Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

4-Thiofuranoid Glycal: Versatile Glycosyl Donor for the Selective Synthesis of β-anomer of 4'-thionucleoside and its Biological Activities

Author(s): Kazuhiro Haraguchi*, Hiroki Kumamoto and Hiromichi Tanaka

Volume 29, Issue 21, 2022

Published on: 20 January, 2022

Page: [3684 - 3731] Pages: 48

DOI: 10.2174/0929867328666211115121434

Price: $65

Abstract

The first highly diastereoselective synthesis of β-anomers of 4'-thionucleosides has been carried out by means of electrophilic glycosidation utilizing 3,5-O-(di-tertbutylsilylene) (DTBS)-4-thiofuranoid glycal as a glycosyl donor. The resulting glycosides were transformed into ribo-, 2'-deoxy-, and arabinofuranosyl nucleosides through a chemical transformation of the 2'-substituent. The additive Pummerer reaction of the glycal Soxide gave 1,2-di-O-acetyl-3,5-O-DTBS-4-thioribofuranose. The utility of the DTBSprotected 4-thioribofuranose has been demonstrated by the preparation of 4'-thio analogues of pyrimidine- and purine-4'-thioribonucleosides based on the Vorbrüggen glycosidation. Synthesis of 4'-thio-counterpart of C-nucleoside antibiotic tiazofurin has also been carried out. α-Face selective hydroboration of 1-C-aryl- or 1-C-heteroaryl-glycals obtained by cross-coupling of 1-tributylstannylglycal has furnished the respective β- anomer of 4'-thio-C-ribonucleosides, including 4'-thio analogue of nucleoside antibiotic pseudouridine and 9-deazaadenosine. On the basis of lithiation chemistry, 1-C- and 2-Ccarbon- carbon-substituted 3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3- diyl) (TIPDS)- 4- thiofuranoid glycal were synthesized. These glycals enabled us to prepare 1'-C- and 2'-β- C-carbon-substituted 2'-deoxy-4'-thionucleosides, including thio-counterpart of antitumor nucleoside antibiotic angustmycin C. Furthermore, 1'-C-methyl-4'-thiothymidine emerged as a potent inhibitor of angiogenesis. In addition, 1'-C-methyl-4'-thiothymidine exhibited more potent inhibitory activity against thymidine kinase-deficient mutant of herpes virus than that of ganciclovir. Among the 4'-substituted 4'-thiothymidines, the 4'- C-cyano- and 4'-C-ethynyl derivatives inhibited replication of HIV variant resistant to 3TC (HIVM184V) as potently as HIV-1IIIB. In terms of the value of selectivity index (SI), 4'-C-cyano-4'-thiothymidine showed a 3-fold selective index (SI) than that of the corresponding thymidine derivative. Furthermore, 4'-C-ethynyl-2'-deoxy-4'-thioguanosine has a 20-fold better value (>18,200) than that of 2'-deoxyguanosine counterpart (933). Furthermore, 4'-azido-4'-thiothymidine emerged as a selective and potent anti-EBV agent. In terms of antineoplastic activity, 4'-azido- and 4'-C-fluoromethyl-2'-deoxy-4'-thiocytidine inhibited proliferation of human B-cell (CCRF-SB) and T-cell leukemia (Molt-4) cell lines, although the parent compound 2'-deoxy-4'-thiocytidine did not exhibit any cytotoxicity up to 100 μM. These facts concerning the biological activities suggested that replacement of the furanose oxygen with a sulfur atom is a promising approach for the development of less toxic antiviral and antineoplastic nucleoside antimetabolites. 4'- Thionucleoside also acts as a monomer for oligonucleotides (ONs) therapeutics, exhibiting superior biological properties. Therefore, this review provides a wide range of potential monomers for antisense ON and siRNA.

Keywords: Nucleoside, thio-sugar, glycal, glycosidation, antineoplastic activity, antiviral activity.

[1]
Huryn, D.M.; Okabe, M. AIDS-driven nucleoside chemistry. Chem. Rev., 1992, 92, 1745-1768.
[http://dx.doi.org/10.1021/cr00016a004]
[2]
Chu, C.K.; Baker, D.C. Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Plenum Press: New York, 1993.
[3]
Franchetti, P.; Grifantini, M. Nucleoside and nonnucleoside IMP dehydrogenase inhibitors as antitumor and antiviral agents Curr. Med. Chem., 1999, 6(7), 599-614.
[PMID: 10390603]
[4]
Ichikawa, E.; Kato, K. Sugar-modified nucleosides in past 10 years, a review. Curr. Med. Chem., 2001, 8(4), 385-423.
[http://dx.doi.org/10.2174/0929867013373471] [PMID: 11172696]
[5]
Mimetics, N. Their Chemistry and Biological Properties; Simons, C., Ed.; Gordon and Breach Science Publishers: Amsterdam, 2001.
[6]
Ichikawa, E.; Kato, K. Synthesis of oxetanocin A and related unusual nucleosides with bis(hydroxymethyl)-branched sugars Synthesis, 2002, 1-28.
[7]
Chu, C.K. Recent Advances in Nucleosides: Chemistry and Chemotherapy; Elsevier B.V.: Amsterdam, 2002.
[8]
Chu, C.K. Antiviral Nucleosides: Chemical Synthesis and Chemotherapy; Elsevier B.V.: Amsterdam, 2003.
[9]
Vaghefi, M. Nucleoside Triphosphates and their Analogs: Chemistry, Biotechnology, and Biological Applications; Tayler & Francis: Boca Raton, London, New York, Singapore, 2005.
[10]
Lawton, P. Purine analogues as antiparasitic agents. Expert Opin The Patents, 2005, 15, 987-994.
[http://dx.doi.org/10.1517/13543776.15.8.987]
[11]
Richardson, S.K.; Howell, A.R.; Taboada, R. Synthesis and properties of psico-nucleosides. Org. Prep. Proced. Int., 2006, 38, 101-176.
[http://dx.doi.org/10.1080/00304940609355987]
[12]
Peters, G.J. Deoxynucleoside Analogs in Cancer Therapy; Humana Press: New Jersey, 2006.
[13]
De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discov., 2007, 6(12), 1001-1018.
[http://dx.doi.org/10.1038/nrd2424] [PMID: 18049474]
[14]
Herdewijn, P., Ed.; Modified Nucleosides in Biochemistry, Biotechnology and Medicine; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, , 2008.
[15]
Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chemical synthesis of heterocyclic-sugar nucleoside analogues. Chem. Rev., 2010, 110(6), 3337-3370.
[http://dx.doi.org/10.1021/cr800464r] [PMID: 20232792]
[16]
De Clercq, E. Antiviral Drug Design; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim , 2011.
[17]
Van Calenbergh, S.; Pochet, S.; Munier-Lehmann, H. Drug design and identification of potent leads against Mycobacterium tuberculosis thymidine monophosphate kinase. Curr. Top. Med. Chem., 2012, 12(7), 694-705.
[http://dx.doi.org/10.2174/156802612799984580] [PMID: 22283813]
[18]
Merino, P. Chemical Synthesis of Nucleoside Analogues; John Wiley & Sons: Hoboken, New Jersey, 2013.
[19]
De Clercq, E. Highlights in antiviral drug research: antivirals at the horizon. Med. Res. Rev., 2013, 33(6), 1215-1248.
[http://dx.doi.org/10.1002/med.21256] [PMID: 22553111]
[20]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[21]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[22]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev., 2016, 116(23), 14379-14455.
[http://dx.doi.org/10.1021/acs.chemrev.6b00209] [PMID: 27960273]
[23]
Yokoyama, M. Synthesis and biological activity of thionucleosides. Synthesis, 2000, 1637-1655.
[http://dx.doi.org/10.1055/s-2000-8194]
[24]
Gunaga, P.; Moon, H-R.; Choi, W-J.; Shin, D-H.; Park, J.G.; Jeong, L.S. Recent advances in 4′-thionucleosides as potential antiviral and antitumor agents. Curr. Med. Chem., 2004, 11(19), 2585-2637.
[http://dx.doi.org/10.2174/0929867043364478] [PMID: 15544465]
[25]
Mulamoottil, V.A.; Majik, M.S.; Chandra, G.; Jeong, L.S. Recent advances in synthesis and biological activity of 4′-thionucleosides.In: Chemical Synthesis of Nucleoside Analogues; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013, pp. 655-697.
[http://dx.doi.org/10.1002/9781118498088.ch14]
[26]
Rodrigues, L.; Tilve, S.G.; Majik, M.S. Synthetic access to thiolane-based therapeutics and biological activity studies. Eur. J. Med. Chem., 2021, 224, 113659-113690.
[http://dx.doi.org/10.1016/j.ejmech.2021.113659] [PMID: 34237621]
[27]
Jeong, L.S.; Choe, S.A.; Gunaga, P.; Kim, H.O.; Lee, H.W.; Lee, S.K.; Tosh, D.K.; Patel, A.; Palaniappan, K.K.; Gao, Z.G.; Jacobson, K.A.; Moon, H.R. Discovery of a new nucleoside template for human A3 adenosine receptor ligands: D-4′-thioadenosine derivatives without 4′-hydroxymethyl group as highly potent and selective antagonists. J. Med. Chem., 2007, 50(14), 3159-3162.
[http://dx.doi.org/10.1021/jm070259t] [PMID: 17555308]
[28]
Okano, Y.; Saito-Tarashima, N.; Kurosawa, M.; Iwabu, I.; Ota, M.; Watanabe, T.; Kato, F.; Hishiki, T.; Fujimuro, M.; Minakawa, N. Synthesis and biological evaluation of novel imidazole nucleosides as potential anti-dengue virus agents. Bioorg. Med. Chem., 2019, 27, 2181-2186.
[http://dx.doi.org/10.1016/j.bmc.2019.04.015] [PMID: 31003866]
[29]
Inoue, N.; Minakawa, N.; Matsuda, A. Synthesis and properties of 4′-ThioDNA: unexpected RNA-like behavior of 4′-ThioDNA. Nucleic Acids Res., 2006, 34(12), 3476-3483.
[http://dx.doi.org/10.1093/nar/gkl491] [PMID: 16855286]
[30]
Watts, J.K.; Damha, M.J. 2‘F-Arabinonucleic acids (2′F-ANA)-history, properties, ans new frontiers. Can. J. Chem., 2008, 86, 641-656.
[http://dx.doi.org/10.1139/v08-049]
[31]
Maeda, R.; Saito-Tarashima, N.; Wakamatsu, H.; Natori, Y.; Minakawa, N.; Yoshimura, Y. Synthesis and properties of 4′-ThioLNA/BNA. Org. Lett., 2021, 23, 4062-4066.
[http://dx.doi.org/10.1021/acs.orglett.1c01306] [PMID: 33938754]
[32]
Inoue, N.; Shionoya, A.; Minakawa, N.; Kawakami, A.; Ogawa, N.; Matsuda, A. Amplification of 4′-thioDNA in the presence of 4′-thio-dTTP and 4′-thio-dCTP, and 4′-thioDNA-directed transcription in vitro and in mammalian cells. J. Am. Chem. Soc., 2007, 129(50), 15424-15425.
[http://dx.doi.org/10.1021/ja075953c] [PMID: 18034484]
[33]
Vorbrüggen, H.; Kroliliewicz, K.; Bennua, B. Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber., 1981, 114, 1234-1255.
[http://dx.doi.org/10.1002/cber.19811140404]
[34]
Vorbrüggen, H.; Hofle, G. On the mechanism of nucleoside synthesis. ibid, 1981, 18, 784-787.
[35]
Bobek, M.; Bloch, A.; Parthasarathy, R.; Whistler, R.L. Synthesis and biological activity of 5-fluoro-4′-thiouridine and some related nucleosides. J. Med. Chem., 1975, 18(8), 784-787.
[http://dx.doi.org/10.1021/jm00242a004] [PMID: 808609]
[36]
Uenishi, J.; Takahashi, K.; Motoyama, M.; Akashi, H.; Sakai, T. Synthesis and antitumor activities of D- and L-2′-deoxy-4′-thiopyrimidine nucleosides. Nucleosides Nucleotides, 1994, 13, 1347-1361.
[http://dx.doi.org/10.1080/15257779408012157]
[37]
Inguaggiato, G.; Jasamai, M.; Smith, J.E.; Slater, M.; Simons, C. Novel triazole 2′-deoxy-4′-thionucleosides: Stereoselective synthesis and biological evaluation. Nucleosides Nucleotides, 1999, 18(3), 457-467.
[http://dx.doi.org/10.1080/15257779908043089] [PMID: 10358943]
[38]
Naka, T.; Nishizono, T. MInakawa, N.; Matsuda, A. Investigation of the stereoselective coupling of thymine with meso-thiolane-3.4-diol-1-oxide derivatives via the Pummerer reaction. Tetrahedron Lett., 1999, 40, 6297-6300.
[http://dx.doi.org/10.1016/S0040-4039(99)01287-3]
[39]
Naka, T.; Minakawa, N.; Abe, H.; Kaga, D.; Mastuda, A. The stereoselective synthesis of 4′-β-thioribonucleosides via the Pummerer reaction. J. Am. Chem. Soc., 2000, 122, 7233-7243.
[http://dx.doi.org/10.1021/ja000541o]
[40]
Collins, P.M.; Ferrier, R.J. Monosaccharides, Their Chemistry and Their Roles in Natural Products; John Wiley & Sons: Chichester, U. K., 1995, pp. 317-326.
[41]
Gomez, A.M.; Casillas, M.; Barrio, A.; Gawel, A.; Lopez, J.C. Synthesis of pyranopid and furanoid glycals from glycosyl sulfoxides by treatment with organolithium reagents. Eur. J. Org. Chem., 2008, 3933-3942.
[http://dx.doi.org/10.1002/ejoc.200800318]
[42]
Robles, R.; Rodriguez, C.; Izquierdo, I.; Plaza, M.T.; Mota, A. An efficient and highly stereoselective synthesis of nucleoside derivatives from furanoid 1,2-diols. Tetrahedron Asymmetry, 1997, 8, 2959-2965.
[http://dx.doi.org/10.1016/S0957-4166(97)00332-7]
[43]
Diaz, Y.; El-laghdach, A.; Castillon, S. Synthesis of 2′-deoxy-2′-phenylselenenyl-furanosyl nucleosides from glycals using electrophilic selenium reagents. conversion into 2′-deoxynucleosides. Tetrahedron, 1997, 53, 10921-10938.
[http://dx.doi.org/10.1016/S0040-4020(97)00697-2]
[44]
Diaz, Y.; El-laghdach, A.; Matheu, M.I.; Castillon, S. Stereoselective synthesis of 2′,3′-dideoxynucleosides by addition of selenium electrophiles to glycals. A formal synthesis of D4T from 2-dfeoxyribose. J. Org. Chem., 1997, 62, 1501-1505.
[http://dx.doi.org/10.1021/jo9616825]
[45]
Chao, Q.; Zhang, J.; Pickering, I.; Jahnke, T.S.; Nair, V. Concise and stereospecific synthesis of novel bicyclic dideoxynucleosides as potent antiviral agents. Tetrahedron, 1998, 54, 3113-3124.
[http://dx.doi.org/10.1016/S0040-4020(98)00061-1]
[46]
Tanaka, H.; Haraguchi, K.; Kumamoto, H.; Baba, M.; Cheng, Y-C. 4′-Ethynylstavudine (4′-Ed4T) has potent anti-HIV-1 activity with reduced toxicity and shows a unique activity profile against drug-resistant mutants. Antivir. Chem. Chemother., 2005, 16(4), 217-221.
[http://dx.doi.org/10.1177/095632020501600402] [PMID: 16130520]
[47]
Haraguch, K.; Takeda, S.; Kubota, Y.; Kumamoto, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Paintsil, E.; Cheng, Y-C. From the chemistry of epoxy-sugar nucleosides to the discovery of anti-HIV agent Festinavir. Curr. Pharm. Des., 2013, 19, 1880-1897.
[http://dx.doi.org/10.2174/1381612811319100011] [PMID: 23092278]
[48]
Haraguchi, K.; Takeda, S.; Kubota, Y.; Kumamoto, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Paintsil, E.; Cheng, Y-C.; Urata, Y. Next generation anti-HIV agent 4′-ethynylstavudine: from the bench to the clinic. Front. Clin. Drug Res., 2015, 1, 123-184.
[http://dx.doi.org/10.2174/9781608058969114010007]
[49]
Miller, J.A.; Pugh, A.W.; Ullah, G.M. Synthesis of 4-thiofuranoid 1,2-glycals and their application to stereoselective synthesis of 4′-thionucleosides. Tetrahedron Lett., 2000, 41, 3265-3268.
[http://dx.doi.org/10.1016/S0040-4039(00)00366-X]
[50]
Miller, J.A.; Pugh, A.W.; Ullah, G.M. 2,2′-Anhydro-4′-thionucleosides: precursors for 2′-azido- and 2′-chloro-4′-thionucleosides and for a novel thiolane to thietane rearrangement. Nucleosides Nucleotides Nucleic Acids, 2000, 19(9), 1475-1486.
[http://dx.doi.org/10.1080/15257770008033855] [PMID: 11092316]
[51]
Haraguchi, K.; Nishikawa, A.; Sasakura, E.; Tanaka, H.; Nakamura, K.T.; Miyasaka, T. Electrophilic addition to 4-thio furanoid glycal: a highly stereoselective entry to 2′-deoxy-4′-thio pyrimidine nucleosides. Tetrahedron Lett., 1998, 39, 3713-3716.
[http://dx.doi.org/10.1016/S0040-4039(98)00543-7]
[52]
Haraguchi, K.; Takahashi, H.; Shiina, N.; Horii, C.; Yoshimura, Y.; Nishikawa, A.; Sasakura, E.; Nakamura, K.T.; Tanaka, H. Stereoselective synthesis of the β-anomer of 4′-thionucleosides based on electrophilic glycosidation to 4-thiofuranoid glycals. J. Org. Chem., 2002, 67(17), 5919-5927.
[http://dx.doi.org/10.1021/jo020037x] [PMID: 12182623]
[53]
Branalt, J.; Kvarnstrom, I.; Niklasson, G.; Svensson, S.C. T.; Classon, B.; Samuelsson, B. Synthesis of 2,3-dideoxy3-C-(hydroxymethyl)-4-thionucleosides as potential inhibitor of HIV. ibid, 1994, 59, 1783-1788.
[54]
Branalt, J.; Kvarnstrom, I.; Niklasson, G.; Svensson, S.C. T.; Classon, B.; Samuelsson, B. A new synthesis of 4- thiofuranosides via regioselective opening of an episulfide with allylmagnesium bromide. ibid, 1994, 59, 4430-4432.
[55]
Walker, J.A.; Chen, J.J.; Wise, D.S.; Townsend, L.B. A facile, multigram synthesis of ribofuranoid glycals. J. Org. Chem., 1996, 61, 2219-2221.
[http://dx.doi.org/10.1021/jo951376b]
[56]
Dyson, M.R.; Coe, P.L.; Walker, R.T. An improved synthesis of benzyl 3,5-O-benzyl-2-deoxy-1,4-dithio-D-erythro-pentofuranoside, an intermediate in the synthesis of 4′-thionucleosides. Carbohydr. Res., 1991, 216, 237-248.
[http://dx.doi.org/10.1016/0008-6215(92)84165-O]
[57]
Yuasa, H.; Kamata, Y.; Hashimoto, H. Relative nucleophilicity of the two sulfur atoms in 1,5-dithioglucopyranoside. Angew. Chem. Int. Ed. Engl., 1997, 36, 868-869.
[http://dx.doi.org/10.1002/anie.199708681]
[58]
Haraguchi, K.; Itoh, Y.; Tanaka, H.; Yamaguchi, K.; Miyasaka, T. Anomeric manipulation of nucleosides: stereospecific entry to 1′-C-branched uracil nucleosides. Tetrahedron Lett., 1993, 34, 6913-6916.
[http://dx.doi.org/10.1016/S0040-4039(00)91829-X]
[59]
Itoh, Y.; Haraguchi, K.; Tanaka, H.; Gen, E.; Miyasaka, T. Divergent and stereo-controlled approach to the synthesis of uracil nucleosides branched at the anomeric position. J. Org. Chem., 1995, 60, 656-662.
[http://dx.doi.org/10.1021/jo00108a031]
[60]
Fox, J.J.; Miller, N.C. Further studies of anhydronucleosides. J. Org. Chem., 1963, 28, 936-941.
[http://dx.doi.org/10.1021/jo01039a014]
[61]
Haraguchi, K.; Matsui, H.; Takami, S.; Tanaka, H. Additive Pummerer reaction of 3,5-O-(di-t-butylsilylene)-4-thiofuranoid glycal. J. Org. Chem., 2009, 74, 2616-2619.
[http://dx.doi.org/10.1021/jo802615h] [PMID: 19243156]
[62]
Jeong, L.S.; Jin, D.Z.; Kim, H.O.; Shin, D.H.; Moon, H.R.; Gunaga, P.; Chun, M.W.; Kim, Y-C.; Melman, N.; Gao, Z.G.; Jacobson, K.A.N. N6-substituted D-4′-thioadenosine-5′-methyluronamides: potent and selective agonists at the human A3 adenosine receptor. J. Med. Chem., 2003, 46(18), 3775-3777.
[http://dx.doi.org/10.1021/jm034098e] [PMID: 12930138]
[63]
Craig, D.; Daniels, K.; MacKenzie, A.R. Additive Pummerer reactions of vinylic sulfoxides. Synthesis of γ-hydroxy-α,β-unsaturated esters, α-hydroxyketones, and 2-phenylsulfenyl aldehydes and primary alcolols. Tetrahedron, 1993, 49, 11263-11304.
[http://dx.doi.org/10.1016/S0040-4020(01)81812-3]
[64]
Yamagiwa, S.; Sato, H.; Hoshi, N.; Kosugi, H.; Uda, H. New rearrangement reactions of α-phenylsulphinylacrylate derivatives. J.C.S. Perkin, 1979, I, 570-583.
[http://dx.doi.org/10.1039/P19790000570]
[65]
Paquette, L.A.; Fabris, F.; Gallou, F.; Dong, S. C4′-spiroalkylated nucleosides having sulfur incorporated at the apex position. J. Org. Chem., 2003, 68(22), 8625-8634.
[http://dx.doi.org/10.1021/jo030196w] [PMID: 14575495]
[66]
Uenishi, J.; Sohma, A.; Yonemitsu, O. Reaction and stereochemistry of C-glycosidation in 2-deoxy-4-thioribofuranoside. Chem. Lett., 1996, 25(8), 595-596.
[http://dx.doi.org/10.1246/cl.1996.595]
[67]
Franchetti, P.; Marchetti, S.; Cappellacci, L.; Jayaram, H.N.; Yalowitz, J.A.; Goldstein, B.M.; Barascut, J-L.; Dukhan, D.; Imbach, J.L.; Grifantini, M. Synthesis, conformational analysis, and biological activity of C-thioribonucleosides related to tiazofurin. J. Med. Chem., 2000, 43(7), 1264-1270.
[http://dx.doi.org/10.1021/jm990257b] [PMID: 10753464]
[68]
Ulgar, V.; Lopez, O.; Maya, I.; Fernandez-Bolanos, J.G.; Bols, M. Synthesis of furan 4′-thio-C-nucleosides, their methylsulfonium and sulfoxide derivatives. Evaluation as glycosidase inhibitors. Tetrahedron, 2003, 59, 2801-2809.
[http://dx.doi.org/10.1016/S0040-4020(03)00339-9]
[69]
Watanabe, K.A. Chemistry of Nucleosides and Nucleotides; Townsend, L.B., Ed.; Plenum Press: New York, 1994, Vol. 3, .
[70]
Fuertes, M.; García-López, T.; García-Muñoz, G.; Stud, M. Synthesis of C-glycosyl thiazole. J. Org. Chem., 1976, 41, 4074-4077.
[http://dx.doi.org/10.1021/jo00888a005]
[71]
Srivastava, P.C.; Pickering, M.V.; Allen, L.B.; Streeter, D.G.; Campbell, M.T.; Witkowski, J.T.; Sidwell, R.W.; Robins, R.K. Synthesis and antiviral activity of certain thiazole C-nucleosides. J. Med. Chem., 1977, 20(2), 256-262.
[http://dx.doi.org/10.1021/jm00212a014] [PMID: 189032]
[72]
Cooney, D.A.; Jayaram, H.N.; Gebeyehu, G.; Betts, C.R.; Kelley, J.A.; Marquez, V.E.; Johns, D.G. The conversion of 2-β-D-ribofuranosylthiazole-4-carboxamide to an analogue of NAD with potent IMP dehydrogenase-inhibitory properties. Biochem. Pharmacol., 1982, 31(11), 2133-2136.
[http://dx.doi.org/10.1016/0006-2952(82)90436-1] [PMID: 6126195]
[73]
Kelly, T.R.; Lang, F. Synthesis of thiazole compounds via lithiation: an unexpected rearrangement. Tetrahedron Lett., 1995, 36, 9293-9296.
[http://dx.doi.org/10.1016/0040-4039(95)02005-A]
[74]
Brown, R.S.; Dowden, J.; Moreau, C.; Potter, B.V.L. A concise route to tiazofurin. Tetrahedron Lett., 2002, 43, 6561-6562.
[http://dx.doi.org/10.1016/S0040-4039(02)01470-3]
[75]
Haraguchi, K.; Horii, C.; Yoshimura, Y.; Ariga, F.; Tadokoro, A.; Tanaka, H. An access to the β-anomer of 4′-thio-C-ribonucleosides: hydroboration of 1-C-aryl- or 1-C-heteroaryl-4-thiofuranoid glycals and its regiochemical outcome. J. Org. Chem., 2011, 76(21), 8658-8669.
[http://dx.doi.org/10.1021/jo201100n] [PMID: 21970737]
[76]
Isono, K. Nucleoside antibiotics: Structure, biological activity, and biosynthesis. J. Antibiot. (Tokyo), 1988, 41, 1711-1739.
[http://dx.doi.org/10.7164/antibiotics.41.1711]
[77]
Davis, F.F.; Allen, F.W. Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol. Chem., 1957, 227(2), 907-915.
[http://dx.doi.org/10.1016/S0021-9258(18)70770-9] [PMID: 13463012]
[78]
Neyts, J.; Meerbach, A.; McKenna, P.; De Clercq, E. Use of the yellow fever virus vaccine strain 17D for the study of strategies for the treatment of yellow fever virus infections. Antiviral Res., 1996, 30(2-3), 125-132.
[http://dx.doi.org/10.1016/0166-3542(96)89697-5] [PMID: 8783804]
[79]
Lim, M-I.; Klein, R.S. Synthesis of “9-deazaadenosine; A new cytotoxic C-nucleoside isostere of adenosine”. Tetrahedron Lett., 1981, 22, 25-28.
[http://dx.doi.org/10.1016/0040-4039(81)80031-7]
[80]
Glazer, R.I.; Hartman, K.D.; Knode, M.C. 9- Deazaadenosine. Cytocidal activity and effects on nucleic acids and protein synthesis in human colon carcinoma cells in culture Mol. Pharmacol., 1983, 24(2), 309-315.
[PMID: 6888372]
[81]
Francheti, P.; Marchetti, S.; Cappellacci, L.; Grifantini, M.; Goldstein, B.M.; Dukhan, D.; Barascut, J-L.; Imbach, J.L. Structure-activity relationships of tiazofurin analogs: Synthesis and computational studies of 4′-thio derivatives of thiophenfurin and furanfurin. Nucleosides Nucleotides Nucleic Acids, 1999, 18, 679-680.
[http://dx.doi.org/10.1080/15257779908041538]
[82]
López Aparicio, F.L.; Zorrilla Benítez, F.; Santoyo González, F.; Asensio Rosell, J. Use of 2-methyl-2-propanethiole in the synthesis of C-thioglycosyl derivatives. Carbohydr. Res., 1986, 155, 151-159.
[http://dx.doi.org/10.1016/S0008-6215(00)90141-1]
[83]
Zhang, H-C.; Brackta, M.; Daves, G.D., Jr Preparation of 1-(tri-n-butylstannyl)furanoid glycals and their use in palladium-mediated coupling reactions. Tetrahedron Lett., 1993, 34, 1571-1574.
[http://dx.doi.org/10.1016/0040-4039(93)85009-L]
[84]
Haraguchi, K.; Konno, K.; Yamada, K.; Kitagawa, Y.; Nakamura, K.T.; Tanaka, H. Electrophilic glycosidation employing 3,5-O-(di-tert-butylsilylene)-erythro-furanoid glycal leads to exclusive formation of the β-anomer: Synthesis of 2′-deoxynucleosides and its 1′-branched analogues. Tetrahedron, 2010, 66, 4587-4600.
[http://dx.doi.org/10.1016/j.tet.2010.04.043]
[85]
Parker, K.A.; Su, D-S. Synthesis of C-aryl furanosides by the “reverse polarity” strategy. J. Org. Chem., 1996, 61, 2191-2194.
[http://dx.doi.org/10.1021/jo951344o]
[86]
Haraguchi, K.; Shimada, H.; Kimura, K.; Akutsu, G.; Tanaka, H.; Abe, H.; Hamasaki, T.; Baba, M.; Gullen, E.A.; Dutschman, G.E.; Cheng, Y-C.; Balzarini, J. Synthesis of 4′-ethynyl-2′-deoxy-4′-thioribonucleosides and discovery of a highly potent and less toxic NRTI. ACS Med. Chem. Lett., 2011, 2(9), 692-697.
[http://dx.doi.org/10.1021/ml2001054] [PMID: 23795238]
[87]
Reynaud, P.; Robba, M.; Moreau, R.C. New synthesis of the thiazole ring Bull. Soc. Chim. Fr., 1962, 1700-17055,1735..
[88]
Bach, T.; Heuser, S. Regioselective cross-coupling reactions as an entry into biologically relevant bithiazoles: first total synthesis of cystothiazole E. Angew. Chem. Int. Ed. Engl., 2001, 40(17), 3184-3185.
[http://dx.doi.org/10.1002/1521-3773(20010903)40:17<3184:AID-ANIE3184>3.0.CO;2-7] [PMID: 29712074]
[89]
Bach, T.; Heuser, S. Synthesis of 2′-substituted 4-bromo-2,4′-bithiazoles by regioselective cross-coupling reactions. J. Org. Chem., 2002, 67(16), 5789-5795.
[http://dx.doi.org/10.1021/jo025661o] [PMID: 12153282]
[90]
Delgado, O.; Heckmann, G.; Müller, H.M.; Bach, T. Synthesis and configurational assignment of the amino alcohol in the eastern fragment of the GE2270 antibiotics by regio- and stereoselective addition of 2-metalated 4-bromothiazoles to α-chiral electrophiles. J. Org. Chem., 2006, 71(12), 4599-4608.
[http://dx.doi.org/10.1021/jo060462g] [PMID: 16749794]
[91]
Pereira, R.; Furst, A.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A.R. Insights into the mechanism of the site-selective sequential palladium-catalyzed cross-coupling reactions of dibromothiophenes/dibromothiazoles and arylboronic acids. Synthesis of PPARbeta/δ agonists. Org. Biomol. Chem., 2006, 4(24), 4514-4525.
[http://dx.doi.org/10.1039/B612235C] [PMID: 17268648]
[92]
Furneaux, R.H.; Tyler, P.C. Improved Syntheses of 3H,5H-Pyrrolo[3,2-d]pyrimidines. J. Org. Chem., 1999, 64(22), 8411-8412.
[http://dx.doi.org/10.1021/jo990903e] [PMID: 11674769]
[93]
O′Neil, I.A.; Hamilton, M.; Miller, J.A. A new approach to the synthesis of 4-thio1,2-dideoxyribose. Synlett, 1995, 1053.
[94]
Grohar, P.J.; Chow, C.S. A practical synthesis of the modified RNA nucleoside pseudouridine. Tetrahedron Lett., 1999, 40, 2049-2052.
[http://dx.doi.org/10.1016/S0040-4039(99)00162-8]
[95]
Haraguchi, K.; Takahashi, H.; Tanaka, H. Stereoselective entry to 1′-C-branched 4′-thionucleosides from 4-thiofuranoid glycal: synthesis of 4′-thioangustmycin C. Tetrahedron Lett., 2002, 43, 5647-5660.
[http://dx.doi.org/10.1016/S0040-4039(02)01131-0]
[96]
Sofia, M.J. Beyond sofosbuvir: what opportunity exists for a better nucleoside/nucleotide to treat hepatitis C? Antiviral Res., 2014, 107, 119-124.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.008] [PMID: 24792751]
[97]
Chun, B.K.; Clarke, M.O.H.; Doerffler, E.; Hui, H.C.; Jordan, R.; Mackman, R.L.; Parrish, J.P.; Ray, A.S.; Siegel, D. Methods for treating filoviridae virus infections. US Patent 2016/0122374 2017.
[98]
Uenishi, J. Acyclic and stereocontrolled synthesis of thiosugars and preparation of pseudo-nucleoside having the thiosugar moiety. J. Synth. Org. Chem. Jpn., 1997, 55, 186-195.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.55.186]
[99]
Gschwend, H.W.; Rodriguez, H.R. Heteroatom-facilitated lithiations Org. React., 2005, 26, 1-360.
[100]
Friesen, R.W.; Loo, R.W. Preparation of C-aryl glucals via the palladium catalyzed coupling of metalated aromatics with 1-iodo-3,4,6-tri-O-(triisopropylsilyl)-D-glucal. J. Org. Chem., 1991, 56, 4821-4823.
[http://dx.doi.org/10.1021/jo00016a003]
[101]
Sonogashira, K.; Tohda, Y.; Hagihara, N. Convenient synthesis of acetylenes. Catalytic substitutions of acetylenic hydrogen with bromo alkenes, iodo arenes, and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[102]
Haraguchi, K.; Saitoh, S.; Tanaka, H.; Miyasaka, T. Pummerer rearrangement of selenium-containing uracil nucleosides. Nucleosides Nucleotides, 1992, 11, 483-493.
[http://dx.doi.org/10.1080/07328319208021720]
[103]
Haraguchi, K.; Takahashi, H.; Tanaka, H.; Hayakawa, H.; Ashida, N.; Nitanda, T.; Baba, M. Synthesis and antiviral activities of 1′-carbon-substituted 4′-thiothymidines. Bioorg. Med. Chem., 2004, 12(20), 5309-5316.
[http://dx.doi.org/10.1016/j.bmc.2004.07.057] [PMID: 15388158]
[104]
Coen, N.; Duraffour, S.; Haraguchi, K.; Balzarini, J.; van den Oord, J.J.; Snoeck, R.; Andrei, G. Antiherpesvirus activities of two novel 4′-thiothymidine derivatives, KAY-2-41 and KAH-39-149, are dependent on viral and cellular thymidine kinases. Antimicrob. Agents Chemother., 2014, 58(8), 4328-4340.
[http://dx.doi.org/10.1128/AAC.02825-14] [PMID: 24820089]
[105]
Duraffour, S.; Drillien, R.; Haraguch, K.; Balzarini, J.; Topalis, D.; van den Oord, J.J.; Andrei, G.; Snoeck, R. Kay-2-41, a novel nucleoside analogue inhibitor of orthopoxuviruses in vitro and in vivo. Antimicrob. Agents Chemother., 2014, 58, 27-37.
[http://dx.doi.org/10.1128/AAC.01601-13] [PMID: 24126587]
[106]
Haraguchi, K.; Shiina, N.; Yoshimura, Y.; Shimada, H.; Hashimoto, K.; Tanaka, H. Novel stereoselective entry to 2′-β-carbon-substituted 2′-deoxy-4′-thionucleosides from 4-thiofuranoid glycals. Org. Lett., 2004, 6(16), 2645-2648.
[http://dx.doi.org/10.1021/ol040035u] [PMID: 15281734]
[107]
Keating, M.J.; McCredie, K.B.; Bodey, G.P.; Smith, T.L.; Gehan, E.; Freireich, E.J. Improved prospects for long-term survival in adults with acute myelogenous leukemia. JAMA, 1982, 248(19), 2481-2486.
[http://dx.doi.org/10.1001/jama.1982.03330190045029] [PMID: 6957624]
[108]
Prince, H.N.; Grunberg, E.; Buck, M.; Cleeland, R. A comparative study of the antitumor and antiviral activity of 1-β-D-arabinofuranosyl-5-fluorocytosine (FCA) and 1-β-D-arabinofuranosylcytosine (CA). Proc. Soc. Exp. Biol. Med., 1969, 130(4), 1080-1086.
[http://dx.doi.org/10.3181/00379727-130-33724] [PMID: 4305347]
[109]
Ho, D.H. Distribution of kinase and deaminase of 1-β-Darabinofuranosylcytosine in tissues of man and mouse. Cancer Res., 1973, 33(11), 2816-2820.
[PMID: 4518302]
[110]
Plunkett, W.; Gandhi, V. Cellular pharmacodynamics of anticancer drugs Semin. Oncol., 1993, 20(1), 50-63.
[PMID: 8475410]
[111]
Matsuda, A. Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Chu, C.K; Baker, D.C., Ed.; Plenum Press: New York, 1993, pp. 1-22.
[112]
Yoshimura, Y.; Saitoh, K.; Ashida, N.; Sakata, S.; Matsuda, A. Synthesis of 1-(2-deoxy-2-C-fluoromethyl-β-D-arabinofuranosyl)cytosine as a potential antineoplastic agents. Bioorg. Med. Chem. Lett., 1994, 4, 721-724.
[http://dx.doi.org/10.1016/S0960-894X(01)80187-6]
[113]
Matsumoto, M.; Kuroda, K. A convenient synthesis of 1-bromoolefins and acetylenes by a chain extension of aldehydes. Tetrahedron Lett., 1980, 21, 4021-4024.
[http://dx.doi.org/10.1016/S0040-4039(00)92860-0]
[114]
Kumamoto, H.; Nakai, T.; Haraguchi, K.; Nakamura, K.T.; Tanaka, H. Synthesis and anti-HIV-1 activity of 4′-branched (±)-4′-thiostavudine. J. Med. Chem., 2006, 49, 7861-7867.
[http://dx.doi.org/10.1021/jm060980j] [PMID: 17181169]
[115]
Woodward, R.B.; Eastman, R.H. Tetrahydrothiophene (thiophane) derivatives. J. Am. Chem. Soc., 1946, 68(11), 2229-2235.
[http://dx.doi.org/10.1021/ja01215a034] [PMID: 21002227]
[116]
Luche, J-L. Selective 1,2-reduction of conjugated ketones. J. Am. Chem. Soc., 1978, 100, 2226-2227.
[http://dx.doi.org/10.1021/ja00475a040]
[117]
Luche, J-L.; Rodriguez-Hahn, L.; Crabbe´, P. Reduction of natural enones in the presence of cerium trichloride. J. Chem. Soc. Chem. Commun., 1978, 14, 601-602.
[http://dx.doi.org/10.1039/C39780000601]
[118]
Mansuri, M.M.; Starrett, J.E., Jr; Wos, J.A.; Tortolani, D.R.; Brodfuehrer, P.R.; Howell, H.G.; Martin, J.C. Preparation of 1-(2,3- dideoxy-â-D-glycero-pent-2-enofuranosyl)thymine (d4T) and 2′,3′- dideoxyadenosine (ddA): general methods for the synthesis of 2′,3′- olefinic and 2′,3′-dideoxy nucleoside analogs active against HIV. J. Org. Chem., 1989, 54, 4780-4785.
[http://dx.doi.org/10.1021/jo00281a017]
[119]
Miwa, K.; Aoyama, T.; Shioiri, T. Extension of the Colvin rearrangement using trimethylsilyldiazomethane, a new synthesis of alkynes. Synlett, 1994, 1994(2), 107-108.
[http://dx.doi.org/10.1055/s-1994-22755]
[120]
Ohira, S. Methanolysis of dimethyl (1-diazo-2-oxopropyl)phosphonate: Generation of dimethyl (diazomethyl)phosphonate and reaction with carbonyl compounds. Synth. Commun., 1989, 19, 561-564.
[http://dx.doi.org/10.1080/00397918908050700]
[121]
Müller, S.; Liepold, B.; Roth, G.J.; Bestmann, H.J. An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett, 1996, 1996(6), 521-522.
[http://dx.doi.org/10.1055/s-1996-5474]
[122]
Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y-C. Synthesis of a highly active new anti-HIV agent 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine. Bioorg. Med. Chem. Lett., 2003, 13(21), 3775-3777.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.009] [PMID: 14552777]
[123]
Dutschman, G.E.; Grill, S.P.; Gullen, E.A.; Haraguchi, K.; Takeda, S.; Tanaka, H.; Baba, M.; Cheng, Y-C. Novel 4′-substituted stavudine analog with improved anti-human immunodeficiency virus activity and decreased cytotoxicity. Antimicrob. Agents Chemother., 2004, 48(5), 1640-1646.
[http://dx.doi.org/10.1128/AAC.48.5.1640-1646.2004] [PMID: 15105115]
[124]
Haraguchi, K.; Itoh, Y.; Takeda, S.; Honma, Y.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y-C. Synthesis and anti-HIV activity of 4′-cyano-2′,3′-didehydro-3′-deoxythymidine. Nucleosides Nucleotides Nucleic Acids, 2004, 23(4), 647-654.
[http://dx.doi.org/10.1081/NCN-120030721] [PMID: 15200028]
[125]
Kumamoto, H.; Haraguchi, K.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y-C.; Kato, K. Synthesis of (+/-)-4′-ethynyl and 4′-cyano carbocyclic analogues of stavudine (d4T) Nucleosides Nucleotides Nucleic Acids, 2005, 24(2), 73-83.
[PMID: 15822615]
[126]
Mansuri, M.; Farina, V.; Starrett, J.E., Jr; Benigni, D.A.; Brankovan, V.; Martin, J.C. Preparation of the geometric isomers of DDC, DDA, D4C and D4T as potential anti-HIV agents. Bioorg. Med. Chem. Lett., 1991, 1, 65-68.
[http://dx.doi.org/10.1016/S0960-894X(01)81093-3]
[127]
Young, R.J.; Shaw-Ponter, S.; Thomson, J.B.; Miller, J.A.; Cumming, J.G.; Pugh, A.W.; Rider, P. Synthesis and antiviral evaluation of enantiomeric 2′,3′-dideoxy- and 2′,3′-didehydro-2′,3′- dideoxy-4′-thionucleosides. Bioorg. Med. Chem. Lett., 1995, 5, 2599-2604.
[http://dx.doi.org/10.1016/0960-894X(95)00472-6]
[128]
Haraguchi, K.; Shimada, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Gullen, E.A.; Dutschman, G.E.; Cheng, Y-C. Synthesis and anti-HIV activity of 4′-substituted 4′-thiothymidines: a new entry based on nucleophilic substitution of the 4′-acetoxy group. J. Med. Chem., 2008, 51(6), 1885-1893.
[http://dx.doi.org/10.1021/jm070824s] [PMID: 18311897]
[129]
Hayakawa, H.; Kohgo, S.; Kitano, K.; Ashida, N.; Kodama, E.; Mitsuya, H.; Ohrui, H. Potential of 4′-C-substituted nucleosides for the treatment of HIV-1. Antivir. Chem. Chemother., 2004, 15(4), 169-187.
[http://dx.doi.org/10.1177/095632020401500401] [PMID: 15457679]
[130]
Haraguchi, K.; Sumino, M.; Tanaka, H. Nucleophilic substitution at the 4′-position of nucleosides: new access to a promising anti-HIV agent 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine. J. Org. Chem., 2006, 71(12), 4433-4438.
[http://dx.doi.org/10.1021/jo060194m] [PMID: 16749771]
[131]
Inamoto, N.; Masuda, S. Revised method for calculation of group electronegativities. Chem. Lett., 1982, 11(7), 1003-1006.
[http://dx.doi.org/10.1246/cl.1982.1003]
[132]
Al-Masoudi, N.A.; Al-Soud, Y.A.; Schuppler, T. Thiosugar nucleosides. Effect of sulfur in the synthesis of substituted azido-5-thio-D-gluco- and allopyranosyl-N-nucleosides and new isothionucleoside derivative thereof. J. Carbohydr. Chem., 2005, 24, 237-250.
[http://dx.doi.org/10.1081/CAR-200053715]
[133]
Al-Masoudi, N.A.L.; Hughes, N. Sulfur participation in displacement reactions of sulfonate ester of 5-thio-D-allose, 5-thio-D-altrose, and 5-thio-D-glucose derivatives. J. Chem. Soc., Perkin Trans. 1, 1987, 2061-2067.
[http://dx.doi.org/10.1039/p19870002061]
[134]
Masutani, K.; Minowa, T.; Mukaiyama, T. Selective synthesis of isocyanides from secondary alcohols by a new type of oxidation-reduction condensation. Chem. Lett., 2005, 34, 1124-1125.
[http://dx.doi.org/10.1246/cl.2005.1124]
[135]
Batra, H.; Moriaty, R.M.; Penmasta, R.; Sharma, V.; Stanciuc, G.; Stazewski, J.P.; Tuladhar, S.M.; Walsh, D.A. A concise, efficient and production-scale synthesis of a protected L-lyxonolactone derivative: an important aldonolactone core. Org. Process Res. Dev., 2006, 10, 484-486.
[http://dx.doi.org/10.1021/op050222n]
[136]
Jayakanthan, K.; Johnston, B.D.; Pinto, B.M. Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr. Res., 2008, 343(10-11), 1790-1800.
[http://dx.doi.org/10.1016/j.carres.2008.02.014] [PMID: 18316068]
[137]
Jeong, L.S.; Lee, H.W.; Jacobson, K.A.; Kim, H.O.; Shin, D.H.; Lee, J.A.; Gao, Z-G.; Lu, C.; Duong, H.T.; Gunaga, P.; Lee, S.K.; Jin, D.Z.; Chun, M.W.; Moon, H.R. Structure-activity relationships of 2-chloro-N6-substituted-4′-thioadenosine-5′-uronamides as highly potent and selective agonists at the human A3 adenosine receptor. J. Med. Chem., 2006, 49(1), 273-281.
[http://dx.doi.org/10.1021/jm050595e] [PMID: 16392812]
[138]
Gunaga, P.; Kim, H.O.; Lee, H.W.; Tosh, D.K.; Ryu, J-S.; Choi, S.; Jeong, L.S. Stereoselective functionalization of the 1′-position of 4′-thionucleosides. Org. Lett., 2006, 8(19), 4267-4270.
[http://dx.doi.org/10.1021/ol061548z] [PMID: 16956203]
[139]
Dong, S.; Paquette, L.A. Stereoselective synthesis of conformationally constrained 2′-deoxy-4′-thia β-anomeric spirocyclic nucleosides featuring either hydroxyl configuration at C5′. J. Org. Chem., 2005, 70(5), 1580-1596.
[http://dx.doi.org/10.1021/jo048071u] [PMID: 15730276]
[140]
Haraguchi, K.; Shimada, H.; Kimura, K.; Akutsu, G.; Tanaka, H.; Abe, H.; Hamasaki, T.; Baba, M.; Gullen, E.A.; Dutschman, G.E.; Cheng, Y-C.; Balzarini, Y. Synthesis of 4-ethynyl-2-deoxy-4-thioribonucleosides and discovery of a highly potent and less toxic NRTI ACS Med. Chem. Lett., 2011, 2, 692-697.
[141]
Haraguchi, K.; Takahashi, H.; Shiina, N.; Horii, C.; Yoshimura, Y.; Nishikawa, A.; Sasakura, E.; Nakamura, K.T.; Tanaka, H. Stereoselective synthesis of β-anomer of 4-thionucleosides based on electrophilic glycosidation to 4-thiofuranoid glycals J. Org. Chem., 2002, 67, 5919-5927.
[142]
Zou, R.; Robins, M.J. High-yield regioselective synthesis of 9-glycosyl guanine nucleosides and analogues via coupling with 2-N-acetyl-6-O-diphenylcarbamoylguanine. Can. J. Chem., 1987, 65, 1436-1437.
[http://dx.doi.org/10.1139/v87-243]
[143]
Soriano, E.; Marco-Contelles, J.; Tomassi, C.; Nguyen Van Nhien, A.; Postel, D. Computational analysis of aza analogues of [2′,5′-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranose]-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide) (TSAO) as HIV-1 reverse transcriptase inhibitors: relevance of conformational properties on the inhibitory activity. J. Chem. Inf. Model., 2006, 46(4), 1666-1677.
[http://dx.doi.org/10.1021/ci0600410] [PMID: 16859298]
[144]
Watts, J.K.; Sadalapure, K.; Choubdar, N.; Pinto, B.M.; Damha, M.J. Synthesis and conformational analysis of 2′-fluoro-5-methyl-4′-thioarabinouridine (4'S-FMAU). J. Org. Chem., 2006, 71(3), 921-925.
[http://dx.doi.org/10.1021/jo051844+] [PMID: 16438502]
[145]
Kubota, Y.; Ishizaki, N.; Kaneda, Y.; Haraguchi, K.; Odanaka, Y.; Tanaka, H.; Kato, N.; Baba, M.; Balzarini, J. Synthesis and antiviral evaluation of 4′-alkoxy analogues of 9-(β-D-xylofuranosyl)adenine. Antivir. Chem. Chemother., 2009, 19(5), 201-212.
[http://dx.doi.org/10.1177/095632020901900503] [PMID: 19483268]
[146]
Haraguchi, K.; Kumamoto, H.; Konno, K.; Yagi, H.; Tanano, Y.; Odanaka, Y.S.; Matsubayashi, S.; Snoeck, R.; Andrei, G. Synthesis of 4′-substituted 2′-deoxy-4′-thiocytidines and its evaluation for antineoplastic and antiviral activities. Tetrahedron, 2019, 75, 4542-4535.
[http://dx.doi.org/10.1016/j.tet.2019.06.044]
[147]
Yoshimura, Y.; Kitano, K.; Yamada, K.; Satoh, H.; Watanabe, M.; Miura, S.; Sakata, S.; Sasaki, T.; Matsuda, A. A novel synthesis of 2′-modified 2′-deoxy-4′-thiocytidines from D-glucose. J. Org. Chem., 1997, 62(10), 3140-3152.
[http://dx.doi.org/10.1021/jo9700540] [PMID: 11671697]
[148]
Yoshimura, Y.; Kitano, K.; Satoh, H.; Watanabe, M.; Miura, S.; Saakata, S.; Sasaki, T.; Matsuda, A. A novel synthesis of new antineoplastic 2′-deoxy-2′-substituted-4′-thiocytidines. J. Org. Chem., 1996, 61, 822-823.
[http://dx.doi.org/10.1021/jo9519423]
[149]
Watts, J.K.; Choubdar, N.; Sadalapure, K.; Robert, F.; Wahba, A.S.; Pelletier, J.; Pinto, B.M.; Damha, M.J. 2′-fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Res., 2007, 35(5), 1441-1451.
[http://dx.doi.org/10.1093/nar/gkl1153] [PMID: 17284457]
[150]
Ohkawa, M.; Ohno, Y.; Masuko, K.; Takeuchi, A.; Suda, K.; Kubo, A.; Kawahara, R.; Okazaki, S.; Tanaka, T.; Saya, H.; Seki, M.; Enomoto, T.; Yagi, H.; Hashimoto, Y.; Masuko, T. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy. Biochem. Biophys. Res. Commun., 2011, 406(4), 649-655.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.135] [PMID: 21371427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy