563]
[61]
Yu QJ, Yu SY, Zuo LJ, et al. Parkinson disease with constipation: clinical features and relevant factors. Sci Rep 2018; 8(1): 567.
[http://dx.doi.org/10.1038/s41598-017-16790-8] [PMID: 29330419]
[62]
Fernandez N, Carriedo D, Sierra M, et al. Hydrosoluble fiber (Plantago ovata husk) and levodopa II: experimental study of the pharmacokinetic interaction in the presence of carbidopa. Eur Neuropsychopharmacol 2005; 15(5): 505-9.
[http://dx.doi.org/10.1016/j.euroneuro.2005.01.006] [PMID: 16139167]
[63]
Garcia JJ, Fernandez N, Carriedo D, et al. Hydrosoluble fiber (Plantago ovata husk) and levodopa I: experimental study of the pharmacokinetic interaction. Eur Neuropsychopharmacol 2005; 15(5): 497-503.
[http://dx.doi.org/10.1016/j.euroneuro.2005.01.005] [PMID: 16139166]
[64]
Diez MJ, Garcia JJ, Prieto C, Fernandez N, Sahagun A, Sierra M. The hydrosoluble fiber Plantago ovata husk improves levodopa (with carbidopa) bioavailability after repeated administration. J Neurol Sci 2008; 271(1-2): 15-20.
[http://dx.doi.org/10.1016/j.jns.2008.03.007] [PMID: 18474374]
[65]
García JJ, Fernández N, Calle AP, Diez MJ, Sahagún A, Sierra M. Effects of Plantago ovata husk on levodopa (with Carbidopa) bioavailability in rabbits with autonomic gastrointestinal disorders. Drug Metab Dispos 2009; 37(7): 1434-42.
[http://dx.doi.org/10.1124/dmd.108.026229] [PMID: 19389862]
[66]
Fernandez-Martinez MN, Hernandez-Echevarria L, Sierra-Vega M, et al. A randomised clinical trial to evaluate the effects of Plantago ovata husk in Parkinson patients: changes in levodopa pharmacokinetics and biochemical parameters. BMC Complement Altern Med 2014; 14: 296.
[http://dx.doi.org/10.1186/1472-6882-14-296] [PMID: 25112783]
[67]
Astarloa R, Mena MA, Sánchez V, de la Vega L, de Yébenes JG. Clinical and pharmacokinetic effects of a diet rich in insoluble fiber on Parkinson disease. Clin Neuropharmacol 1992; 15(5): 375-80.
[http://dx.doi.org/10.1097/00002826-199210000-00004] [PMID: 1330307]
[68]
Fernandez N, Garcia JJ, Diez MJ, Sahagun AM, Díez R, Sierra M. Effects of dietary factors on levodopa pharmacokinetics. Expert Opin Drug Metab Toxicol 2010; 6(5): 633-42.
[http://dx.doi.org/10.1517/17425251003674364] [PMID: 20384552]
[69]
Nikolova G, Karamalakova Y, Gadjeva V. Reducing oxidative toxicity of L-dopa in combination with two different antioxidants: an essential oil isolated from Rosa Damascena Mill., and vitamin C. Toxicol Rep 2019; 6: 267-71.
[http://dx.doi.org/10.1016/j.toxrep.2019.03.006] [PMID: 30984563]
[70]
Nagayama H, Hamamoto M, Ueda M, Nito C, Yamaguchi H, Katayama Y. The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin Neuropharmacol 2004; 27(6): 270-3.
[http://dx.doi.org/10.1097/01.wnf.0000150865.21759.bc] [PMID: 15613930]
[71]
Golden RL, Mortati FS, Schroeter GA. Levodopa, pyridoxine, and the burning feet syndrome. JAMA 1970; 213(4): 628.
[http://dx.doi.org/10.1001/jama.1970.03170300072030] [PMID: 5468209]
[72]
Yahr MD, Duvoisin RC. Pyridoxine and levodopa in the treatment of Parkinsonism. JAMA 1972; 220(6): 861.
[http://dx.doi.org/10.1001/jama.1972.03200060085023] [PMID: 5067358]
[73]
Leon AS, Spiegel HE, Thomas G, Abrams WB. Pyridoxine antagonism of levodopa in parkinsonism. JAMA 1971; 218(13): 1924-7.
[http://dx.doi.org/10.1001/jama.1971.03190260040011] [PMID: 5171069]
[74]
Jameson HD. Pyridoxine for levodopa-induced dystonia. JAMA 1970; 211(10): 1700.
[http://dx.doi.org/10.1001/jama.1970.03170100062021] [PMID: 5467095]
[75]
Mars H. Levodopa, carbidopa, and pyridoxine in Parkinson disease. Metabolic interactions. Arch Neurol 1974; 30(6): 444-7.
[http://dx.doi.org/10.1001/archneur.1974.00490360020005] [PMID: 4827061]
[76]
Fahn S. “On-off” phenomenon with levodopa therapy in Parkinsonism. Clinical and pharmacologic correlations and the effect of intra-muscular pyridoxine. Neurology 1974; 24(5): 431-41.
[http://dx.doi.org/10.1212/WNL.24.5.431] [PMID: 4857104]
[77]
Cotzias GC, Papavasiliou PS. Blocking the negative effects of pyridoxine on patients receiving levodopa. JAMA 1971; 215(9): 1504-5.
[http://dx.doi.org/10.1001/jama.1971.03180220084025] [PMID: 5107638]
[78]
Papavasiliou PS, Cotzias GC, Düby SE, Steck AJ, Fehling C, Bell MA. Levodopa in Parkinsonism: potentiation of central effects with a peripheral inhibitor. N Engl J Med 1972; 286(1): 8-14.
[http://dx.doi.org/10.1056/NEJM197201062860102] [PMID: 4550085]
[79]
Klawans HL, Ringel SP, Shenker DM. Failure of vitamin B6 to reverse the L-dopa effect in patients on a dopa decarboxylase inhibi-tor. J Neurol Neurosurg Psychiatry 1971; 34(6): 682-6.
[http://dx.doi.org/10.1136/jnnp.34.6.682] [PMID: 5158783]
[80]
Rojo-Sebastián A, González-Robles C, García de Yébenes J. Vitamin B6 deficiency in patients with Parkinson disease treated with levodopa/carbidopa. Clin Neuropharmacol 2020; 43(5): 151-7.
[http://dx.doi.org/10.1097/WNF.0000000000000408] [PMID: 32947426]
[81]
Romagnolo A, Merola A, Artusi CA, Rizzone MG, Zibetti M, Lopiano L. Levodopa-induced neuropathy: a systematic review. Mov Disord Clin Pract (Hoboken) 2018; 6(2): 96-103.
[http://dx.doi.org/10.1002/mdc3.12688] [PMID: 30838307]
[82]
Loens S, Chorbadzhieva E, Kleimann A, Dressler D, Schrader C. Effects of levodopa/carbidopa intestinal gel versus oral levodo-pa/carbidopa on B vitamin levels and neuropathy. Brain Behav 2017; 7(5): e00698.
[http://dx.doi.org/10.1002/brb3.698] [PMID: 28523235]
[83]
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis 2020; 11(2): 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[84]
Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. Ferroptosis and its potential role in the physio-pathology of Parkinson’s Disease. Prog Neurobiol 2021; 196: 101890.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101890] [PMID: 32726602]
[85]
Tay HS, Soiza RL. Systematic review and meta-analysis: what is the evidence for oral iron supplementation in treating anaemia in el-derly people? Drugs Aging 2015; 32(2): 149-58.
[http://dx.doi.org/10.1007/s40266-015-0241-5] [PMID: 25644019]
[86]
Campbell NR, Hasinoff B. Ferrous sulfate reduces levodopa bioavailability: chelation as a possible mechanism. Clin Pharmacol Ther 1989; 45(3): 220-5.
[http://dx.doi.org/10.1038/clpt.1989.21] [PMID: 2920496]
[87]
Campbell NR, Rankine D, Goodridge AE, Hasinoff BB, Kara M. Sinemet-ferrous sulphate interaction in patients with Parkinson’s disease. Br J Clin Pharmacol 1990; 30(4): 599-605.
[http://dx.doi.org/10.1111/j.1365-2125.1990.tb03819.x] [PMID: 2291872]
[88]
Zhang Q, Jin B, Wang X, et al. The mono(catecholamine) derivatives as iron chelators: synthesis, solution thermodynamic stability and antioxidant properties research. R Soc Open Sci 2018; 5(6): 171492.
[http://dx.doi.org/10.1098/rsos.171492] [PMID: 30110407]
[89]
Feraccru (Norgine B.V.) Product characteristics. Available from: https://www.medicines.org.uk/emc/product/2083/smpc#gref (accessed Apr 30, 2021).
[90]
Karstaedt PJ, Pincus JH. Aspartame use in Parkinson’s disease. Neurology 1993; 43(3 Pt 1): 611-3.
[http://dx.doi.org/10.1212/WNL.43.3_Part_1.611] [PMID: 8451009]
[91]
Persiani S, Rocchetti M, Pacciarini MA, Holt B, Toon S, Strolin-Benedetti M. The effect of food on cabergoline pharmacokinetics and tolerability in healthy volunteers. Biopharm Drug Dispos 1996; 17(5): 443-55.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199607)17:5<443::AID-BDD443>3.0.CO;2-U] [PMID: 8830979]
[92]
Brefel C, Thalamas C, Rayet S, et al. Effect of food on the pharmacokinetics of ropinirole in parkinsonian patients. Br J Clin Pharmacol 1998; 45(4): 412-5.
[http://dx.doi.org/10.1046/j.1365-2125.1998.t01-1-00704.x] [PMID: 9578193]
[93]
Tompson DJ, Vearer D. Steady-state pharmacokinetic properties of a 24-hour prolonged-release formulation of ropinirole: results of two randomized studies in patients with Parkinson’s disease. Clin Ther 2007; 29(12): 2654-66.
[http://dx.doi.org/10.1016/j.clinthera.2007.12.010] [PMID: 18201581]
[94]
Hattori N, Hasegawa K, Sakamoto T. Pharmacokinetics and effect of food after oral administration of prolonged-release tablets of ropinirole hydrochloride in Japanese patients with Parkinson’s disease. J Clin Pharm Ther 2012; 37(5): 571-7.
[http://dx.doi.org/10.1111/j.1365-2710.2012.01336.x] [PMID: 22390368]
[95]
Drewe J, Mazer N, Abisch E, Krummen K, Keck M. Differential effect of food on kinetics of bromocriptine in a modified release capsule and a conventional formulation. Eur J Clin Pharmacol 1988; 35(5): 535-41.
[http://dx.doi.org/10.1007/BF00558250] [PMID: 3234463]
[96]
Kopitar Z, Vrhovac B, Povsic L. Plavsić F.; Francetić I.; Urbancic, J. The effect of food and metoclopramide on the pharmacokinetics and side effects of bromocriptine. Eur J Drug Metab Pharmacokinet 1991; 16(3): 177-81.
[http://dx.doi.org/10.1007/BF03189956] [PMID: 1814735]
[97]
Parlodel® (Novartis). Prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/017962s065s068lbl.pdf (accessed 30 Apr, 2021).
[98]
REQUIP® (GSK). Prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020658s018s020s021lbl.pdf (accessed 30 Apr, 2021).
[99]
Sevrioukova IF, Poulos TL. Structural and mechanistic insights into the interaction of cytochrome P4503A4 with bromoergocryptine, a type I ligand. J Biol Chem 2012; 287(5): 3510-7.
[http://dx.doi.org/10.1074/jbc.M111.317081] [PMID: 22157006]
[100]
Frampton JE. Rotigotine transdermal patch: A review in Parkinson’s disease. CNS Drugs 2019; 33(7): 707-18.
[http://dx.doi.org/10.1007/s40263-019-00646-y] [PMID: 31243728]
[101]
Tasmar (Valeant) Prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020697s004lbl.pdf (accessed Apr 30, 2021).
[102]
Jorga K, Fotteler B, Banken L, Snell P, Steimer JL. Population pharmacokinetics of tolcapone in parkinsonian patients in dose find-ing studies. Br J Clin Pharmacol 2000; 49(1): 39-48.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00113.x] [PMID: 10606836]
[103]
Almeida L, Rocha JF, Falcão A, et al. Pharmacokinetics, pharmacodynamics and tolerability of opicapone, a novel catechol-O-methyltransferase inhibitor, in healthy subjects: prediction of slow enzyme-inhibitor complex dissociation of a short-living and very long-acting inhibitor. Clin Pharmacokinet 2013; 52(2): 139-51.
[http://dx.doi.org/10.1007/s40262-012-0024-7] [PMID: 23248072]
[104]
Santos AF, Ferreira J, Lees A, Hernandez B, Rocha F, Soares-da-Silva P. Effect of food on Opicapone pharmacokinetics and pharmacodynamics. Eur J Neurol 2017; 2017(24): S123-444.
[105]
Ongentys (Neurocrine Biosciences) Prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212489s000lbl.pdf (accessed May 14, 2021).
[106]
Vandenberg CM. MAOIs and transdermal delivery. J Clin Psychiatry 2012; 73(9): e28.
[http://dx.doi.org/10.4088/JCP.11096tx6c] [PMID: 23059160]
[107]
Barrett JS, Rohatagi S, DeWitt KE, Morales RJ, DiSanto AR. The effect of dosing regimen and food on the bioavailability of the extensively metabolized, highly variable drug eldepryl® (selegiline hydrochloride). Am J Ther 1996; 3(4): 298-313.
[http://dx.doi.org/10.1097/00045391-199604000-00008] [PMID: 11862265]
[108]
Eldepryl (Orion Pharma) Product characteristics. Available from: https://www.medicines.org.uk/emc/product/2251/smpc#gref (accessed May 17, 2021).
[109]
Zelapar (Valeant) Prescribing information Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021479s010lbl.pdf(accessed May 14, 2021).
[110]
Gu X, Zhang Y, Song M, Hang T, Yang L, Wen A. Food effects on the human pharmacokinetics of rasagiline mesylate. Zhongguo Yaoke Daxue Xuebao 2013; 44: 85-8.
[111]
Li Y, Qi L, Bai H, et al. Pharmacokinetics and Bioequiva-lence of Rasagiline Tablets in Chinese Healthy Subjects Under Fasting and Fed Conditions: An Open, Randomized, Single-Dose, Double-Cycle, Two-Sequence. Crossover Trial Front Pharmacol 2020; 11: 571747.
[http://dx.doi.org/10.3389/fphar.2020.571747] [PMID: 33364947]
[112]
Marzo A, Dal Bo L, Monti NC, et al. Pharmacokinetics and pharmacodynam-ics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacol Res 2004; 50(1): 77-85.
[http://dx.doi.org/10.1016/j.phrs.2003.12.004] [PMID: 15082032]
[113]
Seithel-Keuth A, Johne A, Freisleben A, Kupas K, Lissy M, Krösser S. Absolute Bioavailability and Effect of Food on the Disposi-tion of Safinamide Immediate Release Tablets in Healthy Adult Subjects. Clin Pharmacol Drug Dev 2013; 2(1): 79-89.
[http://dx.doi.org/10.1002/cpdd.2] [PMID: 27121562]
[114]
Andersen G, Marcinek P, Sulzinger N, Schieberle P, Krautwurst D. Food sources and biomolecular targets of tyramine. Nutr Rev 2019; 77(2): 107-15.
[http://dx.doi.org/10.1093/nutrit/nuy036] [PMID: 30165672]
[115]
Hsu TH, Bianchine JR, Preziosi TJ, Messiha FS. Effect of pyridoxine on levodopa metabolism in normal and parkinsonian sub-jects. Proc Soc Exp Biol Med 1973; 143(2): 578-81.
[http://dx.doi.org/10.3181/00379727-143-37370] [PMID: 4709027]
[116]
Finberg JP, Gillman K. Selective inhibitors of monoamine oxidase type B and the “cheese effect”. Int Rev Neurobiol 2011; 100: 169-90.
[http://dx.doi.org/10.1016/B978-0-12-386467-3.00009-1] [PMID: 21971008]
[117]
Haffner SKM, Reseski K, Greiling D, Jones PS, Fuder H. Supratherapeutic doses of EVT 302, a new selective MAO-B inhibitor, do not produce clinically significant increases in tyramine induced blood pressure rise in healthy male subjects. Br J Clin Pharmacol 2010; 70: 8.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03777.x]
[118]
Elsworth JD, Glover V, Reynolds GP, et al. Deprenyl admin-istration in man: a selective monoamine oxidase B inhibitor without the ‘cheese effect’. Psychopharmacology (Berl) 1978; 57(1): 33-8.
[http://dx.doi.org/10.1007/BF00426954] [PMID: 96466]
[119]
Stern GM, Lees AJ, Sandler M. Recent observations on the clinical pharmacology of (-)deprenyl. J Neural Transm (Vienna) 1978; 43(3-4): 245-51.
[http://dx.doi.org/10.1007/BF01246961] [PMID: 745017]
[120]
Goren T, Adar L, Sasson N, Weiss YM. Clinical pharmacology tyramine challenge study to determine the selectivity of the monoam-ine oxidase type B (MAO-B) inhibitor rasagiline. J Clin Pharmacol 2010; 50(12): 1420-8.
[http://dx.doi.org/10.1177/0091270010369674] [PMID: 20445015]
[121]
Marquet A, Kupas K, Johne A, et al. The effect of safinamide, a novel drug for Parkinson’s disease, on pressor response to oral tyramine: a randomized, double-blind, clinical trial. Clin Pharmacol Ther 2012; 92(4): 450-7.
[http://dx.doi.org/10.1038/clpt.2012.128] [PMID: 22948897]
[122]
deMarcaida JA, Schwid SR, White WB, et al. Effects of tyramine administra-tion in Parkinson’s disease patients treated with selective MAO-B inhibitor rasagiline. Mov Disord 2006; 21(10): 1716-21.
[http://dx.doi.org/10.1002/mds.21048] [PMID: 16856145]
[123]
Schulz R, Antonin KH, Hoffmann E, et al. Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline. Clin Pharmacol Ther 1989; 46(5): 528-36.
[http://dx.doi.org/10.1038/clpt.1989.181] [PMID: 2510962]
[124]
Preskorn SH. Why the transdermal delivery of selegiline (6 mg/24 hr) obviates the need for a dietary restriction on tyramine. J Psychiatr Pract 2006; 12(3): 168-72.
[http://dx.doi.org/10.1097/00131746-200605000-00006] [PMID: 16732136]
[125]
Prasad A, Glover V, Goodwin BL, Sandler M, Signy M, Smith SE. Enhanced pressor sensitivity to oral tyramine challenge follow-ing high dose selegiline treatment. Psychopharmacology (Berl) 1988; 95(4): 540-3.
[http://dx.doi.org/10.1007/BF00172970] [PMID: 3145523]
[126]
McGrath PJ, Stewart JW, Harrison W, Wager S, Nunes EN, Quitkin FM. A placebo-controlled trial of L-deprenyl in atypical de-pression. Psychopharmacol Bull 1989; 25(1): 63-7.
[PMID: 2505303]
[127]
Di Stefano AF, Rusca A. Pressor response to oral tyramine during co-administration with safinamide in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol 2011; 384(6): 505-15.
[http://dx.doi.org/10.1007/s00210-011-0674-2] [PMID: 21850574]
[128]
Zarowitz BJ. Oral solid potassium chloride and anticholinergic medications: a new drug interaction for an old drug? Geriatr Nurs 2006; 27(6): 329-33.
[http://dx.doi.org/10.1016/j.gerinurse.2006.10.015] [PMID: 17174738]
[129]
Gueta I, Markovits N, Halkin H, Loebstein R. Concomitant oral potassium chloride and anticholinergic therapy is associated with upper gastrointestinal bleeding: A cohort study. Br J Clin Pharmacol 2021; 87(4): 2064-9.
[http://dx.doi.org/10.1111/bcp.14616] [PMID: 33068044]
[130]
Sharma VD, Lyons KE, Pahwa R. Amantadine extended-release capsules for levodopa-induced dyskinesia in patients with Parkin-son’s disease. Ther Clin Risk Manag 2018; 14: 665-73.
[http://dx.doi.org/10.2147/TCRM.S144481] [PMID: 29695911]
[131]
deVries T, Dentiste A, Handiwala L, Jacobs D. Bioavailability and pharmacokinetics of once-daily amantadine extended-release tab-lets in healthy volunteers: results from three randomized, crossover, open-label, phase 1 studies. Neurol Ther 2019; 8(2): 449-60.
[http://dx.doi.org/10.1007/s40120-019-0144-1] [PMID: 31372936]
[132]
Vanover KE, Robbins-Weilert D, Wilbraham DG, et al. The effects of food on the pharmacokinetics of a formulated ACP-103 tablet in healthy volunteers. J Clin Pharmacol 2007; 47(7): 915-9.
[http://dx.doi.org/10.1177/0091270007299361] [PMID: 17495279]
[133]
Clarke A, Johnson ES, Mallard N, et al. A new low-dose formula-tion of selegiline: clinical efficacy, patient preference and selectivity for MAO-B inhibition. J Neural Transm (Vienna) 2003; 110(11): 1257-71.
[http://dx.doi.org/10.1007/s00702-003-0042-6] [PMID: 14628190]
[134]
Simpson GWK, Pi E, Razani J, Sloane RB. Monoamine oxidase inhibition and tyramine sensitivity in L -deprenyl-treated subjects. Psychopharmacol Bull 1983; 19: 340-2.
[135]
Durakovic ZVD. Pharmacodynamics and pharmacokinetics in the elderly. Period Biol 2013; 115: 517-20.
[136]
Navaratnarajah A, Jackson SHD. The physiology of ageing. Medicine (Baltimore) 2017; 45: 6-10.
[http://dx.doi.org/10.1016/j.mpmed.2016.10.008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy