General Review Article

关于乳腺癌和机器学习研究的前 100 名最常被引用的出版物:文献计量分析

卷 29, 期 8, 2022

发表于: 17 January, 2022

页: [1426 - 1435] 页: 10

弟呕挨: 10.2174/0929867328666211108110731

价格: $65

摘要

背景:计算技术和数字信息的快速发展导致机器学习可能用于治疗乳腺癌。 目的:本研究旨在评估前 100 篇出版物的研究成果,并进一步确定乳腺癌和机器学习研究的研究主题。 方法:使用 Scopus 和 Web of Science 数据库提取前 100 篇论文。这些出版物是根据每篇论文的总引用量过滤的。此外,对排名前 100 位的出版物进行了文献计量分析。 结果:前 100 位出版物发表于 1993 年至 2019 年之间。最高产的作者是 Giger ML,排名前两位的机构是芝加哥大学和新加坡国立大学。最活跃的国家是美国、德国和中国。十个集群被确定为乳腺癌和机器学习的基本主题和专业主题。 结论:不同国家对乳腺癌和机器学习研究表现出相当的兴趣。中国、印度和新加坡等少数亚洲国家在总被引次数排名前 10 位。此外,在过去 10 年中,深度学习和乳房成像数据在乳腺癌和机器学习研究领域的使用呈趋势

关键词: 文献计量学、乳腺癌、机器学习、研究趋势、研究产出、研究生产力

[1]
Parks, R.M.; Derks, M.G.M.; Bastiaannet, E.; Cheung, K.L. Breast Cancer Epidemiology.Breast Cancer Management for Surgeons; Springer: Cham, 2018, pp. 5615-5623.
[http://dx.doi.org/10.1007/978-3-319-56673-3_3]
[2]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[3]
Rojas, K.; Stuckey, A. Breast cancer epidemiology and risk factors. Clin. Obstet. Gynecol., 2016, 59(4), 651-672.
[http://dx.doi.org/10.1097/GRF.0000000000000239] [PMID: 27681694]
[4]
Zaheer, S.; Shah, N.; Maqbool, S.A.; Soomro, N.M. Estimates of past and future time trends in age-specific breast cancer incidence among women in Karachi, Pakistan: 2004-2025. BMC Public Health, 2019, 19(1), 1001.
[http://dx.doi.org/10.1186/s12889-019-7330-z] [PMID: 31345204]
[5]
Al-Jarrah, O.Y.; Yoo, P.D.; Muhaidat, S.; Karagiannidis, G.K.; Taha, K. Efficient machine learning for big data: A review. Big Data Res., 2015, 2(3), 87-93.
[http://dx.doi.org/10.1016/j.bdr.2015.04.001]
[6]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[7]
Zhang, Y.; Wang, S. Detection of Alzheimer’s disease by displacement field and machine learning. PeerJ, 2015, 3(9), e1251.
[http://dx.doi.org/10.7717/peerj.1251] [PMID: 26401461]
[8]
Mark, E.; Goldsman, D.; Gurbaxani, B.; Keskinocak, P.; Sokol, J. Using machine learning and an ensemble of methods to predict kidney transplant survival. PLoS One, 2019, 14(1), e0209068.
[http://dx.doi.org/10.1371/journal.pone.0209068] [PMID: 30625130]
[9]
Jhee, J.H.; Lee, S.; Park, Y.; Lee, S.E.; Kim, Y.A.; Kang, S.W.; Kwon, J.Y.; Park, J.T. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS One, 2019, 14(8), e0221202.
[http://dx.doi.org/10.1371/journal.pone.0221202] [PMID: 31442238]
[10]
Leha, A.; Hellenkamp, K.; Unsöld, B.; Mushemi-Blake, S.; Shah, A.M.; Hasenfuß, G.; Seidler, T. A machine learning approach for the prediction of pulmonary hypertension. PLoS One, 2019, 14(10), e0224453.
[http://dx.doi.org/10.1371/journal.pone.0224453] [PMID: 31652290]
[11]
Ali, A-R.; Li, J.; Yang, G.; O’Shea, S.J. A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images. PeerJ Comput. Sci., 2020, 6, e268.
[http://dx.doi.org/10.7717/peerj-cs.268] [PMID: 33816919]
[12]
Modinos, G.; Mechelli, A.; Pettersson-Yeo, W.; Allen, P.; McGuire, P.; Aleman, A. Pattern classification of brain activation during emotional processing in subclinical depression: Psychosis proneness as potential confounding factor. PeerJ, 2013, 1(1), e42.
[http://dx.doi.org/10.7717/peerj.42] [PMID: 23638379]
[13]
Lei, L.; Wang, Y.; Xue, Q.; Tong, J.; Zhou, C.M.; Yang, J.J. A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection. PeerJ, 2020, 8(2), e8583.
[http://dx.doi.org/10.7717/peerj.8583] [PMID: 32140301]
[14]
Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med., 2001, 23(1), 89-109.
[http://dx.doi.org/10.1016/S0933-3657(01)00077-X] [PMID: 11470218]
[15]
Yves, G. Bibliometrics and Research Evaluation: Uses and Abuses; Buckland, M.; Furner, J; Krajewski, M., Ed.; MIT Press: Cambridge, MA, 2014.
[16]
Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, citation indicators, and research quality: An overview of basic concepts and theories. SAGE Open, 2019, 9(1), 21582440198.
[http://dx.doi.org/10.1177/2158244019829575]
[17]
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Available from: https://www.R-project.org/
[18]
Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetrics, 2017, 11(4), 959-975.
[http://dx.doi.org/10.1016/j.joi.2017.08.007]
[19]
Vickery, B.C. Bradford’s law of scattering. J. Doc., 1948, 4(3), 198-203.
[http://dx.doi.org/10.1108/eb026133]
[20]
Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Informetrics, 2011, 5(1), 146-166.
[http://dx.doi.org/10.1016/j.joi.2010.10.002]
[21]
Ehteshami Bejnordi, B.; Veta, M.; Johannes van Diest, P.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J.A.W.M.; Hermsen, M.; Manson, Q.F.; Balkenhol, M.; Geessink, O.; Stathonikos, N.; van Dijk, M.C.R.F.; Bult, P.; Beca, F.; Beck, A.H.; Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Zhong, A.; Dou, Q.; Li, Q.; Chen, H.; Lin, H-J.; Heng, P-A.; Haß, C.; Bruni, E.; Wong, Q.; Halici, U.; Öner, M.U.; Cetin-Atalay, R.; Berseth, M.; Khvatkov, V.; Vylegzhanin, A.; Kraus, O.; Shaban, M.; Rajpoot, N.; Awan, R.; Sirinukunwattana, K.; Qaiser, T.; Tsang, Y-W.; Tellez, D.; Annuscheit, J.; Hufnagl, P.; Valkonen, M.; Kartasalo, K.; Latonen, L.; Ruusuvuori, P.; Liimatainen, K.; Albarqouni, S.; Mungal, B.; George, A.; Demirci, S.; Navab, N.; Watanabe, S.; Seno, S.; Takenaka, Y.; Matsuda, H.; Ahmady Phoulady, H.; Kovalev, V.; Kalinovsky, A.; Liauchuk, V.; Bueno, G.; Fernandez-Carrobles, M.M.; Serrano, I.; Deniz, O.; Racoceanu, D.; Venâncio, R. Consortium, C. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 2017, 318(22), 2199-2210.
[http://dx.doi.org/10.1001/jama.2017.14585] [PMID: 29234806]
[22]
Schmidt-Kittler, O.; Ragg, T.; Daskalakis, A.; Granzow, M.; Ahr, A.; Blankenstein, T.J.F.; Kaufmann, M.; Diebold, J.; Arnholdt, H.; Müller, P.; Bischoff, J.; Harich, D.; Schlimok, G.; Riethmüller, G.; Eils, R.; Klein, C.A. From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7737-7742.
[http://dx.doi.org/10.1073/pnas.1331931100] [PMID: 12808139]
[23]
Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform., 2007, 2, 59-77.
[http://dx.doi.org/10.1177/117693510600200030] [PMID: 19458758]
[24]
Ganz, P.A.; Hirji, K.; Sim, M-S.; Schag, C.A.C.; Fred, C.; Polinsky, M.L. Predicting psychosocial risk in patients with breast cancer. Med. Care, 1993, 31(5), 419-431.
[http://dx.doi.org/10.1097/00005650-199305000-00004] [PMID: 8501990]
[25]
Kilday, J.; Palmieri, F.; Fox, M.D. Classifying mammographic lesions using computerized image analysis. IEEE Trans. Med. Imaging, 1993, 12(4), 664-669.
[http://dx.doi.org/10.1109/42.251116] [PMID: 18218460]
[26]
Bakator, M.; Radosav, D. Deep learning and medical diagnosis: A review of literature. Multimodal Technol. Interact., 2018, 2(3), 47.
[http://dx.doi.org/10.3390/mti2030047]
[27]
Yassin, N.I.R.; Omran, S.; El Houby, E.M.F.; Allam, H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Comput. Methods Programs Biomed., 2018, 156, 25-45.
[http://dx.doi.org/10.1016/j.cmpb.2017.12.012] [PMID: 29428074]
[28]
Litjens, G.; Sánchez, C.I.; Timofeeva, N.; Hermsen, M.; Nagtegaal, I.; Kovacs, I.; Hulsbergen-van de Kaa, C.; Bult, P.; van Ginneken, B.; van der Laak, J. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep., 2016, 6, 26286.
[http://dx.doi.org/10.1038/srep26286] [PMID: 27212078]
[29]
Abdel-Zaher, A.M.; Eldeib, A.M. Breast cancer classification using deep belief networks. Expert Syst. Appl., 2016, 46, 139-144.
[http://dx.doi.org/10.1016/j.eswa.2015.10.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy