Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Superparamagnetic Poly(aniline-co-m-phenylenediamine)@Fe3O4 Nanocomposite as an Efficient Heterogeneous Catalyst for the Synthesis of 1H-pyrazolo[1,2-a]pyridazine-5,8-diones & 1H-pyrazolo[1,2-b]phthalazine-5, 10-diones Derivatives

Author(s): Shefa Mirani Nezhad, Seied Ali Pourmousavi* and Ehsan Nazarzadeh Zare

Volume 19, Issue 2, 2022

Published on: 09 December, 2021

Page: [246 - 266] Pages: 21

DOI: 10.2174/1570179418666211104143736

Price: $65

Abstract

Background: The use of polymer-based catalysts has increased because of their high potential application as an effective catalyst in organic reactions. They have benefits such as high efficiency and reactivity, simple separation, and safety compared to other heterogeneous catalysts.

Aim and Objective: The objective of the current research is to prepare solid polymer-based catalysts, poly(aniline-co-m-phenylenediamine) (PAmPDA), and its superparamagnetic nanocomposite. Then, the catalytic activity of the resulting superparamagnetic nanocomposite was investigated in the synthesis of 1H-pyrazolo[1,2-b]phetalazine-5,10-diones and 1H-pyrazolo[1,2-a]pyridazine-5,8-dione derivatives. A series of some 1H-pyrazolo[1,2-b]phetalazine-5,10-diones and 1H-pyrazolo[1,2-a]pyridazine-5,8-dione derivatives was tested for its antibacterial properties against the Staphylococcus aureus and E. coli bacteria.

Materials and Methods: PAmPDA copolymer was synthesized in a 1:2 molar ratio of Ani to mPDA via radical oxidative polymerization at room temperature. Superparamagnetic PAmPDA@Fe3O4 nanocompo-site was synthesized from a mixture of Fe(II), Fe(III) solution, and PAmPDA copolymer via the in-situ co-precipitation technique. 1H-pyrazolo[1,2-b]phetalazine-5,10-diones were synthesized via one-pot three-component condensation reaction of Phthalhydrazide, aromatic aldehyde derivatives, and malono-nitrile in the presence of PAmPDA under solvent-free conditions at 80 °C. The synthesis of 1H-pyrazolo[1,2-a]pyridazine-5,8-dione derivatives was carried out via a one-pot three-component condensa-tion reaction of maleic hydrazide, aromatic aldehyde derivatives, and malononitrile in the presence of PAmPDA under reflux conditions at EtOH/H2O 1:1. The antibacterial activity of some derivatives was tested against Gram-positive and Gram-negative bacteria.

Results: First, superparamagnetic PAmPDA@Fe3O4 nanocomposite was synthesized and characterized successfully, and then the resulting nanocatalyst was used for the synthesis of pyrazolo[1,2-b]phthalazine and pyrazolo[1,2-a]pyridazine. We obtained the maximum yield of the desired 1H-pyrazolo[1,2-b]phthalazine-5,10 dione derivatives with 0.05 g of catalyst at 80°C, under solvent free conditions, whereby the reaction was complete within 30 min. A wide range of 1H-pyrazolo[1,2-b]phthalazine-5,10 dione derivatives were synthesized in good to excellent yield. On the other hand, pyrazolo[1,2-a]pyridazine derivative was synthesized successfully in high yield using PAmPDA as a nanocatalyst. The antibacterial activity of some derivatives, according to the data (inhibition zone%), showed good ac-tivity against Staphylococcus aureus and E. coli.

Conclusion: In this research, PAmPDA was used for mild preparation of 1H-pyrazolo [1,2-a]pyridazine-5,8-diones & 1H-pyrazolo[1,2-b]phetalazine-5,10-diones derivatives with excellent yields and short reac-tion times. The attractive features of this protocol are simple procedure, cleaner reaction, and the use of recyclable nanocatalyst. Satisfactory yields of products and easy workup make this a useful protocol for the green synthesis of this class of compounds. The antibacterial activity of some derivatives, according to the data (inhibition zone%), showed good activity against Staphylococcus aureus and E. coli.

Keywords: Multicomponent reactions, poly(aniline-co-m-phenylenediamine), 1H-pyrazolo[1, 2-a]pyridazine-5, 8-diones, 2- b]phetalazine-5, 10-diones, polymer-based catalysts, nanostructures.

Graphical Abstract

[1]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[2]
Chiroli, V.; Benaglia, M.; Puglisi, A.; Porta, R.; Jumde, R.P.; Mandoli, A. A chiral organocatalytic polymer-based monolithic reactor. Green Chem., 2014, 16(5), 2798-2806.
[http://dx.doi.org/10.1039/c4gc00031e]
[3]
Akelah, A.; Sherrington, D.C. Application of functionalized polymers in organic synthesis. Chem. Rev., 1981, 81(6), 557-587.
[http://dx.doi.org/10.1021/cr00046a003]
[4]
Mirzaei-Mosbat, M.; Ghorbani-Vaghei, R.; Karamshahi, Z. Layered double hydroxides@ poly (p-phenylenediamine)@ Cu as a novel catalyst for the synthesis of pyrrole derivatives: Preparation and characterization. Res. Chem. Intermed., 2020, 46(2), 1613-1628.
[http://dx.doi.org/10.1007/s11164-019-04053-2]
[5]
Karamshahi, Z.; Ghorbani‐Vaghei, R. Facile synthesis of indolizines using layered double hydroxides@ poly (p‐phenylenediamine) as a catalyst with a green tool (neat technology). Appl. Organomet. Chem., 2020, 34(3)e5347
[http://dx.doi.org/10.1002/aoc.5347]
[6]
Islam, R.U.; Witcomb, M.J.; Van Der Lingen, E.; Scurrell, M.S.; Van Otterlo, W.; Mallick, K. In-situ synthesis of a palladium-polyaniline hybrid catalyst for a Suzuki coupling reaction. J. Organomet. Chem., 2011, 696(10), 2206-2210.
[http://dx.doi.org/10.1016/j.jorganchem.2010.11.039]
[7]
Mahato, S.K.; Bhaumik, M.; Maji, A.; Dutta, A.; Maiti, D.; Maity, A. Fe-polyaniline composite nanofiber catalyst for chemoselective hydrolysis of oxime. J. Colloid Interface Sci., 2018, 513, 592-601.
[http://dx.doi.org/10.1016/j.jcis.2017.11.059] [PMID: 29195179]
[8]
Vaughan, W.R. The chemistry of the phthalazines. Chem. Rev., 1948, 43(3), 447-508.
[http://dx.doi.org/10.1021/cr60136a003] [PMID: 18105910]
[9]
Heine, H.W.; Henrie, R.; Heitz, L.; Kovvali, S.R. Diaziridines. III. Reactions of some 1-alkyl-and 1, 1-dialkyl-1H-diazirino [1, 2b] phthalazine-3, 8-diones. J. Org. Chem., 1974, 39(22), 3187-3191.
[http://dx.doi.org/10.1021/jo00936a001]
[10]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Sadeghian, H.; Davoodnejad, M. A novel and efficient synthesis of pyrazolo [3, 4-d] pyrimidine derivatives and the study of their anti-bacterial activity. CCL, 2013, 24(7), 629-632.
[http://dx.doi.org/10.1016/j.cclet.2013.04.035]
[11]
Terrett, N.K.; Bell, A.S.; Brown, D.; Ellis, P. Sildenafil (Viagra), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg. Med. Chem. Lett., 1996, 6(15), 1819-1824.
[http://dx.doi.org/10.1016/0960-894X(96)00323-X]
[12]
Singh, S.K.; Reddy, P.G.; Rao, K.S.; Lohray, B.B.; Misra, P.; Rajjak, S.A.; Rao, Y.K.; Venkateswarlu, A. Polar substitutions in the benzenesulfonamide ring of celecoxib afford a potent 1,5-diarylpyrazole class of COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 499-504.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.027] [PMID: 14698190]
[13]
Zhang, L.; Guan, L.P.; Sun, X.Y.; Wei, C.X.; Chai, K.Y.; Quan, Z.S. Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a]phthalazines. Chem. Biol. Drug Des., 2009, 73(3), 313-319.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00776.x] [PMID: 19207467]
[14]
Nakamura, T.; Sato, M.; Kakinuma, H.; Miyata, N.; Taniguchi, K.; Bando, K.; Koda, A.; Kameo, K. Pyrazole and isoxazole derivatives as new, potent, and selective 20-hydroxy-5,8,11,14-eicosatetraenoic acid synthase inhibitors. J. Med. Chem., 2003, 46(25), 5416-5427.
[http://dx.doi.org/10.1021/jm020557k] [PMID: 14640550]
[15]
Vera-Divaio, M.A.; Freitas, A.C.; Castro, H.C.; de Albuquerque, S.; Cabral, L.M.; Rodrigues, C.R.; Albuquerque, M.G.; Martins, R.C.; Henriques, M.G.; Dias, L.R. Synthesis, antichagasic in vitro evaluation, cytotoxicity assays, molecular modeling and SAR/QSAR studies of a 2-phenyl-3-(1-phenyl-1H-pyrazol-4-yl)-acrylic acid benzylidene-carbohydrazide series. Bioorg. Med. Chem., 2009, 17(1), 295-302.
[http://dx.doi.org/10.1016/j.bmc.2008.10.085] [PMID: 19036592]
[16]
Ryu, C.K.; Park, R.E.; Ma, M.Y.; Nho, J.H. Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones. Bioorg. Med. Chem. Lett., 2007, 17(9), 2577-2580.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.003] [PMID: 17320386]
[17]
Taslimi, P.; Turhan, K.; Türkan, F.; Sedef Karaman, H.; Turgut, Z.; Gulcin, İ. Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives: Synthetic analogues for the treatment of Alzheimer’s disease and diabetes mellitus. Bioorg. Chem., 2020, 97103647
[http://dx.doi.org/10.1016/j.bioorg.2020.103647] [PMID: 32078939]
[18]
Al, F.; Zelenin, K.N.; Lesiovskaya, E.E.; Bezhan, I.P.; Chakchir, B.A. Synthesis and pharmacological activity of 1-hydroxy-, 1-amino-, and 1-hydrazino-substituted 2, 3-dihydro-1H-pyrazolo [1, 2-a] pyridazine-5, 8-diones and 2, 3-dihydro-1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones. Pharm. Chem. J., 2002, 36(11), 598-603.
[http://dx.doi.org/10.1023/A:1022665331722]
[19]
Jain, R.P.; Vederas, J.C. Structural variations in keto-glutamines for improved inhibition against hepatitis A virus 3C proteinase. Bioorg. Med. Chem. Lett., 2004, 14(14), 3655-3658.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.021] [PMID: 15203137]
[20]
Carling, R.W.; Moore, K.W.; Street, L.J.; Wild, D.; Isted, C.; Leeson, P.D.; Thomas, S.; O’Connor, D.; McKernan, R.M.; Quirk, K.; Cook, S.M.; Atack, J.R.; Wafford, K.A.; Thompson, S.A.; Dawson, G.R.; Ferris, P.; Castro, J.L. 3-phenyl-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and analogues: High-affinity gamma-aminobutyric acid-A benzodiazepine receptor ligands with alpha 2, alpha 3, and alpha 5-subtype binding selectivity over alpha 1. J. Med. Chem., 2004, 47(7), 1807-1822.
[http://dx.doi.org/10.1021/jm031020p] [PMID: 15027873]
[21]
EL-Sakka. S.; Soliman, AH.; Imam, A. Synthesis, antimicrobial activity and electron impact of mass spectra of phthalazine-1, 4-dione derivatives. Afinidad, 2009, 66(540)
[22]
Nomoto, Y.; Obase, H.; Takai, H.; Teranishi, M.; Nakamura, J.; Kubo, K. Studies on cardiotonic agents. II. Synthesis of novel phthalazine and 1,2,3-benzotriazine derivatives. Chem. Pharm. Bull. (Tokyo), 1990, 38(8), 2179-2183.
[http://dx.doi.org/10.1248/cpb.38.2179] [PMID: 2279280]
[23]
Jadhav, A.M.; Balwe, S.G.; Kim, J.S.; Lim, K.T.; Jeong, Y.T. Indium (III) chloride catalyzed synthesis of novel 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones and 1H-pyrazolo [1, 2-a] pyridazine-5, 8-diones under solvent-free condition. Tetrahedron Lett., 2019, 60(7), 560-565.
[24]
Asif, M. Some recent approaches of biologically active substituted pyridazine and phthalazine drugs. Curr. Med. Chem., 2012, 19(18), 2984-2991.
[http://dx.doi.org/10.2174/092986712800672139] [PMID: 22519394]
[25]
Asif, M. Pharmacological activities of various phthalazine and phthalazinone derivatives. Chem. Int., 2019, 5(1), 97-108.
[26]
Mohamadpour, F. Theophylline as a Green Catalyst for the Synthesis of 1 H-Pyrazolo [1, 2-b] phthalazine-5, 10-diones. Org. Prep. Proced. Int., 2020, 52(1), 64-68.
[http://dx.doi.org/10.1080/00304948.2019.1697611]
[27]
Ziarani, G.M.; Mohtasham, N.H.; Badiei, A.; Lashgari, N. Efficient one‐pot solvent‐free synthesis of 1h‐pyrazolo [1, 2‐b] phthalazine‐5, 10‐diones catalyzed by sulfonic acid functionalized nanoporous silica (sba‐pr‐so3h). JCCS, 2014, 61(9), 990-994.
[28]
Mohamadpour, F.; Lashkari, M.; Heydari, R.; Hazeri, N. Four-component clean process for the eco-friendly synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives using Zn (OAc) 2. 2H 2 O as an efficient catalyst under solvent-free conditions. Indian J. Chem., 2018, 57, 843-851.
[29]
Shaterian, H.R.; Mohammadnia, M. Mild preparation of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives with magnetic Fe3O4 nanoparticles coated by (3-aminopropyl)-triethoxysilane as catalyst under ambient and solvent-free conditions. Res. Chem. Intermed., 2014, 40(1), 371-383.
[http://dx.doi.org/10.1007/s11164-012-0969-z]
[30]
Lashkari, M.; Heydari, R.; Mohamadpour, F. A facile approach for one-pot synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives catalyzed by ZrCl 4 as an efficient catalyst under solvent-free conditions. Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(3), 1191-1197.
[http://dx.doi.org/10.1007/s40995-016-0122-8]
[31]
Nabid, M.R.; Rezaei, S.J.; Ghahremanzadeh, R.; Bazgir, A. Ultrasound-assisted one-pot, three-component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. Ultrason. Sonochem., 2010, 17(1), 159-161.
[http://dx.doi.org/10.1016/j.ultsonch.2009.06.012] [PMID: 19589715]
[32]
Arora, P.; Rajput, J.K. Amelioration of H4 [W12SiO40] by nanomagnetic heterogenization: For the synthesis of 1H–pyrazolo [1, 2‐b] phthalazinedione derivatives. Appl. Organomet., 2018, 32(2)e4001
[33]
Shaterian, H.R.; Mohammadnia, M. Mild basic ionic liquids catalyzed new four-component synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones. J. Mol. Liq., 2012, 173, 55-61.
[http://dx.doi.org/10.1016/j.molliq.2012.06.007]
[34]
Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Ziarati, A.; Teymuri, R.; Saberi, M.R. A highly flexible green synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions. CCL, 2014, 25(3), 401-405.
[35]
Hiremath, P.B.; Kamanna, K. Microwave-Accelerated Facile Synthesis of 1 H-Pyrazolo [1, 2-b] Phthalazine-5, 10-Dione Derivatives Catalyzed by WEMPA. Polycycl. Aromat. Compd., 2020, 12, 1-7.
[http://dx.doi.org/10.1080/10406638.2020.1830129]
[36]
Maleki, B.; Chalaki, B.S.; Ashrafi, S. S Rezaee Seresht, E.; Moeinpour, F.; Khojastehnezhad, A.; Tayebee, R. Cesium carbonate supported on hydroxyapatite‐encapsulated Ni0. 5Zn0. 5Fe2O4 nanocrystallites as a novel magnetically basic catalyst for the one‐pot synthesis of pyrazolo [1, 2‐b] phthalazine‐5, 10‐diones. Appl. Organomet. Chem., 2015, 29(5), 290-295.
[http://dx.doi.org/10.1002/aoc.3288]
[37]
Chalaki, S.B.; Akhlaghinia, B.; Cu, I.I. Anchored onto the magnetic talc: a new magnetic nanostructured catalyst for the one‐pot gram‐scale synthesis of 1h‐pyrazolo [1, 2‐b] phthalazine‐5, 10‐dione derivatives. ChemistrySelect, 2020, 5(35), 11010-11009.
[http://dx.doi.org/10.1002/slct.202002099]
[38]
Zare, E.N.; Lakouraj, M.M.; Ramezani, A. Effective adsorption of heavy metal cations by superparamagnetic poly (aniline‐co‐m‐phenylenediamine)@ Fe3O4 nanocomposite. Adv. Polym. Technol., 2015, 34(3)
[http://dx.doi.org/10.1002/adv.21501]
[39]
Shaikh, M.A.; Farooqui, M.; Abed, S. [Bu 3 NH][HSO 4] catalyzed: An eco-efficient synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones and 2 H-indazolo [2, 1-b] phthalazine-triones under solvent-free conditions. Res. Chem. Intermed., 2018, 44(9), 5483-5500.
[http://dx.doi.org/10.1007/s11164-018-3435-8]
[40]
Azarifar, A.; Nejat-Yami, R.; Azarifar, D. Nano-ZnO: An efficient and reusable catalyst for one-pot synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones and pyrazolo [1, 2-a][1, 2, 4] triazole-1, 3-diones. J. Iran. Chem. Soc. J IRAN CHEM SOC, 2013, 10(2), 297-306.
[41]
Kour, M.; Bhardwaj, M.; Sharma, H. Paul and Clark, JH. Ionic liquid coated sulfonated carbon@ titania composites for the one-pot synthesis of indeno [1, 2-b] indole-9, 10-diones and 1 H-pyrazolo [1, 2-b] phthalazine-5, 10-diones in aqueous media. New J. Chem., 2017, 41(13), 5521-5532.
[http://dx.doi.org/10.1039/C7NJ00361G]
[42]
Vaid, R.; Gupta, M. Silica-L-proline: An efficient and recyclable heterogeneous catalyst for the Knoevenagel condensation between aldehydes and malononitrile in liquid phase. Monatsh. Chem., 2015, 146(4), 645-652.
[http://dx.doi.org/10.1007/s00706-014-1331-5]
[43]
Khoraamabadi-zad, A.; Azadmanesh, M.; Karamian, R.; Asadbegy, M.; Akbari, M. Triethanolamine as an inexpensive and efficient catalyst for the green synthesis of novel 1 H-pyrazolo [1, 2-a] pyridazine-5, 8-diones under ultrasound irradiation in water and their antibacterial activity. RSC Advances, 2014, 4(88), 47721-47725.
[http://dx.doi.org/10.1039/C4RA07096H]
[44]
Shah, N.M.; Patel, M.P.; Patel, R.G. An efficient and facile synthesis of 1H‐pyrazolo [1, 2‐b] phthalazine‐5, 10‐dione derivatives of biological interest. J. Heterocycl. Chem., 2012, 49(6), 1310-1316.
[http://dx.doi.org/10.1002/jhet.918]
[45]
Kerru, N.; Gummidi, L.; Bhaskaruni, S.V.; Maddila, S.N.; Jonnalagadda, S.B. One-pot green synthesis of novel 5, 10-dihydro-1 H-pyrazolo [1, 2-b] phthalazine derivatives with eco-friendly biodegradable eggshell powder as efficacious catalyst. Res. Chem. Intermed., 2020, 1, 1-7.
[46]
Yao, N.; Tan, J.; Liu, X.; Liu, Y.; Hu, Y.L. Multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids as novel and efficient catalysts for heterogeneous Knoevenagel condensation. J. Saudi Chem. Soc., 2019, 23(6), 740-752.
[http://dx.doi.org/10.1016/j.jscs.2019.01.001]
[47]
Ghanei, M.; Khalilzadeh, M.A.; Hashemi, M.M. Potassium fluoride/k10-montmorillonite nanostructure as a green and reusable catalyst under mild reaction conditions for the knovenagel condensation. Orient. J. Chem., 2016, 32, 665-669.
[http://dx.doi.org/10.13005/ojc/320175]
[48]
Ghorbani‐Vaghei, R.; Mahmoodi, J.; Maghbooli, Y. Preparation and characterization of nanomagnetic piperidinium benzene‐1, 3‐disulfonate ionic liquid as a novel, green and heterogeneous catalyst and its use in the synthesis of 1H–pyrazolo [1, 2‐b] phthalazine‐5, 10‐diones and 1H–pyrazolo [1, 2‐a] pyridazine‐5, 8‐diones under solvent‐free conditions. Appl. Organomet, 2017, 31(10)e3717
[http://dx.doi.org/10.1002/aoc.3717]
[49]
Reddy, M.V.; Jeong, Y.T. InCl3-catalyzed green synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones under solvent-free conditions. Tetrahedron Lett., 2013, 54(27), 3546-3549.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.109]
[50]
Ghorbani, F.; Pourmousavi, S.A.; Kiyani, H. Synthesis and characterization of pine-cone derived carbon-based solid acid: a green and recoverable catalyst for the synthesis of pyrano_ pyrazole, amino-benzochromene, amidoalkyl naphthol and thiazolidinedione derivatives. Lett. Org. Chem., 2021, 18(1), 66-81.
[http://dx.doi.org/10.2174/1570178617666200210105635]
[51]
Ghorbani, F.; Pourmousavi, S.A.; Kiyani, H. Novel biomass derived from grape pomace waste as an efficient nanocatalyst for the synthesis of dibenzoxanthene, tetraketone, bis(indolyl)alkane and chromene derivatives and their antimicrobial evaluation. Curr. Org. Synth., 2020, 17(6), 440-456.
[http://dx.doi.org/10.2174/1570179417666200409144600] [PMID: 32271697]
[52]
Ghorbani, F.; Pourmousavi, S.A.; Kiyani, H. Novel carbon-based solid acid from green pistachio peel as an efficient catalyst for the chemoselective acylation, acetalization and thioacetalization of aldehydes, synthesis of biscoumarins and antimicrobial evaluation. Curr. Organocatal., 2020, 7(1), 55-80.
[http://dx.doi.org/10.2174/2213337206666190717164606]
[53]
Hoseinabadi, Z.; Pourmousavi, S.A. Synthesis of starch derived sulfonated carbon-based solid acid as a novel and efficient nanocatalyst for the synthesis of dihydropyrimidinones. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2019, 46(1), 132-143.
[54]
Damghani, F.K.; Pourmousavi, S.A.; Kiyani, H. Sulfonic acid-functionalized magnetic nanoparticles as an efficient catalyst for the synthesis of benzo[4, 5]imidazo[1, 2-a]pyrimidine derivatives, 2-aminobenzothia zolomethylnaphthols and 1-amidoalkyl-2-naphthols. Curr. Org. Synth., 2019, 16(7), 1040-1054.
[http://dx.doi.org/10.2174/1570179416666190725101422] [PMID: 31984885]
[55]
Pourmousavi, S.A.; Moghimi, P.; Ghorbani, F.; Zamani, M. Sulfonated polynaphthalene as an effective and reusable catalyst for the one-pot preparation of amidoalkyl naphthols: DFT and spectroscopic studies. J. Mol. Struct., 2017, 1144, 87-102.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.010]
[56]
Fahid, F.; Kanaani, A.; Pourmousavi, S.A.; Ajloo, D. Synthesis, tautomeric stability, spectroscopy and computational study of a potential molecular switch of (Z)-4-(phenylamino) pent-3-en-2-one. Mol. Phys., 2017, 115(7), 795-808.
[http://dx.doi.org/10.1080/00268976.2017.1287439]
[57]
Pourmousavi, S.A.; Kanaani, A.; Ghorbani, F.; Damghani, K.K.; Ajloo, D.; Vakili, M. Synthesis, spectroscopic investigations and computational study of monomeric and dimeric structures of 2-methyl-4-quinolinol. Res. Chem. Intermed., 2016, 42(2), 1237-1274.
[http://dx.doi.org/10.1007/s11164-015-2084-4]
[58]
Hoseinabadi, Z.; Pourmousavi, S.A.; Zamani, M. Synthesis of sulfonated carbon-based solid acid as a novel and efficient nanocatalyst for the preparation of highly functionalized piperidines and acylals: A DFT study. Res. Chem. Intermed., 2016, 42(6), 6105-6124.
[http://dx.doi.org/10.1007/s11164-016-2448-4]
[59]
Fahid, F.; Pourmousavi, S.A. Sulfonated polyanthracene-catalyzed highly efficient and chemoselective thioacetalization of carbonyl compounds and transthioacetalization of acetals and acylals. J. Sulphur Chem, 2015, 36(1), 16-29.
[http://dx.doi.org/10.1080/17415993.2014.958751]
[60]
Khazaei, A.; Zolfigol, M.A.; Karimitabar, F.; Nikokar, I.; Moosavi-Zare, A.R.N. 2-Dibromo-6-chloro-3, 4-dihydro-2 H-benzo [e][1, 2, 4] thiadiazine-7-sulfonamide 1, 1-dioxide: An efficient and homogeneous catalyst for one-pot synthesis of 4 H-pyran, pyranopyrazole and pyrazolo [1, 2-b] phthalazine derivatives under aqueous media. RSC Advances, 2015, 5(87), 71402-71412.
[http://dx.doi.org/10.1039/C5RA10730J] [http://dx.doi.org/10.1007/s13738-012-0159-3]
[61]
Kidwai, M.; Chauhan, R. A rapid and an efficient route to the one‐pot, multicomponent synthesis of 1h‐pyrazolo [1, 2‐b] phthalazine‐5, 10‐dione ring systems. J. Heterocycl. Chem., 2014, 51(6), 1689-1696.
[http://dx.doi.org/10.1002/jhet.1809]
[62]
Fatahpour, M.; Hazeri, N.; Maghsoodlou, M.T. Facile Construction of 1 H-Pyrazolo [1, 2-a] pyridazine-5, 8-diones via Acid-promoted One-pot Three-component Reaction. Org. Prep. Proced. Int., 2020, 23, 1-4.
[63]
Muralidhar, L.; Girija, C.R. Simple and practical procedure for Knoevenagel condensation under solvent-free conditions. J. Saudi Chem. Soc., 2014, 18(5), 541-544.
[http://dx.doi.org/10.1016/j.jscs.2011.10.024]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy