Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Thiophene Ring-Opening Reactions IV. Facile Generation of Novel Ethyl 4-hydroxy-6-thioxonicotinate-1,3,4-thiadiazoline Hybrids

Author(s): Mohammed M. Abadleh, Ahmad H. Abdullah, Jalal A. Zahra*, Salim S. Sabri, Firas F. Awwadi and Mustafa M. El-Abadelah*

Volume 19, Issue 6, 2022

Published on: 13 January, 2022

Page: [504 - 510] Pages: 7

DOI: 10.2174/1570178618666211110141423

Price: $65

Abstract

A set of triethylammonium 4-oxo-6-pyridinethiolate–1,3,4-thiadiazoline hybrids (3a-e) were prepared via the reaction of ethyl 2-chloro-6-cyclopropyl-3- nitro-4-oxothieno[2,3-b]pyridine- 5-carboxylate (2) with the appropriate thiobenzoyl- hydrazide (1a-e) in acetonitrile and triethylamine. These hybrids were readily converted, under neutral mild conditions, into the corresponding 4-hydroxy-6-thioxopyridine –thiadiazoline hybrids (5a-e). The structures of the latter set are supported by HRMS, 1H NMR, and 13C NMR spectral data and further confirmed by single-crystal Xray diffraction studies. Alkylation of these hybrids in the presence of triethylamine occurred exclusively at the 6-thioxosulfur, yielding the respective 6-sulfanyl derivatives (6a-c).

Keywords: N'-(Aryl)benzothiohydrazides, 4-oxothieno[2, 3-b]pyridine, formal [4 + 1] annulation, 4-hydroxy-6-thioxonicotinate, regioselective S-alkylation, hybrids.

« Previous
Graphical Abstract

[1]
Abadleh, M.M.; Abdullah, A.H.; Awwadi, F.F.; El-Abadelah, M.M. Tetrahedron, 2021, 83131957
[http://dx.doi.org/10.1016/j.tet.2021.131957]
[2]
Mueller, J.L.; Gibson, M.S.; Hartman, J.S. Can. J. Chem., 1996, 74, 1329-1334.
[http://dx.doi.org/10.1139/v96-148]
[3]
Mohammad, T.; Gibson, M.S. Phosphorus Sulfur Silicon Relat. Elem., 1992, 70, 243-253.
[http://dx.doi.org/10.1080/10426509208049173]
[4]
Pandya, N.; Basile, A.J.; Gupta, A.K.; Hand, P.; Maclaurin, C.L.; Mohammad, T.; Ratemi, E.S.; Gibson, M.S.; Richardson, M.F. Can. J. Chem., 1993, 71, 561-571.
[http://dx.doi.org/10.1139/v93-078]
[5]
Molina, P.; Fresneda, P.M.; Lajára, M.C. J. Heterocycl. Chem., 1985, 22, 113-119.
[http://dx.doi.org/10.1002/jhet.5570220129]
[6]
Kalugin, V.E.; Shestopalov, A.M. Russ. Chem. Bull. Int. Ed, 2019, 68, 357-364.
[http://dx.doi.org/10.1007/s11172-019-2393-7]
[7]
Sajadikhah, S.S.; Marandi, G. Chem. Heterocycl. Compd., 2019, 55, 1171-1173.
[http://dx.doi.org/10.1007/s10593-019-02596-1]
[8]
Buryi, D.S.; Dotsenko, V.V.; Aksenov, N.A.; Aksenova, I.V.; Krivokolysko, S.G.; Dyadyuchenko, L.V. Russ. J. Gen. Chem., 2019, 89, 1575-1585.
[http://dx.doi.org/10.1134/S1070363219080061]
[9]
Dotsenko, V.V.; Buryi, D.S.; Lukina, D.Y.; Krivokolysko, S.G. Russ. Chem. Bull. Int. Ed., 2020, 69, 1829-1858.
[http://dx.doi.org/10.1007/s11172-020-2969-2]
[10]
Gewald, K.; Liebscher, J.; Keydel, M. J. Prakt. Chem., 1970, 312, 533-541.
[http://dx.doi.org/10.1002/prac.19703120317]
[11]
Dondoni, A.; Kniežo, K.; Medici, A. J. Org. Chem., 1982, 47, 3994-3998.
[http://dx.doi.org/10.1021/jo00141a042]
[12]
Takahata, H.; Nakajima, G.; Yamazaki, T. Chem. Pharm. Bull. (Tokyo), 1984, 32, 1658-1661.
[http://dx.doi.org/10.1248/cpb.32.1658]
[13]
Assaad, F.M.; Becher, J. Synthesis, 1983, 1983(12), 1025-1027.
[http://dx.doi.org/10.1055/s-1983-30612]
[14]
Augustyn, E. Monatsh. Chem., 1983, 114, 1189-1196.
[http://dx.doi.org/10.1007/BF00799932]
[15]
Schweiger, K. Monatsh. Chem., 1983, 114, 581-592.
[http://dx.doi.org/10.1007/BF00798613]
[16]
Bergman, J.; Pettersson, B.; Hasimbegovic, V.; Svensson, P.H. J. Org. Chem., 2011, 76(6), 1546-1553.
[http://dx.doi.org/10.1021/jo101865y] [PMID: 21341727]
[17]
Combellas, C.; Dellerue, S.; Mathey, G.; Thiébault, A. Tetrahedron Lett., 1997, 38, 539-542.
[http://dx.doi.org/10.1016/S0040-4039(96)02366-0]
[18]
Liu, S.; Zhao, X.; Yin, Z.; Wang, Q. CN101941942A2, 2011.
[19]
Becher, J.; Johansen, T.; Michael, M.A. J. Heterocycl. Chem., 1984, 21, 41-48.
[http://dx.doi.org/10.1002/jhet.5570210110]
[20]
Park, Y.K.; Bang, S.H.; Kim, J.W.; Lee, H.K.; Kim, J.H.; Son, C.M.; Lee, J.H.; Shin, C.Y.; Lee, J.C.; Rhee, J.K. WO 2012011707A2, 2012.
[21]
Nishimura, S. JP 2020079325A, 2020.
[22]
Vogel, L.; Wonner, P.; Huber, S.M. Angew. Chem. Int. Ed. Engl., 2019, 58(7), 1880-1891.
[http://dx.doi.org/10.1002/anie.201809432] [PMID: 30225899]
[23]
Srivastava, K.; Chakraborty, T.; Singh, H.B.; Butcher, R.J. Dalton Trans., 2011, 40(17), 4489-4496.
[http://dx.doi.org/10.1039/c0dt01319f] [PMID: 21412554]
[24]
Abadleh, M.M.; Arafat, T.; Abu-qatouseh, L.; El-abadelah, M.M.; Voelter, W.Z. Naturforsch., 2019, 74b, 507-512.
[http://dx.doi.org/10.1515/znb-2019-0023]
[25]
Jensen, K.A. Acta Chem. Scand., 1952, 6, 189-194.
[http://dx.doi.org/10.3891/acta.chem.scand.06-0189]
[26]
Holmberg, B. Ark. Kemi, 1954, 7, 519.
[27]
Scherowsky, G. Tetrahedron Lett., 1971, 1, 4985-4988.
[http://dx.doi.org/10.1016/S0040-4039(01)97606-3]
[28]
Al-Taweel, S.A.; Al-Trawneh, S.A.; Al-Trawneh, W.M. Cogent Chem., 2019, 51567894
[http://dx.doi.org/10.1080/23312009.2019.1567894]
[29]
CrysAlis. P.R.O. version 1.171.35.11; Agilent Technologies Ltd.: Yarnton, UK, 2011.
[30]
CrysAlis. P.R.O. version 1.171.40.82a; Rigaku OD, 2020.
[31]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. Appl. Cryst., 2009, 42, 339-341.
[http://dx.doi.org/10.1107/S0021889808042726]
[32]
Sheldrick, G.M. ActaCryst, 2015, A71, 3-8.
[33]
Sheldrick, G.M. ActaCryst, 2015, C71, 3-8.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy