Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Biosynthesized CdS Nanoparticle Induces ROS-dependent Apoptosis in Human Lung Cancer Cells

Author(s): Tina Nasrin, Mousumi Patra, Sayed Modinur Rahaman, Tapan Kumar Das and Soni Shaikh*

Volume 22, Issue 11, 2022

Published on: 14 January, 2022

Page: [2156 - 2165] Pages: 10

DOI: 10.2174/1871520621666211115113226

Price: $65

Abstract

Background: The World Health Organization (WHO) estimated that the number of cancer-related deaths was 9.6 million in 2018 and 2.09 million deaths occurred by lung cancer. The American Institute for Cancer Research (AICR) also observed gender preferences in lung cancer, common in men than women. Since the past decade, nanoparticles have now been widely documented for their anti-cancer properties, which signifies that the development of nanotechnology would be a future diagnosis and treatment strategy for lung cancer.

Objective: The current study aimed to investigate the role of biosynthesized CdS nanoparticles (CdS NPs) in lung cancer cells (A549). Therefore, whether the CdS NP induces lung cancer cell death and the underlying mechanism is yet to be elucidated.

Methods: Literature was searched from various archives of biomedical and life science journals. Then, CdS NPs were biosynthesized and characterized by traditional and cutting-edge protocols. The CdS NP-mediated cell death was elucidated following standard protocols.

Results: CdS NPs induced cytotoxicity towards A549 cells in a dose-dependent manner. However, such a death mechanism does not go through necrosis. Intracellular reactive oxygen species (ROS) accumulation and mitochondrial membrane depolarization demonstrated that cell death is associated with intracellular ROS production. Furthermore, increased sub-G1 population, Bax expression, and decreased Bcl-2 expression revealed that the death was caused by apoptosis.

Conclusion: CdS NPs promote apoptosis-mediated lung cancer cell death through ROS production.

Keywords: Apoptosis, cadmium sulfide, cell death, lung cancer, nanoparticles, reactive oxygen.

Graphical Abstract

[1]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[2]
Yue, C.; Yang, Y.; Zhang, C.; Alfranca, G.; Cheng, S.; Ma, L.; Liu, Y.; Zhi, X.; Ni, J.; Jiang, W.; Song, J.; de la Fuente, J.M.; Cui, D. ROS-responsive mitochondria-targeting blended nanoparticles: Chemo- and photodynamic synergistic therapy for lung cancer with on-demand drug release upon irradiation with a single light source. Theranostics, 2016, 6(13), 2352-2366.
[http://dx.doi.org/10.7150/thno.15433] [PMID: 27877240]
[3]
Zhou, M.; Shen, S.; Zhao, X.; Gong, X. Luteoloside induces G0/G1 arrest and pro-death autophagy through the ROS-mediated AKT/mTOR/p70S6K signalling pathway in human non-small cell lung cancer cell lines. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 263-269.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.042] [PMID: 29024631]
[4]
Lawless, M.W.; O’Byrne, K.J.; Gray, S.G. Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J. Cell. Mol. Med., 2009, 13(9A), 2800-2821.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00845.x] [PMID: 19602054]
[5]
Cao, S.S.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal., 2014, 21(3), 396-413.
[http://dx.doi.org/10.1089/ars.2014.5851] [PMID: 24702237]
[6]
Swain, S.; Sahu, P.K.; Beg, S.; Babu, S.M. Nanoparticles for cancer targeting: Current and future directions. Curr. Drug Deliv., 2016, 13(8), 1290-1302.
[http://dx.doi.org/10.2174/1567201813666160713121122] [PMID: 27411485]
[7]
Akhtar, M.J.; Alhadlaq, H.A.; Kumar, S.; Alrokayan, S.A.; Ahamed, M. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Arch. Toxicol., 2015, 89(11), 1895-1907.
[http://dx.doi.org/10.1007/s00204-015-1570-1] [PMID: 26223318]
[8]
Singh, B.R.; Singh, B.N.; Khan, W.; Singh, H.B.; Naqvi, A.H. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials, 2012, 33(23), 5753-5767.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.045] [PMID: 22594971]
[9]
Shivaji, K.; Mani, S.; Ponmurugan, P.; Castro, C.; Davies, M.; Balasubramanian, M.G.; Pitchaimuthu, S. Green-synthesis-derived CdS quantum dots using tea leaf extract: Antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl. Nano Mater., 2018, 1(4), 1683-1693.
[http://dx.doi.org/10.1021/acsanm.8b00147]
[10]
Nasrin, T.; Sadhukhan, R.; Das, T.K. BSA and DNA binding studies of Aspergillus foetidus mediated biosynthesized CdS nanoparticles. Curr. Nanosci., 2016, 12(6), 781-788.
[http://dx.doi.org/10.2174/1573413712666160630131356]
[11]
Chakraborty, S.; Mukherjee, A.; Khuda-Bukhsh, A.R.; Das, T.K. Cadmium-induced oxidative stress tolerance in cadmium resistant Aspergillus foetidus: its possible role in cadmium bioremediation. Ecotoxicol. Environ. Saf., 2014, 106, 46-53.
[http://dx.doi.org/10.1016/j.ecoenv.2014.04.007] [PMID: 24836877]
[12]
Nasrin, T.; Roy, S.; Das, T.K. Aspergillus foetidus mediated biosynthesis of CdS nanoparticles and its characterization. Int. J. Innov. Res. Sci. Eng., 2014, 2, 633-639.
[13]
Nasrin, T.; Patra, M.; Escudey, M.; Das, T.K. Biosynthesized CdS nanoparticles disturb E. coli growth through reactive oxygen production. Microb. Pathog., 2019, 135, 103639.
[http://dx.doi.org/10.1016/j.micpath.2019.103639] [PMID: 31330264]
[14]
Borenfreund, E.; Babich, H.; Martin-Alguacil, N. Comparisons of two in vitro cytotoxicity assays-The neutral red (NR) and tetrazolium MTT tests. Toxicol. In Vitro, 1988, 2(1), 1-6.
[http://dx.doi.org/10.1016/0887-2333(88)90030-6] [PMID: 20702351]
[15]
Jo, M.; Kim, T.H.; Seol, D.W.; Esplen, J.E.; Dorko, K.; Billiar, T.R.; Strom, S.C. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat. Med., 2000, 6(5), 564-567.
[http://dx.doi.org/10.1038/75045] [PMID: 10802713]
[16]
Dutta, D.; Mukherjee, R.; Patra, M.; Banik, M.; Dasgupta, R.; Mukherjee, M.; Basu, T. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surf. B Biointerfaces, 2016, 147, 45-53.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.045] [PMID: 27478962]
[17]
Wojtala, A.; Bonora, M.; Malinska, D.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol., 2014, 542, 243-262.
[http://dx.doi.org/10.1016/B978-0-12-416618-9.00013-3] [PMID: 24862270]
[18]
Scaduto, R.C., Jr; Grotyohann, L.W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J., 1999, 76(1 Pt 1), 469-477.
[http://dx.doi.org/10.1016/S0006-3495(99)77214-0] [PMID: 9876159]
[19]
Katayose, Y.; Kim, M.; Rakkar, A.N.; Li, Z.; Cowan, K.H.; Seth, P. Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res., 1997, 57(24), 5441-5445.
[PMID: 9407946]
[20]
Plackal Adimuriyil George, B.; Kumar, N.; Abrahamse, H.; Ray, S.S. Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci. Rep., 2018, 8(1), 14368.
[http://dx.doi.org/10.1038/s41598-018-32480-5] [PMID: 30254325]
[21]
Zhao, H.; Oczos, J.; Janowski, P.; Trembecka, D.; Dobrucki, J.; Darzynkiewicz, Z.; Wlodkowic, D. Rationale for the real-time and dynamic cell death assays using propidium iodide. Cytometry A, 2010, 77(4), 399-405.
[http://dx.doi.org/10.1002/cyto.a.20867] [PMID: 20131407]
[22]
Krueger, S.A.; Wilson, G.D. Flow cytometric DNA analysis of human cancers and cell lines. Methods Mol. Biol., 2011, 731, 359-370.
[http://dx.doi.org/10.1007/978-1-61779-080-5_29] [PMID: 21516421]
[23]
Curtin, J.F.; Donovan, M.; Cotter, T.G. Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods, 2002, 265(1-2), 49-72.
[http://dx.doi.org/10.1016/S0022-1759(02)00070-4] [PMID: 12072178]
[24]
Das, T.P.; Suman, S.; Damodaran, C. Induction of reactive oxygen species generation inhibits epithelial-mesenchymal transition and promotes growth arrest in prostate cancer cells. Mol. Carcinog., 2014, 53(7), 537-547.
[http://dx.doi.org/10.1002/mc.22014] [PMID: 23475579]
[25]
Bhavana, J.; Kalaivani, M.K.; Sumathy, A. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill. against lung cancer cell line A549. Indian J. Exp. Biol., 2016, 54(6), 379-385.
[PMID: 27468464]
[26]
Luk, S.C.W.; Siu, S.W.F.; Lai, C.K.; Wu, Y.J.; Pang, S.F. Cell cycle arrestby a natural product via G2/M checkpoint. Int. J. Med. Sci., 2005, 2(2), 64-69.
[http://dx.doi.org/10.7150/ijms.2.64] [PMID: 15968342]
[27]
Vaja, F.; Guran, C.; Ficai, D.; Ficai, A.; Oprea, O. Cytotoxic effects of ZnO nanoparticles incorporated in mesoporous silica. UPB. Sci. Bull. (Beijing), 2014, 76, 55-66.
[28]
Boroumand Moghaddam, A.; Moniri, M.; Azizi, S.; Abdul Rahim, R.; Bin Ariff, A.; Navaderi, M.; Mohamad, R. Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel), 2017, 8(10), 281.
[http://dx.doi.org/10.3390/genes8100281] [PMID: 29053567]
[29]
Wahab, R.; Siddiqui, M.A.; Saquib, Q.; Dwivedi, S.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A.A.; Shin, H.S. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B Biointerfaces, 2014, 117, 267-276.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.038] [PMID: 24657613]
[30]
Ahamed, M.; Akhtar, M.J.; Raja, M.; Ahmad, I.; Siddiqui, M.K.; AlSalhi, M.S.; Alrokayan, S.A. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine, 2011, 7(6), 904-913.
[http://dx.doi.org/10.1016/j.nano.2011.04.011] [PMID: 21664489]
[31]
Chen, N.; He, Y.; Su, Y.; Li, X.; Huang, Q.; Wang, H.; Zhang, X.; Tai, R.; Fan, C. The cytotoxicity of cadmium-based quantum dots. Biomaterials, 2012, 33(5), 1238-1244.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.070] [PMID: 22078811]
[32]
Rajeshkumar, S.; Kumar, S.V.; Ramaiah, A.; Agarwal, H.; Lakshmi, T.; Roopan, S.M. Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb. Technol., 2018, 117, 91-95.
[http://dx.doi.org/10.1016/j.enzmictec.2018.06.009] [PMID: 30037558]
[33]
Fang, J.; Sawa, T.; Akaike, T.; Maeda, H. Tumor-targeted delivery of polyethyleneglycol-conjugated D-amino acid oxidase for anti-tumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res., 2002, 62(11), 3138-3143.
[34]
Laha, D.; Bhattacharya, D.; Pramanik, A.; Santra, C.R.; Pramanik, P.; Karmakar, P. Evaluation of copper iodide and copper phosphate nanoparticles for their potential cytotoxic effect. Toxicol. Res., 2012, 1, 131.
[http://dx.doi.org/10.1039/c2tx00009a]
[35]
Hou, D.X.; Uto, T.; Tong, X.; Takeshita, T.; Tanigawa, S.; Imamura, I.; Ose, T.; Fujii, M. Involvement of reactive oxygen species-independent mitochondrial pathway in gossypol-induced apoptosis. Arch. Biochem. Biophys., 2004, 428(2), 179-187.
[http://dx.doi.org/10.1016/j.abb.2004.06.007] [PMID: 15246875]
[36]
Chakraborty, R.; Basu, T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology, 2017, 28(10), 105101.
[http://dx.doi.org/10.1088/1361-6528/aa57b0] [PMID: 28067213]
[37]
Naqvi, S.; Mohiyuddin, S.; Gopinath, P. Niclosamide loaded biodegradable chitosan nanocargoes: an in vitro study for potential application in cancer therapy. R. Soc. Open Sci., 2017, 4(11), 170611.
[http://dx.doi.org/10.1098/rsos.170611] [PMID: 29291056]
[38]
Jeon, H.J.; Choi, B.B.R.; Park, K.H.; Hwang, D.S.; Kim, U.K.; Kim, G.C. Induction of melanoma cell-selective apoptosis using anti-HER2 antibody-conjugated gold nanoparticles. Yonsei Med. J., 2019, 60(6), 509-516.
[http://dx.doi.org/10.3349/ymj.2019.60.6.509] [PMID: 31124333]
[39]
Naseri, M.H.; Mahdavi, M.; Davoodi, J.; Tackallou, S.H.; Goudarzvand, M.; Neishabouri, S.H. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int., 2015, 15, 55.
[http://dx.doi.org/10.1186/s12935-015-0204-2] [PMID: 26074734]
[40]
Shaikh, S.; Troncoso, R.; Mondaca-Ruff, D.; Parra, V.; Garcia, L.; Chiong, M.; Lavandero, S. The STIM1 inhibitor ML9 disrupts basal autophagy in cardiomyocytes by decreasing lysosome content. Toxicol. In Vitro, 2018, 48, 121-127.
[http://dx.doi.org/10.1016/j.tiv.2018.01.005] [PMID: 29337250]
[41]
Su, M.; Mei, Y.; Sinha, S. Role of the crosstalk between autophagy and apoptosis in cancer. J. Oncol., 2013, 2013, 102735.
[http://dx.doi.org/10.1155/2013/102735] [PMID: 23840208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy