Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Perspective

Perspective on the Relationship between GABAA Receptor Activity and the Apparent Potency of an Inhibitor

Author(s): Allison L. Germann, Spencer R. Pierce, Alex S. Evers, Joe Henry Steinbach and Gustav Akk*

Volume 20, Issue 1, 2022

Page: [90 - 93] Pages: 4

DOI: 10.2174/1570159X19666211104142433

Abstract

Background: In electrophysiological experiments, inhibition of a receptor-channel, such as the GABAA receptor, is measured by co-applying an agonist producing a predefined control response with an inhibitor to calculate the fraction of the control response remaining in the presence of the inhibitor. The properties of the inhibitor are determined by fitting the inhibition concentration- response relationship to the Hill equation to estimate the midpoint (IC50) of the inhibition curve

Objective: We sought to estimate sensitivity of the fitted IC50 to the level of activity of the control response

Methods: The inhibition concentration-response relationships were calculated for models with distinct mechanisms of inhibition. In Model I, the inhibitor acts allosterically to stabilize the resting state of the receptor. In Model II, the inhibitor competes with the agonist for a shared binding site. In Model III, the inhibitor stabilizes the desensitized state.

Results: The simulations indicate that the fitted IC50 of the inhibition curve is sensitive to the degree of activity of the control response. In Models I and II, the IC50 of inhibition was increased as the probability of being in the active state (PA) of the control response increased. In Model III, the IC50 of inhibition was reduced at higher PA.

Conclusion: We infer that the apparent potency of an inhibitor depends on the PA of the control response. While the calculations were carried out using the activation and inhibition properties that are representative of the GABAA receptor, the principles and conclusions apply to a wide variety of receptor- channels.

Keywords: GABAA receptor, activation, inhibition, modeling, IC50.

« Previous
[1]
Pierce, S.R.; Senneff, T.C.; Germann, A.L.; Akk, G. Steady-state activation of the high-affinity isoform of the α4β2δ GABAA receptor. Sci. Rep., 2019, 9(1), 15997.
[http://dx.doi.org/10.1038/s41598-019-52573-z] [PMID: 31690811]
[2]
Shin, D.J.; Germann, A.L.; Steinbach, J.H.; Akk, G. The actions of drug combinations on the GABAA receptor manifest as curvilinear isoboles of additivity. Mol. Pharmacol., 2017, 92(5), 556-563.
[http://dx.doi.org/10.1124/mol.117.109595] [PMID: 28790148]
[3]
Ruesch, D.; Neumann, E.; Wulf, H.; Forman, S.A. An allosteric coagonist model for propofol effects on α1β2γ2L γ-aminobutyric acid type A receptors. Anesthesiology, 2012, 116(1), 47-55.
[http://dx.doi.org/10.1097/ALN.0b013e31823d0c36] [PMID: 22104494]
[4]
Steinbach, J.H.; Akk, G. Modulation of GABAA receptor channel gating by pentobarbital. J. Physiol., 2001, 537(Pt 3), 715-733.
[http://dx.doi.org/10.1113/jphysiol.2001.012818] [PMID: 11744750]
[5]
Erkkila, B.E.; Sedelnikova, A.V.; Weiss, D.S. Stoichiometric pore mutations of the GABAAR reveal a pattern of hydrogen bonding with picrotoxin. Biophys. J., 2008, 94(11), 4299-4306.
[http://dx.doi.org/10.1529/biophysj.107.118455] [PMID: 18310243]
[6]
Trudell, J.R.; Yue, M.E.; Bertaccini, E.J.; Jenkins, A.; Harrison, N.L. Molecular modeling and mutagenesis reveals a tetradentate binding site for Zn2+ in GABAA ab receptors and provides a structural basis for the modulating effect of the γ subunit. J. Chem. Inf. Model., 2008, 48(2), 344-349.
[http://dx.doi.org/10.1021/ci700324a] [PMID: 18197653]
[7]
Sinkkonen, S.T.; Mansikkamäki, S.; Möykkynen, T.; Lüddens, H.; Uusi-Oukari, M.; Korpi, E.R. Receptor subtype-dependent positive and negative modulation of GABAA receptor function by niflumic acid, a nonsteroidal anti-inflammatory drug. Mol. Pharmacol., 2003, 64(3), 753-763.
[http://dx.doi.org/10.1124/mol.64.3.753] [PMID: 12920213]
[8]
Fisher, J.L. Amiloride inhibition of γ-aminobutyric acid A receptors depends upon the α subunit subtype. Mol. Pharmacol., 2002, 61(6), 1322-1328.
[http://dx.doi.org/10.1124/mol.61.6.1322] [PMID: 12021393]
[9]
Kaur, K.H.; Baur, R.; Sigel, E. Unanticipated structural and functional properties of δ-subunit-containing GABAA receptors. J. Biol. Chem., 2009, 284(12), 7889-7896.
[http://dx.doi.org/10.1074/jbc.M806484200] [PMID: 19141615]
[10]
Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 1965, 12, 88-118.
[http://dx.doi.org/10.1016/S0022-2836(65)80285-6] [PMID: 14343300]
[11]
Steinbach, J.H.; Akk, G. Applying the Monod-Wyman-Changeux allosteric activation model to pseudo-steady-state responses from GABAA receptors. Mol. Pharmacol., 2019, 95(1), 106-119.
[http://dx.doi.org/10.1124/mol.118.113787] [PMID: 30333132]
[12]
Forman, S.A. Monod-Wyman-Changeux allosteric mechanisms of action and the pharmacology of etomidate. Curr. Opin. Anaesthesiol., 2012, 25(4), 411-418.
[http://dx.doi.org/10.1097/ACO.0b013e328354feea] [PMID: 22614249]
[13]
Karlin, A. On the application of “a plausible model” of allosteric proteins to the receptor for acetylcholine. J. Theor. Biol., 1967, 16(2), 306-320.
[http://dx.doi.org/10.1016/0022-5193(67)90011-2] [PMID: 6048545]
[14]
Germann, A.L.; Reichert, D.E.; Burbridge, A.B.; Pierce, S.R.; Evers, A.S.; Steinbach, J.H.; Akk, G. Analysis of modulation of the ρ1 GABAA receptor by combinations of inhibitory and potentiating neurosteroids reveals shared and distinct binding sites. Mol. Pharmacol., 2020, 98(4), 280-291.
[http://dx.doi.org/10.1124/mol.120.119842] [PMID: 32675382]
[15]
Shin, D.J.; Germann, A.L.; Covey, D.F.; Steinbach, J.H.; Akk, G. Analysis of GABAA receptor activation by combinations of agonists acting at the same or distinct binding sites. Mol. Pharmacol., 2019, 95(1), 70-81.
[http://dx.doi.org/10.1124/mol.118.113464] [PMID: 30337372]
[16]
Germann, A.L.; Pierce, S.R.; Burbridge, A.B.; Steinbach, J.H.; Akk, G. Steady-state activation and modulation of the concatemeric α1β2γ2L GABAA receptor. Mol. Pharmacol., 2019, 96(3), 320-329.
[http://dx.doi.org/10.1124/mol.119.116913] [PMID: 31263018]
[17]
O’Leary, M.E.; White, M.M. Mutational analysis of ligand-induced activation of the Torpedo acetylcholine receptor. J. Biol. Chem., 1992, 267(12), 8360-8365.
[http://dx.doi.org/10.1016/S0021-9258(18)42452-0] [PMID: 1569088]
[18]
Filatov, G.N.; Aylwin, M.L.; White, M.M. Selective enhancement of the interaction of curare with the nicotinic acetylcholine receptor. Mol. Pharmacol., 1993, 44(2), 237-241.
[PMID: 8355663]
[19]
Schild, H.O. Drug antagonism and pAx. Pharmacol. Rev., 1957, 9(2), 242-246.
[PMID: 13465304]
[20]
Colquhoun, D. Why the Schild method is better than Schild realised. Trends Pharmacol. Sci., 2007, 28(12), 608-614.
[http://dx.doi.org/10.1016/j.tips.2007.09.011] [PMID: 18023486]
[21]
Adams, P.R. Drug blockade of open end-plate channels. J. Physiol., 1976, 260(3), 531-552.
[http://dx.doi.org/10.1113/jphysiol.1976.sp011530] [PMID: 10432]
[22]
Eaton, M.M.; Germann, A.L.; Arora, R.; Cao, L.Q.; Gao, X.; Shin, D.J.; Wu, A.; Chiara, D.C.; Cohen, J.B.; Steinbach, J.H.; Evers, A.S.; Akk, G. Multiple non-equivalent interfaces mediate direct activation of GABAA receptors by propofol. Curr. Neuropharmacol., 2016, 14(7), 772-780.
[http://dx.doi.org/10.2174/1570159X14666160202121319] [PMID: 26830963]
[23]
Forman, S.A.; Stewart, D. Mutations in the GABAA receptor that mimic the allosteric ligand etomidate.Methods Mol. Biol.,, 2012, 796, 317-333.
[http://dx.doi.org/10.1007/978-1-61779-334-9_17] [PMID: 22052498]

© 2025 Bentham Science Publishers | Privacy Policy