Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of Caspase Family in Acute Brain Injury: The Potential Therapeutic Targets in the Future

Author(s): Anke Zhang, Zeyu Zhang, Yibo Liu, Cameron Lenahan, Houshi Xu, Junkun Jiang, Ling Yuan, Liangbo Wang, Yuanzhi Xu, Sheng Chen, Yuanjian Fang* and Jianmin Zhang*

Volume 20, Issue 6, 2022

Published on: 31 March, 2022

Page: [1194 - 1211] Pages: 18

DOI: 10.2174/1570159X19666211111121146

Price: $65

Abstract

The caspase family is commonly involved in the pathophysiology of acute brain injury (ABI) through complex apoptotic, pyroptotic, and inflammatory pathways. Current translational strategies for caspase modulation in ABI primarily focus on caspase inhibitors. Because there are no caspase-inhibiting drugs approved for clinical use on the market, the development of caspase inhibitors remains an attractive challenge for researchers and clinicians. Therefore, we conducted the present review with the aim of providing a comprehensive introduction of caspases in ABI. In this review, we summarized the available evidence and potential mechanisms regarding the biological function of caspases. We also reviewed the therapeutic effects of caspase inhibitors on ABI and its subsequent complications. However, various important issues remain unclear, prompting further verification of the efficacy and safety regarding clinical application of caspase inhibitors. We believe that our work will be helpful to further understand the critical role of the caspase family and will provide novel therapeutic potential for ABI treatment.

Keywords: Caspase inhibitor, acute brain injury, neuroprotection, neuroinflammation, apoptosis, stroke.

Graphical Abstract

[1]
Van Opdenbosch, N.; Lamkanfi, M. Caspases in Cell Death, Inflammation, and Disease. Immunity, 2019, 50(6), 1352-1364.
[http://dx.doi.org/10.1016/j.immuni.2019.05.020] [PMID: 31216460]
[2]
Noonin, C.; Thongboonkerd, V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics, 2021, 11(9), 4436-4451.
[http://dx.doi.org/10.7150/thno.54004] [PMID: 33754070]
[3]
Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in Cell Death, Inflammation, and Pyroptosis. Annu. Rev. Immunol., 2020, 38, 567-595.
[http://dx.doi.org/10.1146/annurev-immunol-073119-095439] [PMID: 32017655]
[4]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[5]
Troy, C.M.; Akpan, N.; Jean, Y.Y. Regulation of caspases in the nervous system implications for functions in health and disease. Prog. Mol. Biol. Transl. Sci., 2011, 99, 265-305.
[http://dx.doi.org/10.1016/B978-0-12-385504-6.00007-5] [PMID: 21238939]
[6]
Tu, T.; Peng, J.; Jiang, Y. FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells Dev., 2020, 29(9), 533-543.
[http://dx.doi.org/10.1089/scd.2019.0232] [PMID: 31914844]
[7]
Pischiutta, F.; Sammali, E.; Parolini, O.; Carswell, H.V.O.; Zanier, E.R. Placenta-derived cells for acute brain injury. Cell Transplant., 2018, 27(1), 151-167.
[http://dx.doi.org/10.1177/0963689717732992] [PMID: 29562781]
[8]
Stocchetti, N.; Taccone, F.S.; Citerio, G.; Pepe, P.E.; Le Roux, P.D.; Oddo, M.; Polderman, K.H.; Stevens, R.D.; Barsan, W.; Maas, A.I.; Meyfroidt, G.; Bell, M.J.; Silbergleit, R.; Vespa, P.M.; Faden, A.I.; Helbok, R.; Tisherman, S.; Zanier, E.R.; Valenzuela, T.; Wendon, J.; Menon, D.K.; Vincent, J.L. Neuroprotection in acute brain injury: an up-to-date review. Crit. Care, 2015, 19, 186.
[http://dx.doi.org/10.1186/s13054-015-0887-8] [PMID: 25896893]
[9]
Lee, H.; Shin, E.A.; Lee, J.H.; Ahn, D.; Kim, C.G.; Kim, J.H.; Kim, S.H. Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin. Ther. Pat., 2018, 28(1), 47-59.
[http://dx.doi.org/10.1080/13543776.2017.1378426] [PMID: 28885866]
[10]
Ramirez, M.L.G.; Salvesen, G.S. A primer on caspase mechanisms. Semin. Cell Dev. Biol., 2018, 82, 79-85.
[http://dx.doi.org/10.1016/j.semcdb.2018.01.002] [PMID: 29329946]
[11]
Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ., 2017, 24(8), 1380-1389.
[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[12]
Galluzzi, L.; López-Soto, A.; Kumar, S.; Kroemer, G. Caspases Connect cell-death signaling to organismal homeostasis. Immunity, 2016, 44(2), 221-231.
[http://dx.doi.org/10.1016/j.immuni.2016.01.020] [PMID: 26885855]
[13]
Man, S.M.; Kanneganti, T.D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol., 2016, 16(1), 7-21.
[http://dx.doi.org/10.1038/nri.2015.7] [PMID: 26655628]
[14]
Kesavardhana, S.; Kanneganti, T.D. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int. Immunol., 2017, 29(5), 201-210.
[http://dx.doi.org/10.1093/intimm/dxx018] [PMID: 28531279]
[15]
Eckhart, L.; Declercq, W.; Ban, J.; Rendl, M.; Lengauer, B.; Mayer, C.; Lippens, S.; Vandenabeele, P.; Tschachler, E. Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J. Invest. Dermatol., 2000, 115(6), 1148-1151.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00205.x] [PMID: 11121154]
[16]
Lippens, S.; Kockx, M.; Knaapen, M.; Mortier, L.; Polakowska, R.; Verheyen, A.; Garmyn, M.; Zwijsen, A.; Formstecher, P.; Huylebroeck, D.; Vandenabeele, P.; Declercq, W. Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ., 2000, 7(12), 1218-1224.
[http://dx.doi.org/10.1038/sj.cdd.4400785] [PMID: 11175259]
[17]
Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol., 2016, 37(7), 8471-8486.
[http://dx.doi.org/10.1007/s13277-016-5035-9] [PMID: 27059734]
[18]
D’Arcy, M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[19]
Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. APJCP, 2015, 16(6), 2129-2144.
[PMID: 25824729]
[20]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[21]
Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 85-100.
[http://dx.doi.org/10.1038/s41580-019-0173-8] [PMID: 31636403]
[22]
Jeong, S.Y.; Seol, D.W. The role of mitochondria in apoptosis. BMB Rep., 2008, 41(1), 11-22.
[http://dx.doi.org/10.5483/BMBRep.2008.41.1.011] [PMID: 18304445]
[23]
Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J., 1999, 341(Pt 2), 233-249.
[http://dx.doi.org/10.1042/bj3410233] [PMID: 10393078]
[24]
Fink, S.L.; Cookson, B.T. Pillars Article: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006. 8: 1812-1825. J. Immunol., 2019, 202(7), 1913-1926.
[PMID: 30885987]
[25]
Yi, Y.S. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology, 2017, 152(2), 207-217.
[http://dx.doi.org/10.1111/imm.12787] [PMID: 28695629]
[26]
Zamyatina, A.; Heine, H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front. Immunol., 2020, 11585146
[http://dx.doi.org/10.3389/fimmu.2020.585146] [PMID: 33329561]
[27]
Xue, Y.; Enosi Tuipulotu, D.; Tan, W.H.; Kay, C.; Man, S.M. Emerging Activators and Regulators of Inflammasomes and Pyroptosis. Trends Immunol., 2019, 40(11), 1035-1052.
[http://dx.doi.org/10.1016/j.it.2019.09.005] [PMID: 31662274]
[28]
Man, S.M.; Kanneganti, T.D. Regulation of inflammasome activation. Immunol. Rev., 2015, 265(1), 6-21.
[http://dx.doi.org/10.1111/imr.12296] [PMID: 25879280]
[29]
Rathinam, V.A.; Fitzgerald, K.A. Inflammasome complexes: emerging mechanisms and effector functions. Cell, 2016, 165(4), 792-800.
[http://dx.doi.org/10.1016/j.cell.2016.03.046] [PMID: 27153493]
[30]
Malik, A.; Kanneganti, T.D. Inflammasome activation and assembly at a glance. J. Cell Sci., 2017, 130(23), 3955-3963.
[http://dx.doi.org/10.1242/jcs.207365] [PMID: 29196474]
[31]
Dick, M.S.; Sborgi, L.; Rühl, S.; Hiller, S.; Broz, P. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat. Commun., 2016, 7, 11929.
[http://dx.doi.org/10.1038/ncomms11929] [PMID: 27329339]
[32]
Matikainen, S.; Nyman, T.A.; Cypryk, W. Function and regulation of noncanonical caspase-4/5/11 inflammasome. J. Immunol., 2020, 204(12), 3063-3069.
[http://dx.doi.org/10.4049/jimmunol.2000373] [PMID: 32513874]
[33]
Alehashemi, S.; Goldbach-Mansky, R. Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. Front. Immunol., 2020, 11, 1840.
[http://dx.doi.org/10.3389/fimmu.2020.01840] [PMID: 32983099]
[34]
Evavold, C.L.; Ruan, J.; Tan, Y.; Xia, S.; Wu, H.; Kagan, J.C. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity, 2018, 48(1), 35-44.e6.
[http://dx.doi.org/10.1016/j.immuni.2017.11.013] [PMID: 29195811]
[35]
Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[36]
Man, S.M.; Karki, R.; Kanneganti, T.D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev., 2017, 277(1), 61-75.
[http://dx.doi.org/10.1111/imr.12534] [PMID: 28462526]
[37]
Salmena, L.; Lemmers, B.; Hakem, A.; Matysiak-Zablocki, E.; Murakami, K.; Au, P.Y.; Berry, D.M.; Tamblyn, L.; Shehabeldin, A.; Migon, E.; Wakeham, A.; Bouchard, D.; Yeh, W.C.; McGlade, J.C.; Ohashi, P.S.; Hakem, R. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev., 2003, 17(7), 883-895.
[http://dx.doi.org/10.1101/gad.1063703] [PMID: 12654726]
[38]
Freimuth, J.; Bangen, J.M.; Lambertz, D.; Hu, W.; Nevzorova, Y.A.; Sonntag, R.; Gassler, N.; Riethmacher, D.; Trautwein, C.; Liedtke, C. Loss of caspase-8 in hepatocytes accelerates the onset of liver regeneration in mice through premature nuclear factor kappa B activation. Hepatology, 2013, 58(5), 1779-1789.
[http://dx.doi.org/10.1002/hep.26538] [PMID: 23728913]
[39]
Olson, N.E.; Graves, J.D.; Shu, G.L.; Ryan, E.J.; Clark, E.A. Caspase activity is required for stimulated B lymphocytes to enter the cell cycle. J. Immunol., 2003, 170(12), 6065-6072.
[http://dx.doi.org/10.4049/jimmunol.170.12.6065] [PMID: 12794135]
[40]
Svandova, E.; Lesot, H.; Vanden Berghe, T.; Tucker, A.S.; Sharpe, P.T.; Vandenabeele, P.; Matalova, E. Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis., 2014, 5e1366
[http://dx.doi.org/10.1038/cddis.2014.330] [PMID: 25118926]
[41]
Woo, M.; Hakem, R.; Furlonger, C.; Hakem, A.; Duncan, G.S.; Sasaki, T.; Bouchard, D.; Lu, L.; Wu, G.E.; Paige, C.J.; Mak, T.W. Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat. Immunol., 2003, 4(10), 1016-1022.
[http://dx.doi.org/10.1038/ni976] [PMID: 12970760]
[42]
Larsen, B.D.; Rampalli, S.; Burns, L.E.; Brunette, S.; Dilworth, F.J.; Megeney, L.A. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4230-4235.
[http://dx.doi.org/10.1073/pnas.0913089107] [PMID: 20160104]
[43]
Glushakova, O.Y.; Glushakov, A.A.; Wijesinghe, D.S.; Valadka, A.B.; Hayes, R.L.; Glushakov, A.V. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ., 2017, 3(2), 87-108.
[PMID: 30276309]
[44]
Luo, C.; Jiang, J.; Lu, Y.; Zhu, C. Spatial and temporal profile of apoptosis following lateral fluid percussion brain injury. Chin. J. Traumatol., 2002, 5(1), 24-27.
[PMID: 11835752]
[45]
Rink, A.; Fung, K.M.; Trojanowski, J.Q.; Lee, V.M.; Neugebauer, E.; McIntosh, T.K. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathol., 1995, 147(6), 1575-1583.
[PMID: 7495282]
[46]
Ladak, A.A.; Enam, S.A.; Ibrahim, M.T. A review of the molecular mechanisms of traumatic brain injury. World Neurosurg., 2019, 131, 126-132.
[http://dx.doi.org/10.1016/j.wneu.2019.07.039] [PMID: 31301445]
[47]
Stocchetti, N.; Carbonara, M.; Citerio, G.; Ercole, A.; Skrifvars, M.B.; Smielewski, P.; Zoerle, T.; Menon, D.K. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol., 2017, 16(6), 452-464.
[http://dx.doi.org/10.1016/S1474-4422(17)30118-7] [PMID: 28504109]
[48]
Keane, R.W.; Kraydieh, S.; Lotocki, G.; Alonso, O.F.; Aldana, P.; Dietrich, W.D. Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J. Cereb. Blood Flow Metab., 2001, 21(10), 1189-1198.
[http://dx.doi.org/10.1097/00004647-200110000-00007] [PMID: 11598496]
[49]
Stoica, B.A.; Faden, A.I. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics, 2010, 7(1), 3-12.
[http://dx.doi.org/10.1016/j.nurt.2009.10.023] [PMID: 20129492]
[50]
Lorente, L.; Martin, M.M.; Perez-Cejas, A.; Gonzalez-Rivero, A.F.; Ramos-Gomez, L.; Sole-Violan, J.; Caceres, J.J.; Ferrer-Moure, C.; Jimenez, A. Low blood caspase-8 levels in survivor patients of traumatic brain injury. Neurol. Sci., 2021. [Online ahead of print]
[http://dx.doi.org/10.1007/s10072-021-05205-2] [PMID: 33759054]
[51]
Darwish, R.S.; Amiridze, N.S. Detectable levels of cytochrome C and activated caspase-9 in cerebrospinal fluid after human traumatic brain injury. Neurocrit. Care, 2010, 12(3), 337-341.
[http://dx.doi.org/10.1007/s12028-009-9328-3] [PMID: 20087688]
[52]
de Rivero Vaccari, J.P.; Lotocki, G.; Alonso, O.F.; Bramlett, H.M.; Dietrich, W.D.; Keane, R.W. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J. Cereb. Blood Flow Metab., 2009, 29(7), 1251-1261.
[http://dx.doi.org/10.1038/jcbfm.2009.46] [PMID: 19401709]
[53]
Irrera, N.; Russo, M.; Pallio, G.; Bitto, A.; Mannino, F.; Minutoli, L.; Altavilla, D.; Squadrito, F. The Role of NLRP3 Inflammasome in the Pathogenesis of Traumatic Brain Injury. Int. J. Mol. Sci., 2020, 21(17)E6204
[http://dx.doi.org/10.3390/ijms21176204] [PMID: 32867310]
[54]
Tomasetti, C.; Montemitro, C.; Fiengo, A.L.C.; Santone, C.; Orsolini, L.; Valchera, A.; Carano, A.; Pompili, M.; Serafini, G.; Perna, G.; Vellante, F.; Martinotti, G.; Giannantonio, M.D.; Kim, Y.K.; Nicola, M.D.; Bellomo, A.; Ventriglio, A.; Fornaro, M.; Berardis, D.D. Novel pathways in the treatment of major depression: Focus on the glutamatergic system. Curr. Pharm. Des., 2019, 25(4), 381-387.
[http://dx.doi.org/10.2174/1381612825666190312102444] [PMID: 30864501]
[55]
Tomasetti, C.; Iasevoli, F.; Buonaguro, E.F.; De Berardis, D.; Fornaro, M.; Fiengo, A.L.; Martinotti, G.; Orsolini, L.; Valchera, A.; Di Giannantonio, M.; de Bartolomeis, A. Treating the synapse in major psychiatric disorders: The role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions. Int. J. Mol. Sci., 2017, 18(1)E135
[http://dx.doi.org/10.3390/ijms18010135] [PMID: 28085108]
[56]
Chen, T.; Zhu, J.; Wang, Y.H.; Hang, C.H. Arc silence aggravates traumatic neuronal injury via mGluR1-mediated ER stress and necroptosis. Cell Death Dis., 2020, 11(1), 4.
[http://dx.doi.org/10.1038/s41419-019-2198-5] [PMID: 31919348]
[57]
Datta, A.; Sarmah, D.; Mounica, L.; Kaur, H.; Kesharwani, R.; Verma, G.; Veeresh, P.; Kotian, V.; Kalia, K.; Borah, A.; Wang, X.; Dave, K.R.; Yavagal, D.R.; Bhattacharya, P. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl. Stroke Res., 2020, 11(6), 1185-1202.
[http://dx.doi.org/10.1007/s12975-020-00806-z] [PMID: 32219729]
[58]
Uzdensky, A.B. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis, 2019, 24(9-10), 687-702.
[http://dx.doi.org/10.1007/s10495-019-01556-6] [PMID: 31256300]
[59]
Ferrer, I.; Friguls, B.; Dalfó, E.; Justicia, C.; Planas, A.M. Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol. Appl. Neurobiol., 2003, 29(5), 472-481.
[http://dx.doi.org/10.1046/j.1365-2990.2003.00485.x] [PMID: 14507339]
[60]
Krupinski, J.; Lopez, E.; Marti, E.; Ferrer, I. Expression of caspases and their substrates in the rat model of focal cerebral ischemia. Neurobiol. Dis., 2000, 7(4), 332-342.
[http://dx.doi.org/10.1006/nbdi.2000.0310] [PMID: 10964605]
[61]
Demyanenko, S.; Uzdensky, A. Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. Mol. Neurobiol., 2017, 54(9), 6839-6856.
[http://dx.doi.org/10.1007/s12035-016-0191-x] [PMID: 27771897]
[62]
Li, F.; Omori, N.; Sato, K.; Jin, G.; Nagano, I.; Manabe, Y.; Shoji, M.; Abe, K. Coordinate expression of survival p-ERK and proapoptotic cytochrome c signals in rat brain neurons after transient MCAO. Brain Res., 2002, 958(1), 83-88.
[http://dx.doi.org/10.1016/S0006-8993(02)03465-0] [PMID: 12468032]
[63]
Ferrer, I.; Planas, A.M. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J. Neuropathol. Exp. Neurol., 2003, 62(4), 329-339.
[http://dx.doi.org/10.1093/jnen/62.4.329] [PMID: 12722825]
[64]
Wang, K.; Sun, Z.; Ru, J.; Wang, S.; Huang, L.; Ruan, L.; Lin, X.; Jin, K.; Zhuge, Q.; Yang, S. Ablation of GSDMD improves outcome of ischemic stroke through blocking canonical and non-canonical inflammasomes dependent pyroptosis in microglia. Front. Neurol., 2020, 11577927
[http://dx.doi.org/10.3389/fneur.2020.577927] [PMID: 33329317]
[65]
Cao, Y.; Zhang, H.; Lu, X.; Wang, J.; Zhang, X.; Sun, S.; Bao, Z.; Tian, W.; Ning, S.; Wang, L.; Cui, L. Overexpression of MicroRNA-9a-5p ameliorates NLRP1 inflammasome-mediated ischemic injury in rats following ischemic stroke. Neuroscience, 2020, 444, 106-117.
[http://dx.doi.org/10.1016/j.neuroscience.2020.01.008] [PMID: 31954830]
[66]
Feng, Y.S.; Tan, Z.X.; Wang, M.M.; Xing, Y.; Dong, F.; Zhang, F. Inhibition of NLRP3 inflammasome: A prospective target for the treatment of ischemic stroke. Front. Cell. Neurosci., 2020, 14, 155.
[http://dx.doi.org/10.3389/fncel.2020.00155] [PMID: 32581721]
[67]
Poh, L.; Kang, S.W.; Baik, S.H.; Ng, G.Y.Q.; She, D.T.; Balaganapathy, P.; Dheen, S.T.; Magnus, T.; Gelderblom, M.; Sobey, C.G.; Koo, E.H.; Fann, D.Y.; Arumugam, T.V. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav. Immun., 2019, 75, 34-47.
[http://dx.doi.org/10.1016/j.bbi.2018.09.001] [PMID: 30195027]
[68]
Wilkinson, D.A.; Pandey, A.S.; Thompson, B.G.; Keep, R.F.; Hua, Y.; Xi, G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology, 2018, 134(Pt B), 240-248.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.033] [PMID: 28947377]
[69]
Salihu, A.T.; Muthuraju, S.; Idris, Z.; Izaini Ghani, A.R.; Abdullah, J.M. Functional outcome after intracerebral haemorrhage - a review of the potential role of antiapoptotic agents. Rev. Neurosci., 2016, 27(3), 317-327.
[http://dx.doi.org/10.1515/revneuro-2015-0046] [PMID: 26641962]
[70]
Delgado, P.; Cuadrado, E.; Rosell, A.; Alvarez-Sabín, J.; Ortega-Aznar, A.; Hernández-Guillamón, M.; Penalba, A.; Molina, C.A.; Montaner, J. Fas system activation in perihematomal areas after spontaneous intracerebral hemorrhage. Stroke, 2008, 39(6), 1730-1734.
[http://dx.doi.org/10.1161/STROKEAHA.107.500876] [PMID: 18403741]
[71]
Chen, W.; Guo, C.; Feng, H.; Chen, Y. Mitochondria: Novel Mechanisms and therapeutic targets for secondary brain injury after intracerebral hemorrhage. Front. Aging Neurosci., 2021, 12615451
[http://dx.doi.org/10.3389/fnagi.2020.615451] [PMID: 33584246]
[72]
Lu, H.; Jiang, M.; Lu, L.; Zheng, G.; Dong, Q. Ultrastructural mitochondria changes in perihematomal brain and neuroprotective effects of Huperzine A after acute intracerebral hemorrhage. Neuropsychiatr. Dis. Treat., 2015, 11, 2649-2657.
[http://dx.doi.org/10.2147/NDT.S92158] [PMID: 26508860]
[73]
Sun, D.B.; Xu, M.J.; Chen, Q.M.; Hu, H.T. Significant elevation of serum caspase-3 levels in patients with intracerebral hemorrhage. Clin. Chim. Acta, 2017, 471, 62-67.
[http://dx.doi.org/10.1016/j.cca.2017.05.021] [PMID: 28526532]
[74]
Xiao, L.; Zheng, H.; Li, J.; Wang, Q.; Sun, H. Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets. Mol. Neurobiol., 2020, 57(12), 5130-5149.
[http://dx.doi.org/10.1007/s12035-020-02082-2] [PMID: 32856203]
[75]
Liang, H.; Sun, Y.; Gao, A.; Zhang, N.; Jia, Y.; Yang, S.; Na, M.; Liu, H.; Cheng, X.; Fang, X.; Ma, W.; Zhang, X.; Wang, F. Ac-YVAD-cmk improves neurological function by inhibiting caspase-1-mediated inflammatory response in the intracerebral hemorrhage of rats. Int. Immunopharmacol., 2019, 75105771
[http://dx.doi.org/10.1016/j.intimp.2019.105771] [PMID: 31352322]
[76]
Zeyu, Zhang Yuanjian Fang; Cameron Lenahan; Sheng Chen, The role of immune inflammation in aneurysmal subarachnoid hemorrhage. Exp. Neurol., 2021, 336113535
[http://dx.doi.org/10.1016/j.expneurol.2020.113535] [PMID: 33249033]
[77]
Fujii, M.; Yan, J.; Rolland, W.B.; Soejima, Y.; Caner, B.; Zhang, J.H. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl. Stroke Res., 2013, 4(4), 432-446.
[http://dx.doi.org/10.1007/s12975-013-0257-2] [PMID: 23894255]
[78]
Zhou, C.; Yamaguchi, M.; Colohan, A.R.; Zhang, J.H. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab., 2005, 25(5), 572-582.
[http://dx.doi.org/10.1038/sj.jcbfm.9600069] [PMID: 15729295]
[79]
Zhou, C.; Yamaguchi, M.; Kusaka, G.; Schonholz, C.; Nanda, A.; Zhang, J.H. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab., 2004, 24(4), 419-431.
[http://dx.doi.org/10.1097/00004647-200404000-00007] [PMID: 15087711]
[80]
Ke, D.Q.; Chen, Z.Y.; Li, Z.L.; Huang, X.; Liang, H. Target inhibition of caspase-8 alleviates brain damage after subarachnoid hemorrhage. Neural Regen. Res., 2020, 15(7), 1283-1289.
[http://dx.doi.org/10.4103/1673-5374.272613] [PMID: 31960814]
[81]
Zhang, Y.; Yang, X.; Ge, X.; Zhang, F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother., 2019, 109, 726-733.
[http://dx.doi.org/10.1016/j.biopha.2018.10.161] [PMID: 30551525]
[82]
Chen, J.; Zhang, C.; Yan, T.; Yang, L.; Wang, Y.; Shi, Z.; Li, M.; Chen, Q. Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of pyroptosis and neuroinflammation. J. Cell. Physiol., 2021, 236(10), 6920-6931.
[http://dx.doi.org/10.1002/jcp.30351] [PMID: 33792028]
[83]
Xu, P.; Hong, Y.; Xie, Y.; Yuan, K.; Li, J.; Sun, R.; Zhang, X.; Shi, X.; Li, R.; Wu, J.; Liu, X.; Hu, W.; Sun, W. TREM-1 Exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl. Stroke Res., 2020.
[PMID: 32862402]
[84]
Yuan, B.; Zhou, X.M.; You, Z.Q.; Xu, W.D.; Fan, J.M.; Chen, S.J.; Han, Y.L.; Wu, Q.; Zhang, X. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis., 2020, 11(1), 76.
[http://dx.doi.org/10.1038/s41419-020-2248-z] [PMID: 32001670]
[85]
Hirsch, Y.; Geraghty, J.R.; Katz, E.A.; Testai, F.D. Inflammasome Caspase-1 activity is elevated in cerebrospinal fluid after aneurysmal subarachnoid hemorrhage and predicts functional outcome. Neurocrit. Care, 2020.
[PMID: 32996055]
[86]
Akpan, N.; Troy, C.M. Caspase inhibitors: prospective therapies for stroke. Neuroscientist, 2013, 19(2), 129-136.
[http://dx.doi.org/10.1177/1073858412447875] [PMID: 22645109]
[87]
Planells-Ferrer, L.; Urresti, J.; Coccia, E.; Galenkamp, K.M.; Calleja-Yagüe, I.; López-Soriano, J.; Carriba, P.; Barneda-Zahonero, B.; Segura, M.F.; Comella, J.X. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J. Neurochem., 2016, 139(1), 11-21.
[http://dx.doi.org/10.1111/jnc.13729] [PMID: 27385439]
[88]
Kozai, T.D.; Li, X.; Bodily, L.M.; Caparosa, E.M.; Zenonos, G.A.; Carlisle, D.L.; Friedlander, R.M.; Cui, X.T. Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials, 2014, 35(36), 9620-9634.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.006] [PMID: 25176060]
[89]
Scholz, M.; Cinatl, J. Fas/FasL interaction: a novel immune therapy approach with immobilized biologicals. Med. Res. Rev., 2005, 25(3), 331-342.
[http://dx.doi.org/10.1002/med.20025] [PMID: 15599929]
[90]
Yrjänheikki, J.; Tikka, T.; Keinänen, R.; Goldsteins, G.; Chan, P.H.; Koistinaho, J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13496-13500.
[http://dx.doi.org/10.1073/pnas.96.23.13496] [PMID: 10557349]
[91]
Darding, M.; Meier, P. IAPs: guardians of RIPK1. Cell Death Differ., 2012, 19(1), 58-66.
[http://dx.doi.org/10.1038/cdd.2011.163] [PMID: 22095281]
[92]
Silke, J.; Meier, P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb. Perspect. Biol., 2013, 5(2)a008730
[http://dx.doi.org/10.1101/cshperspect.a008730] [PMID: 23378585]
[93]
Callus, B.A.; Vaux, D.L. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ., 2007, 14(1), 73-78.
[http://dx.doi.org/10.1038/sj.cdd.4402034] [PMID: 16946729]
[94]
Xu, X.E.; Liu, L.; Wang, Y.C.; Wang, C.T.; Zheng, Q.; Liu, Q.X.; Li, Z.F.; Bai, X.J.; Liu, X.H. Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain Behav. Immun., 2019, 80, 859-870.
[http://dx.doi.org/10.1016/j.bbi.2019.05.038] [PMID: 31145977]
[95]
Wu, B.; Ma, Q.; Khatibi, N.; Chen, W.; Sozen, T.; Cheng, O.; Tang, J. Ac-YVAD-CMK decreases blood-brain barrier degradation by inhibiting caspase-1 activation of interleukin-1β in intracerebral hemorrhage mouse model. Transl. Stroke Res., 2010, 1(1), 57-64.
[http://dx.doi.org/10.1007/s12975-009-0002-z] [PMID: 20596246]
[96]
Zhai, Y.; Liu, Y.; Qi, Y.; Long, X.; Gao, J.; Yao, X.; Chen, Y.; Wang, X.; Lu, S.; Zhao, Z. The soluble VEGF receptor sFlt-1 contributes to endothelial dysfunction in IgA nephropathy. PLoS One, 2020, 15(8)e0234492
[http://dx.doi.org/10.1371/journal.pone.0234492] [PMID: 32790760]
[97]
Long, J.; Su, Y.X.; Deng, H.C. Lipoapoptosis pathways in pancreatic β-cells and the anti-apoptosis mechanisms of adiponectin. Horm. Metab. Res., 2014, 46(10), 722-727.
[http://dx.doi.org/10.1055/s-0034-1382014] [PMID: 25028793]
[98]
Ahn, J.; Lee, J.S.; Yang, K.M. Ultrafine particles of Ulmus davidiana var. japonica induce apoptosis of gastric cancer cells via activation of caspase and endoplasmic reticulum stress. Arch. Pharm. Res., 2014, 37(6), 783-792.
[http://dx.doi.org/10.1007/s12272-013-0312-2] [PMID: 24395528]
[99]
Fauvel, H.; Marchetti, P.; Chopin, C.; Formstecher, P.; Nevière, R. Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am. J. Physiol. Heart Circ. Physiol., 2001, 280(4), H1608-H1614.
[http://dx.doi.org/10.1152/ajpheart.2001.280.4.H1608] [PMID: 11247771]
[100]
Cai, S.X.; Guan, L.; Jia, S.; Wang, Y.; Yang, W.; Tseng, B.; Drewe, J. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: SAR of the N-protecting group. Bioorg. Med. Chem. Lett., 2004, 14(21), 5295-5300.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.027] [PMID: 15454214]
[101]
Li, B.; Blanc, J.M.; Sun, Y.; Yang, L.; Zaorsky, N.G.; Giacalone, N.J.; Torossian, A.; Lu, B. Assessment of M867, a selective caspase-3 inhibitor, in an orthotopic mouse model for non-small cell lung carcinoma. Am. J. Cancer Res., 2014, 4(2), 161-171.
[PMID: 24660105]
[102]
Chapman, J.G.; Magee, W.P.; Stukenbrok, H.A.; Beckius, G.E.; Milici, A.J.; Tracey, W.R. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin reduces myocardial ischemic injury. Eur. J. Pharmacol., 2002, 456(1-3), 59-68.
[http://dx.doi.org/10.1016/S0014-2999(02)02484-6] [PMID: 12450570]
[103]
Kumar, S.P.; Patel, C.N.; Jha, P.C.; Pandya, H.A. Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding. Comput. Biol. Chem., 2017, 71, 117-128.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.08.006] [PMID: 29153890]
[104]
Eguchi, A.; Koyama, Y.; Wree, A.; Johnson, C.D.; Nakamura, R.; Povero, D.; Kneiber, D.; Tameda, M.; Contreras, P.; Spada, A.; Feldstein, A.E. Emricasan, a pan-caspase inhibitor, improves survival and portal hypertension in a murine model of common bile-duct ligation. J. Mol. Med. (Berl.), 2018, 96(6), 575-583.
[http://dx.doi.org/10.1007/s00109-018-1642-9] [PMID: 29728708]
[105]
Frydrych, I.; Mlejnek, P.; Dolezel, P.; Zoumpourlis, V.; Krumpochova, P. The broad-spectrum caspase inhibitor Boc-Asp-CMK induces cell death in human leukaemia cells. Toxicol. In Vitro, 2008, 22(5), 1356-1360.
[http://dx.doi.org/10.1016/j.tiv.2008.02.017] [PMID: 18434077]
[106]
Pagano, N.; Longobardi, V.; De Canditiis, C.; Zuchegna, C.; Romano, A.; Michal Andrzej, K.; Pero, M.E.; Gasparrini, B. Effect of caspase inhibitor Z-VAD-FMK on bovine sperm cryotolerance. Reprod. Domest. Anim., 2020, 55(4), 530-536.
[http://dx.doi.org/10.1111/rda.13648] [PMID: 31985871]
[107]
Laforge, M.; Silvestre, R.; Rodrigues, V.; Garibal, J.; Campillo-Gimenez, L.; Mouhamad, S.; Monceaux, V.; Cumont, M.C.; Rabezanahary, H.; Pruvost, A.; Cordeiro-da-Silva, A.; Hurtrel, B.; Silvestri, G.; Senik, A.; Estaquier, J. The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. J. Clin. Invest., 2018, 128(4), 1627-1640.
[http://dx.doi.org/10.1172/JCI95127] [PMID: 29553486]
[108]
Witek, R.P.; Stone, W.C.; Karaca, F.G.; Syn, W.K.; Pereira, T.A.; Agboola, K.M.; Omenetti, A.; Jung, Y.; Teaberry, V.; Choi, S.S.; Guy, C.D.; Pollard, J.; Charlton, P.; Diehl, A.M. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology, 2009, 50(5), 1421-1430.
[http://dx.doi.org/10.1002/hep.23167] [PMID: 19676126]
[109]
Broecker-Preuss, M.; Müller, S.; Britten, M.; Worm, K.; Schmid, K.W.; Mann, K.; Fuhrer, D. Sorafenib inhibits intracellular signaling pathways and induces cell cycle arrest and cell death in thyroid carcinoma cells irrespective of histological origin or BRAF mutational status. BMC Cancer, 2015, 15, 184.
[http://dx.doi.org/10.1186/s12885-015-1186-0] [PMID: 25879531]
[110]
Lee, J.H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Kong, A.N. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther., 2013, 137(2), 153-171.
[http://dx.doi.org/10.1016/j.pharmthera.2012.09.008] [PMID: 23041058]
[111]
Suboj, P.; Babykutty, S.; Srinivas, P.; Gopala, S. Aloe emodin induces G2/M cell cycle arrest and apoptosis via activation of caspase-6 in human colon cancer cells. Pharmacology, 2012, 89(1-2), 91-98.
[http://dx.doi.org/10.1159/000335659] [PMID: 22343391]
[112]
Chauvier, D.; Ankri, S.; Charriaut-Marlangue, C.; Casimir, R.; Jacotot, E. Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ., 2007, 14(2), 387-391.
[http://dx.doi.org/10.1038/sj.cdd.4402044] [PMID: 17008913]
[113]
Ma, J.; Endres, M.; Moskowitz, M.A. Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br. J. Pharmacol., 1998, 124(4), 756-762.
[http://dx.doi.org/10.1038/sj.bjp.0701871] [PMID: 9690868]
[114]
Ma, J.; Qiu, J.; Hirt, L.; Dalkara, T.; Moskowitz, M.A. Synergistic protective effect of caspase inhibitors and bFGF against brain injury induced by transient focal ischaemia. Br. J. Pharmacol., 2001, 133(3), 345-350.
[http://dx.doi.org/10.1038/sj.bjp.0704075] [PMID: 11375250]
[115]
Yap, E.; Tan, W.L.; Ng, I.; Ng, Y.K. Combinatorial-approached neuroprotection using pan-caspase inhibitor and poly (ADP-ribose) polymerase (PARP) inhibitor following experimental stroke in rats; is there additional benefit? Brain Res., 2008, 1195, 130-138.
[http://dx.doi.org/10.1016/j.brainres.2007.12.024] [PMID: 18207135]
[116]
Park, S.; Yamaguchi, M.; Zhou, C.; Calvert, J.W.; Tang, J.; Zhang, J.H. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke, 2004, 35(10), 2412-2417.
[http://dx.doi.org/10.1161/01.STR.0000141162.29864.e9] [PMID: 15322302]
[117]
Fink, K.B.; Andrews, L.J.; Butler, W.E.; Ona, V.O.; Li, M.; Bogdanov, M.; Endres, M.; Khan, S.Q.; Namura, S.; Stieg, P.E.; Beal, M.F.; Moskowitz, M.A.; Yuan, J.; Friedlander, R.M. Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience, 1999, 94(4), 1213-1218.
[http://dx.doi.org/10.1016/S0306-4522(99)00345-0] [PMID: 10625061]
[118]
Huesmann, G.R.; Clayton, D.F. Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron, 2006, 52(6), 1061-1072.
[http://dx.doi.org/10.1016/j.neuron.2006.10.033] [PMID: 17178408]
[119]
Venero, J.L.; Burguillos, M.A.; Brundin, P.; Joseph, B. The executioners sing a new song: killer caspases activate microglia. Cell Death Differ., 2011, 18(11), 1679-1691.
[http://dx.doi.org/10.1038/cdd.2011.107] [PMID: 21836616]
[120]
Kerr, N.; Lee, S.W.; Perez-Barcena, J.; Crespi, C.; Ibañez, J.; Bullock, M.R.; Dietrich, W.D.; Keane, R.W.; de Rivero Vaccari, J.P. Inflammasome proteins as biomarkers of traumatic brain injury. PLoS One, 2018, 13(12)e0210128
[http://dx.doi.org/10.1371/journal.pone.0210128] [PMID: 30596792]
[121]
Adamczak, S.; Dale, G.; de Rivero Vaccari, J.P.; Bullock, M.R.; Dietrich, W.D.; Keane, R.W. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J. Neurosurg., 2012, 117(6), 1119-1125.
[http://dx.doi.org/10.3171/2012.9.JNS12815] [PMID: 23061392]
[122]
Freeman, L.C.; Ting, J.P. The pathogenic role of the inflammasome in neurodegenerative diseases. J. Neurochem., 2016, 136(Suppl. 1), 29-38.
[http://dx.doi.org/10.1111/jnc.13217] [PMID: 26119245]
[123]
Friedlander, R.M.; Gagliardini, V.; Hara, H.; Fink, K.B.; Li, W.; MacDonald, G.; Fishman, M.C.; Greenberg, A.H.; Moskowitz, M.A.; Yuan, J. Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J. Exp. Med., 1997, 185(5), 933-940.
[http://dx.doi.org/10.1084/jem.185.5.933] [PMID: 9120399]
[124]
Rabuffetti, M.; Sciorati, C.; Tarozzo, G.; Clementi, E.; Manfredi, A.A.; Beltramo, M. Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J. Neurosci., 2000, 20(12), 4398-4404.
[http://dx.doi.org/10.1523/JNEUROSCI.20-12-04398.2000] [PMID: 10844008]
[125]
Benchoua, A.; Guégan, C.; Couriaud, C.; Hosseini, H.; Sampaïo, N.; Morin, D.; Onténiente, B. Specific caspase pathways are activated in the two stages of cerebral infarction. J. Neurosci., 2001, 21(18), 7127-7134.
[http://dx.doi.org/10.1523/JNEUROSCI.21-18-07127.2001] [PMID: 11549723]
[126]
Martinou, J.C.; Dubois-Dauphin, M.; Staple, J.K.; Rodriguez, I.; Frankowski, H.; Missotten, M.; Albertini, P.; Talabot, D.; Catsicas, S.; Pietra, C. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron, 1994, 13(4), 1017-1030.
[http://dx.doi.org/10.1016/0896-6273(94)90266-6] [PMID: 7946326]
[127]
Loddick, S.A.; MacKenzie, A.; Rothwell, N.J. An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuroreport, 1996, 7(9), 1465-1468.
[http://dx.doi.org/10.1097/00001756-199606170-00004] [PMID: 8856699]
[128]
Boxer, M.B.; Quinn, A.M.; Shen, M.; Jadhav, A.; Leister, W.; Simeonov, A.; Auld, D.S.; Thomas, C.J. A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety. ChemMedChem, 2010, 5(5), 730-738.
[http://dx.doi.org/10.1002/cmdc.200900531] [PMID: 20229566]
[129]
Li, Q.; Dai, Z.; Cao, Y.; Wang, L. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem. Biophys. Res. Commun., 2019, 513(2), 479-485.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.202] [PMID: 30979498]
[130]
Dapaah-Siakwan, F.; Zambrano, R.; Luo, S.; Duncan, M.R.; Kerr, N.; Donda, K.; de Rivero Vaccari, J.P.; Keane, R.W.; Dietrich, W.D.; Benny, M.; Young, K.; Wu, S. Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice. Am. J. Respir. Cell Mol. Biol., 2019, 61(3), 341-354.
[http://dx.doi.org/10.1165/rcmb.2018-0192OC] [PMID: 30897338]
[131]
Shabanzadeh, A.P.; D’Onofrio, P.M.; Monnier, P.P.; Koeberle, P.D. Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke. Cell Death Dis., 2015, 6(11)e1967
[http://dx.doi.org/10.1038/cddis.2015.272] [PMID: 26539914]
[132]
Mouw, G.; Zechel, J.L.; Zhou, Y.; Lust, W.D.; Selman, W.R.; Ratcheson, R.A. Caspase-9 inhibition after focal cerebral ischemia improves outcome following reversible focal ischemia. Metab. Brain Dis., 2002, 17(3), 143-151.
[http://dx.doi.org/10.1023/A:1019921904378] [PMID: 12322785]
[133]
Cohen, G.M. Caspases: the executioners of apoptosis. Biochem. J., 1997, 326(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3260001] [PMID: 9337844]
[134]
Zheng, Z.; Liu, S.; Wang, C.; Wang, C.; Tang, D.; Shi, Y.; Han, X. Association of genetic polymorphisms in CASP7 with risk of ischaemic stroke. Sci. Rep., 2019, 9(1), 18627.
[http://dx.doi.org/10.1038/s41598-019-55201-y] [PMID: 31819117]
[135]
Cowling, V.; Downward, J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ., 2002, 9(10), 1046-1056.
[http://dx.doi.org/10.1038/sj.cdd.4401065] [PMID: 12232792]
[136]
Allsopp, T.E.; McLuckie, J.; Kerr, L.E.; Macleod, M.; Sharkey, J.; Kelly, J.S. Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis. Cell Death Differ., 2000, 7(10), 984-993.
[http://dx.doi.org/10.1038/sj.cdd.4400733] [PMID: 11279545]
[137]
Li, H.; Colbourne, F.; Sun, P.; Zhao, Z.; Buchan, A.M.; Iadecola, C. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke, 2000, 31(1), 176-182.
[http://dx.doi.org/10.1161/01.STR.31.1.176] [PMID: 10625735]
[138]
Fink, K.; Zhu, J.; Namura, S.; Shimizu-Sasamata, M.; Endres, M.; Ma, J.; Dalkara, T.; Yuan, J.; Moskowitz, M.A. Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J. Cereb. Blood Flow Metab., 1998, 18(10), 1071-1076.
[http://dx.doi.org/10.1097/00004647-199810000-00003] [PMID: 9778183]
[139]
Yakovlev, A.G.; Knoblach, S.M.; Fan, L.; Fox, G.B.; Goodnight, R.; Faden, A.I. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci., 1997, 17(19), 7415-7424.
[http://dx.doi.org/10.1523/JNEUROSCI.17-19-07415.1997] [PMID: 9295387]
[140]
Clark, R.S.; Kochanek, P.M.; Watkins, S.C.; Chen, M.; Dixon, C.E.; Seidberg, N.A.; Melick, J.; Loeffert, J.E.; Nathaniel, P.D.; Jin, K.L.; Graham, S.H. Caspase-3 mediated neuronal death after traumatic brain injury in rats. J. Neurochem., 2000, 74(2), 740-753.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740740.x] [PMID: 10646526]
[141]
Knoblach, S.M.; Alroy, D.A.; Nikolaeva, M.; Cernak, I.; Stoica, B.A.; Faden, A.I. Caspase inhibitor z-DEVD-fmk attenuates calpain and necrotic cell death in vitro and after traumatic brain injury. J. Cereb. Blood Flow Metab., 2004, 24(10), 1119-1132.
[http://dx.doi.org/10.1097/01.WCB.0000138664.17682.32] [PMID: 15529012]
[142]
Jesenberger, V.; Procyk, K.J.; Yuan, J.; Reipert, S.; Baccarini, M. Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J. Exp. Med., 2000, 192(7), 1035-1046.
[http://dx.doi.org/10.1084/jem.192.7.1035] [PMID: 11015444]
[143]
Zhang, R.; Zhou, W.; Yu, Z.; Yang, L.; Liu, G.; Yu, H.; Zhou, Q.; Min, Z.; Zhang, C.; Wu, Q.; Hu, X.M.; Yuan, Q. miR-1247-3p mediates apoptosis of cerebral neurons by targeting caspase-2 in stroke. Brain Res., 2019, 1714, 18-26.
[http://dx.doi.org/10.1016/j.brainres.2019.02.020] [PMID: 30779911]
[144]
Chaari, A.; Chtara, K.; Toumi, N.; Bahloul, M.; Bouaziz, M. Neurogenic pulmonary edema after severe head injury: a transpulmonary thermodilution study. Am. J. Emerg. Med., 2015, 33(6), 858.e1-858.e3.
[http://dx.doi.org/10.1016/j.ajem.2014.12.009] [PMID: 25572647]
[145]
Suzuki, H.; Sozen, T.; Hasegawa, Y.; Chen, W.; Zhang, J.H. Caspase-1 inhibitor prevents neurogenic pulmonary edema after subarachnoid hemorrhage in mice. Stroke, 2009, 40(12), 3872-3875.
[http://dx.doi.org/10.1161/STROKEAHA.109.566109] [PMID: 19875734]
[146]
Suzuki, H.; Sozen, T.; Hasegawa, Y.; Chen, W.; Kanamaru, K.; Taki, W.; Zhang, J.H. Subarachnoid hemorrhage causes pulmonary endothelial cell apoptosis and neurogenic pulmonary edema in mice. Acta Neurochir. Suppl. (Wien), 2011, 111, 129-132.
[http://dx.doi.org/10.1007/978-3-7091-0693-8_21] [PMID: 21725743]
[147]
Braun, J.S.; Prass, K.; Dirnagl, U.; Meisel, A.; Meisel, C. Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Exp. Neurol., 2007, 206(2), 183-191.
[http://dx.doi.org/10.1016/j.expneurol.2007.03.032] [PMID: 17585906]
[148]
Mijajlović, M.D.; Pavlović, A.; Brainin, M.; Heiss, W.D.; Quinn, T.J.; Ihle-Hansen, H.B.; Hermann, D.M.; Assayag, E.B.; Richard, E.; Thiel, A.; Kliper, E.; Shin, Y.I.; Kim, Y.H.; Choi, S.; Jung, S.; Lee, Y.B.; Sinanović, O.; Levine, D.A.; Schlesinger, I.; Mead, G.; Milošević, V.; Leys, D.; Hagberg, G.; Ursin, M.H.; Teuschl, Y.; Prokopenko, S.; Mozheyko, E.; Bezdenezhnykh, A.; Matz, K.; Aleksić, V.; Muresanu, D.; Korczyn, A.D.; Bornstein, N.M. Post-stroke dementia - a comprehensive review. BMC Med., 2017, 15(1), 11.
[http://dx.doi.org/10.1186/s12916-017-0779-7] [PMID: 28095900]
[149]
Kim, H.; Seo, J.S.; Lee, S.Y.; Ha, K.T.; Choi, B.T.; Shin, Y.I.; Yun, Ju. Y.; Shin, H.K. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav. Immun., 2020, 87, 765-776.
[http://dx.doi.org/10.1016/j.bbi.2020.03.011] [PMID: 32201254]
[150]
Titley, M.; Ahmad, S.; Parekh, M. Investigating the effects of coenzyme Q10 on human corneal endothelial cells. J. Ophthalmol., 2021, 20218392572
[http://dx.doi.org/10.1155/2021/8392572] [PMID: 34422406]
[151]
Kalayci, M.; Unal, M.M.; Gul, S.; Acikgoz, S.; Kandemir, N.; Hanci, V.; Edebali, N.; Acikgoz, B. Effect of coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats. BMC Neurosci., 2011, 12, 75.
[http://dx.doi.org/10.1186/1471-2202-12-75] [PMID: 21801363]
[152]
Olga Nikolaevna, O.; Evgeniya Aronovna, G.; Elena Igorevna, K.; Margarita Alekseevna, B.; Mikhail Vladimirovich, G.; Valery Gennadievich, M.; Yury Andreevich, P.; Oleg Stephanovich, M. Intravenous administration of coenzyme Q10 in acute period of cerebral ischemia decreases mortality by reducing brain necrosis and limiting its increase within 4 days in rat stroke model. Antioxidants, 2020, 9(12)E1240
[http://dx.doi.org/10.3390/antiox9121240] [PMID: 33297323]
[153]
Pierce, J.D.; Gupte, R.; Thimmesch, A.; Shen, Q.; Hiebert, J.B.; Brooks, W.M.; Clancy, R.L.; Diaz, F.J.; Harris, J.L. Ubiquinol treatment for TBI in male rats: Effects on mitochondrial integrity, injury severity, and neurometabolism. J. Neurosci. Res., 2018, 96(6), 1080-1092.
[http://dx.doi.org/10.1002/jnr.24210] [PMID: 29380912]
[154]
Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Munuera-Cabeza, M.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Sánchez-Alcázar, J.A.; Coenzyme, Q. Coenzyme Q10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants, 2021, 10(2), 236.
[http://dx.doi.org/10.3390/antiox10020236] [PMID: 33557229]
[155]
Allan, K.; Hayes, K.; Thomas, M.; Barnard, K. Coenzyme Q10 supplementation in traumatic brain injury: a scoping review protocol. JBI Database Syst. Rev. Implement. Reports, 2019, 17(9), 1901-1908.
[http://dx.doi.org/10.11124/JBISRIR-2017-003984] [PMID: 31145191]
[156]
Skifter, D.A.; Allegrini, P.R.; Wiessner, C.; Mir, A.K. Similar time-course of interleukin-1 beta production and extracellular-signal-regulated kinase (ERK) activation in permanent focal brain ischemic injury. Metab. Brain Dis., 2002, 17(3), 131-138.
[http://dx.doi.org/10.1023/A:1019917803470] [PMID: 12322783]
[157]
Iseda, K.; Ono, S.; Onoda, K.; Satoh, M.; Manabe, H.; Nishiguchi, M.; Takahashi, K.; Tokunaga, K.; Sugiu, K.; Date, I. Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J. Neurosurg., 2007, 107(1), 128-135.
[http://dx.doi.org/10.3171/JNS-07/07/0128] [PMID: 17639882]
[158]
Knoblach, S.M.; Nikolaeva, M.; Huang, X.; Fan, L.; Krajewski, S.; Reed, J.C.; Faden, A.I. Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome. J. Neurotrauma, 2002, 19(10), 1155-1170.
[http://dx.doi.org/10.1089/08977150260337967] [PMID: 12427325]
[159]
Alessandri, B.; Nishioka, T.; Heimann, A.; Bullock, R.M.; Kempski, O. Caspase-dependent cell death involved in brain damage after acute subdural hematoma in rats. Brain Res., 2006, 1111(1), 196-202.
[http://dx.doi.org/10.1016/j.brainres.2006.06.105] [PMID: 16890922]
[160]
Renolleau, S.; Fau, S.; Goyenvalle, C.; Joly, L.M.; Chauvier, D.; Jacotot, E.; Mariani, J.; Charriaut-Marlangue, C. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J. Neurochem., 2007, 100(4), 1062-1071.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04269.x] [PMID: 17166174]
[161]
Reshef, A.; Shirvan, A.; Grimberg, H.; Levin, G.; Cohen, A.; Mayk, A.; Kidron, D.; Djaldetti, R.; Melamed, E.; Ziv, I. Novel molecular imaging of cell death in experimental cerebral stroke. Brain Res., 2007, 1144, 156-164.
[http://dx.doi.org/10.1016/j.brainres.2007.01.095] [PMID: 17328873]
[162]
Han, W.; Sun, Y.; Wang, X.; Zhu, C.; Blomgren, K. Delayed, long-term administration of the caspase inhibitor Q-VD-OPh reduced brain injury induced by neonatal hypoxia-ischemia. Dev. Neurosci., 2014, 36(1), 64-72.
[http://dx.doi.org/10.1159/000357939] [PMID: 24525800]
[163]
Tian, J.; Guo, S.; Chen, H.; Peng, J.J.; Jia, M.M.; Li, N.S.; Zhang, X.J.; Yang, J.; Luo, X.J.; Peng, J. Combination of emricasan with ponatinib synergistically reduces ischemia/reperfusion injury in rat brain through simultaneous prevention of apoptosis and necroptosis. Transl. Stroke Res., 2018, 9(4), 382-392.
[http://dx.doi.org/10.1007/s12975-017-0581-z] [PMID: 29103102]
[164]
Chen, H.; Guan, B.; Chen, S.; Yang, D.; Shen, J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic. Biol. Med., 2021, 165, 171-183.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.030] [PMID: 33515754]
[165]
Liang, Y.; Song, P.; Chen, W.; Xie, X.; Luo, R.; Su, J.; Zhu, Y.; Xu, J.; Liu, R.; Zhu, P.; Zhang, Y.; Huang, M. Inhibition of caspase-1 ameliorates ischemia-associated blood-brain barrier dysfunction and integrity by suppressing pyroptosis activation. Front. Cell. Neurosci., 2021, 14540669
[http://dx.doi.org/10.3389/fncel.2020.540669] [PMID: 33584203]
[166]
Sun, Z.; Nyanzu, M.; Yang, S.; Zhu, X.; Wang, K.; Ru, J.; Yu, E.; Zhang, H.; Wang, Z.; Shen, J.; Zhuge, Q.; Huang, L. VX765 attenuates pyroptosis and HMGB1/TLR4/NF-κB pathways to improve functional outcomes in TBI Mice. Oxid. Med. Cell. Longev., 2020, 20207879629
[http://dx.doi.org/10.1155/2020/7879629] [PMID: 32377306]
[167]
Ge, X.; Li, W.; Huang, S.; Yin, Z.; Xu, X.; Chen, F.; Kong, X.; Wang, H.; Zhang, J.; Lei, P. The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury. Brain Res., 2018, 1697, 10-20.
[http://dx.doi.org/10.1016/j.brainres.2018.06.008] [PMID: 29886252]
[168]
Lin, X.; Ye, H.; Siaw-Debrah, F.; Pan, S.; He, Z.; Ni, H.; Xu, Z.; Jin, K.; Zhuge, Q.; Huang, L. AC-YVAD-CMK inhibits pyroptosis and improves functional outcome after intracerebral hemorrhage. BioMed Res. Int., 2018, 20183706047
[http://dx.doi.org/10.1155/2018/3706047] [PMID: 30410928]
[169]
Sozen, T.; Tsuchiyama, R.; Hasegawa, Y.; Suzuki, H.; Jadhav, V.; Nishizawa, S.; Zhang, J.H. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke, 2009, 40(7), 2519-2525.
[http://dx.doi.org/10.1161/STROKEAHA.109.549592] [PMID: 19461019]
[170]
Li, J.R.; Xu, H.Z.; Nie, S.; Peng, Y.C.; Fan, L.F.; Wang, Z.J.; Wu, C.; Yan, F.; Chen, J.Y.; Gu, C.; Wang, C.; Chen, J.S.; Wang, L.; Chen, G. Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subrachnoid hemorrhage in rats. J. Neuroinflammation, 2017, 14(1), 186.
[http://dx.doi.org/10.1186/s12974-017-0959-6] [PMID: 28903766]
[171]
Wang, P.; Pan, B.; Tian, J.; Yang, L.; Chen, Z.; Yang, L.; Fan, Z. Ac-FLTD-CMK inhibits pyroptosis and exerts neuroprotective effect in a mice model of traumatic brain injury. Neuroreport, 2021, 32(3), 188-197.
[http://dx.doi.org/10.1097/WNR.0000000000001580] [PMID: 33470761]
[172]
Xiong, M.; Zhang, T.; Zhang, L.M.; Lu, S.D.; Huang, Y.L.; Sun, F.Y. Caspase inhibition attenuates accumulation of beta-amyloid by reducing beta-secretase production and activity in rat brains after stroke. Neurobiol. Dis., 2008, 32(3), 433-441.
[http://dx.doi.org/10.1016/j.nbd.2008.08.007] [PMID: 18805488]
[173]
Sun, Y.; Xu, Y.; Geng, L. Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction. Exp. Ther. Med., 2015, 10(1), 133-138.
[http://dx.doi.org/10.3892/etm.2015.2462] [PMID: 26170924]
[174]
Rodrigues, C.M.; Spellman, S.R.; Solá, S.; Grande, A.W.; Linehan-Stieers, C.; Low, W.C.; Steer, C.J. Neuroprotection by a bile acid in an acute stroke model in the rat. J. Cereb. Blood Flow Metab., 2002, 22(4), 463-471.
[http://dx.doi.org/10.1097/00004647-200204000-00010] [PMID: 11919517]
[175]
Rodrigues, C.M.; Sola, S.; Nan, Z.; Castro, R.E.; Ribeiro, P.S.; Low, W.C.; Steer, C.J. Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6087-6092.
[http://dx.doi.org/10.1073/pnas.1031632100] [PMID: 12721362]
[176]
Wu, H.; Yu, N.; Wang, X.; Yang, Y.; Liang, H. Tauroursodeoxycholic acid attenuates neuronal apoptosis via the TGR5/SIRT3 pathway after subarachnoid hemorrhage in rats. Biol. Res., 2020, 53(1), 56.
[http://dx.doi.org/10.1186/s40659-020-00323-1] [PMID: 33261652]
[177]
Chen, X.; Wang, J.; Gao, X.; Wu, Y.; Gu, G.; Shi, M.; Chai, Y.; Yue, S.; Zhang, J. Tauroursodeoxycholic acid prevents ER stress-induced apoptosis and improves cerebral and vascular function in mice subjected to subarachnoid hemorrhage. Brain Res., 2020, 1727146566
[http://dx.doi.org/10.1016/j.brainres.2019.146566] [PMID: 31778648]
[178]
Yan, F.; Li, J.; Chen, J.; Hu, Q.; Gu, C.; Lin, W.; Chen, G. Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci. Lett., 2014, 563, 160-165.
[http://dx.doi.org/10.1016/j.neulet.2014.01.058] [PMID: 24513235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy