Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Effects of Polyphenols in Aging and Neurodegeneration Associated with Oxidative Stress

Author(s): Francisca Rivas, Carlos Poblete-Aro, María Elsa Pando*, María José Allel, Valentina Fernandez, Angélica Soto, Pablo Nova and Diego Garcia-Diaz

Volume 29, Issue 6, 2022

Published on: 12 January, 2022

Page: [1045 - 1060] Pages: 16

DOI: 10.2174/0929867328666211101100632

Price: $65

Abstract

Aging is defined as the functional loss of tissues and organs over time. This is a biological, irreversible, progressive, and universal process that results from genetic and environmental factors, such as diet, physical activity, smoking, harmful alcohol consumption, and exposure to toxins, among others. Aging is a consequence of molecular and cellular damage built up over time. This damage begins with a gradual decrease in physical and mental capacity, thus increasing the risk of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Neuronal, functional, and structural damage can be explained by an imbalance among free radicals, reactive oxygen species, reactive nitrogen species, and antioxidants, which finally lead to oxidative stress. Due to the key role of free radicals, reactive oxygen species, and reactive nitrogen species, antioxidant therapy may reduce the oxidative damage associated with neurodegeneration. Exogenous antioxidants are molecules that may help maintain the balance between the formation and elimination of free radicals, thus protecting the cell from their toxicity. Among them, polyphenols are a broad group of secondary plant metabolites with potent antioxidant properties. Here, we review several studies that show the potential role of polyphenol consumption to prevent, or slow down, harmful oxidative processes linked to neurodegenerative disorders.

Keywords: Aging, oxidative stress, neurodegenerative disorders, antioxidants, polyphenols, neuroprotection.

[1]
Steves, C.J.; Spector, T.D.; Jackson, S.H.D. Ageing, genes, environment and epigenetics: What twin studies tell us now, and in the future. Age Ageing, 2012, 41(5), 581-586.
[http://dx.doi.org/10.1093/ageing/afs097] [PMID: 22826292]
[2]
Schmeer, C.; Kretz, A.; Wengerodt, D.; Stojiljkovic, M.; Witte, O.W. Dissecting aging and senescence-current concepts and open lessons. Cells, 2019, 8(11), 1-28.
[http://dx.doi.org/10.3390/cells8111446] [PMID: 31731770]
[3]
Harman, D. Role of free radicals in aging and disease. Ann. N. Y. Acad. Sci., 1992, 673(673), 126-141.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb27444.x] [PMID: 1485710]
[4]
Rodrigo, R.; Brito, R.; González-Montero, J. Antioxidants in human disease: Potential therapeutic opportunities. Clin. Pharmacol. Transl. Med., 2017, 1(2), 44-53.
[5]
Rodrigo, R. Oxidative stress and antioxidants: Their role in human disease, 1st ed; Nova Biomedical Books: New York, 2009.
[6]
Coronado, H. Antioxidantes: Perspectiva actual para la salud humana. Rev. Chil. Nutr., 2015, 42(2), 206-212.
[http://dx.doi.org/10.4067/S0717-75182015000200014]
[7]
Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stresses and their classifications. Ukr. Biochem. J., 2015, 87(6), 11-18.
[http://dx.doi.org/10.15407/ubj87.06.011] [PMID: 27025055]
[8]
Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Porozov, Y.B.; Terentiev, A.A. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid. Med. Cell. Longev., 2019, 2019, 3085756.
[http://dx.doi.org/10.1155/2019/3085756] [PMID: 31485289]
[9]
Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int., 2014, 2014, 761264.
[http://dx.doi.org/10.1155/2014/761264] [PMID: 24587990]
[10]
Ortuño-Sahagún, D.; Pallàs, M.; Rojas-Mayorquín, A.E. Oxidative stress in aging: Advances in proteomic approaches. Oxid. Med. Cell. Longev., 2014, 2014, 573208.
[http://dx.doi.org/10.1155/2014/573208] [PMID: 24688629]
[11]
Muñoz Montero, A. Cambios con el envejecimiento en parámetros de estrés oxidativo en células sanguíneas de hombres y mujeres. Rev. Complut. Cienc. Vet., 2017, 11(1), 113-119.
[http://dx.doi.org/10.5209/RCCV.55357]
[12]
Gano, L.B.; Donato, A.J.; Pierce, G.L.; Pasha, H.M.; Magerko, K.A.; Roeca, C.; Seals, D.R. Increased proinflammatory and oxidant gene expression in circulating mononuclear cells in older adults: Amelioration by habitual exercise. Physiol. Genomics, 2011, 43(14), 895-902.
[http://dx.doi.org/10.1152/physiolgenomics.00204.2010] [PMID: 21610086]
[13]
Baker, D.J.; Petersen, R.C. Cellular senescence in brain aging and neurodegenerative diseases: Evidence and perspectives. J. Clin. Invest., 2018, 128(4), 1208-1216.
[http://dx.doi.org/10.1172/JCI95145] [PMID: 29457783]
[14]
Kaulmann, A.; Bohn, T. Bioactivity of polyphenols: Preventive and adjuvant strategies toward reducing inflammatory bowel diseases-promises, perspectives, and pitfalls. Oxid. Med. Cell. Longev., 2016, 2016(c), 9346470.
[http://dx.doi.org/10.1155/2016/9346470] [PMID: 27478535]
[15]
Ischiropoulos, H.; Beckman, J.S. Oxidative stress and nitration in neurodegeneration: Cause, effect, or association? J. Clin. Invest., 2003, 111(2), 163-169.
[http://dx.doi.org/10.1172/JCI200317638] [PMID: 12531868]
[16]
Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(6), 4094-4125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[17]
Currais, A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res. Rev., 2015, 21, 30-42.
[http://dx.doi.org/10.1016/j.arr.2015.02.001] [PMID: 25684584]
[18]
Fu, H.; Hardy, J.; Duff, K.E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci., 2018, 21(10), 1350-1358.
[http://dx.doi.org/10.1038/s41593-018-0221-2] [PMID: 30250262]
[19]
Katsnelson, A.; De Strooper, B.; Zoghbi, H.Y. Neurodegeneration: From cellular concepts to clinical applications. Sci. Transl. Med., 2016, 8(364), 364ps18.
[http://dx.doi.org/10.1126/scitranslmed.aal2074] [PMID: 27831899]
[20]
Walker, L.C.; Jucker, M. Neurodegenerative diseases: Expanding the prion concept. Annu. Rev. Neurosci., 2015, 38, 87-103.
[http://dx.doi.org/10.1146/annurev-neuro-071714-033828] [PMID: 25840008]
[21]
Sanders, D.W.; Kaufman, S.K.; DeVos, S.L.; Sharma, A.M.; Mirbaha, H.; Li, A.; Barker, S.J.; Foley, A.C.; Thorpe, J.R.; Serpell, L.C.; Miller, T.M.; Grinberg, L.T.; Seeley, W.W.; Diamond, M.I. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron, 2014, 82(6), 1271-1288.
[http://dx.doi.org/10.1016/j.neuron.2014.04.047] [PMID: 24857020]
[22]
Lee, G.; Leugers, C.J. Tau and tauopathies. Prog. Mol. Biol. Transl. Sci., 2012, 107, 263-293.
[http://dx.doi.org/10.1016/B978-0-12-385883-2.00004-7] [PMID: 22482453]
[23]
Jeppesen, D.K.; Bohr, V.A.; Stevnsner, T. DNA repair deficiency in neurodegeneration. Prog. Neurobiol., 2011, 94(2), 166-200.
[http://dx.doi.org/10.1016/j.pneurobio.2011.04.013] [PMID: 21550379]
[24]
Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 2014, 16(1), 193-217.
[http://dx.doi.org/10.3390/ijms16010193] [PMID: 25547488]
[25]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[26]
Bradley-Whitman, M.A.; Lovell, M.A. Epigenetic changes in the progression of Alzheimer’s disease. Mech. Ageing Dev., 2013, 134(10), 486-495.
[http://dx.doi.org/10.1016/j.mad.2013.08.005] [PMID: 24012631]
[27]
Cunningham, C. Microglia and neurodegeneration: The role of systemic inflammation. Glia, 2013, 61(1), 71-90.
[http://dx.doi.org/10.1002/glia.22350] [PMID: 22674585]
[28]
Youm, Y.H.; Grant, R.W.; McCabe, L.R.; Albarado, D.C.; Nguyen, K.Y.; Ravussin, A.; Pistell, P.; Newman, S.; Carter, R.; Laque, A.; Münzberg, H.; Rosen, C.J.; Ingram, D.K.; Salbaum, J.M.; Dixit, V.D. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab., 2013, 18(4), 519-532.
[http://dx.doi.org/10.1016/j.cmet.2013.09.010] [PMID: 24093676]
[29]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[30]
Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature, 2016, 529(7586), 326-335.
[http://dx.doi.org/10.1038/nature17041] [PMID: 26791723]
[31]
Bedard, K.; Krause, K-H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[32]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[33]
Carvajal Carvajal, C. Especies reactivas del Oxígeno: Formación, función y estrés oxidativo. Med. Leg. Costa Rica, 2019, 36(1), 91-100.
[34]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[35]
Diaz de Barboza, G.; Guizzardi, S.; Moine, L.; Tolosa de Talamoni, N. Oxidative stress, antioxidants and intestinal calcium absorption. World J. Gastroenterol., 2017, 23(16), 2841-2853.
[http://dx.doi.org/10.3748/wjg.v23.i16.2841] [PMID: 28522903]
[36]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1245049.
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[37]
Miranda, E.C.; Capote, K.R.; Janer, N.L.; Martí, N.C. Un acercamiento a la teoría de los radicales libres y el estrés oxidativo en el envejecimiento. Rev. Cuba. Investig. Bioméd., 2000, 19(3), 186-190.
[38]
Warraich, U.E.; Hussain, F.; Kayani, H.U.R. Aging - Oxidative stress, antioxidants and computational modeling. Heliyon, 2020, 6(5), e04107.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04107] [PMID: 32509998]
[39]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[40]
Suleman, M. Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure Appl. Biol., 2018, 7(4), 280-388.
[http://dx.doi.org/10.19045/bspab.2018.700197]
[41]
Lei, X.G.; Zhu, J.H.; Cheng, W.H.; Bao, Y.; Ho, Y.S.; Reddi, A.R.; Holmgren, A.; Arnér, E.S.J. Paradoxical roles of antioxidant enzymes: Basic mechanisms and health implications. Physiol. Rev., 2016, 96(1), 307-364.
[http://dx.doi.org/10.1152/physrev.00010.2014] [PMID: 26681794]
[42]
Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem., 2019, 178, 687-704.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.010] [PMID: 31228811]
[43]
Peng, C.; Wang, X.; Chen, J.; Jiao, R.; Wang, L.; Li, Y.M.; Zuo, Y.; Liu, Y.; Lei, L.; Ma, K.Y.; Huang, Y.; Chen, Z.Y. Biology of ageing and role of dietary antioxidants. BioMed Res. Int., 2014, 2014, 831841.
[http://dx.doi.org/10.1155/2014/831841] [PMID: 24804252]
[44]
Guillaumet-Adkins, A.; Yañez, Y.; Peris-Diaz, M.D.; Calabria, I.; Palanca-Ballester, C.; Sandoval, J. Epigenetics and oxidative stress in aging. Oxid. Med. Cell. Longev., 2017, 2017, 9175806.
[http://dx.doi.org/10.1155/2017/9175806] [PMID: 28808499]
[45]
Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[46]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[47]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[48]
Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[49]
Quiñones, M.; Miguel, M.; Aleixandre, A. Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutr. Hosp., 2012, 27(1), 76-89.
[http://dx.doi.org/10.3305/nh.2012.27.1.5418] [PMID: 22566306]
[50]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[51]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[52]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[53]
Avello, M.; Suwalsky, M. Radicales libres, antioxidantes naturales y mecanismos de protección. Atenea (Concepc.), 2006, (494), 161-172.
[http://dx.doi.org/10.4067/S0718-04622006000200010]
[54]
Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr., 2017, 68(6), 750-756.
[http://dx.doi.org/10.1080/09637486.2017.1285870] [PMID: 28276907]
[55]
Karam, J.; Bibiloni, M.D.M.; Tur, J.A. Polyphenol estimated intake and dietary sources among older adults from Mallorca Island. PLoS One, 2018, 13(1), e0191573.
[http://dx.doi.org/10.1371/journal.pone.0191573] [PMID: 29381732]
[56]
Zamora-Ros, R.; Biessy, C.; Rothwell, J.A.; Monge, A.; Lajous, M.; Scalbert, A.; López-Ridaura, R.; Romieu, I. Dietary polyphenol intake and their major food sources in the Mexican Teachers’. Cohort. Br. J. Nutr., 2018, 120(3), 353-360.
[http://dx.doi.org/10.1017/S0007114518001381] [PMID: 29860950]
[57]
Miranda, A.M.; Steluti, J.; Fisberg, R.M.; Marchioni, D.M. Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: A population-based study. Br. J. Nutr., 2016, 115(6), 1061-1070.
[http://dx.doi.org/10.1017/S0007114515005061] [PMID: 26810764]
[58]
Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci., 2017, 96, 53-61.
[http://dx.doi.org/10.1016/j.ejps.2016.09.003] [PMID: 27613382]
[59]
Hajiaghaalipour, F.; Khalilpourfarshbafi, M.; Arya, A.; Arya, A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int. J. Biol. Sci., 2015, 11(5), 508-524.
[http://dx.doi.org/10.7150/ijbs.11241] [PMID: 25892959]
[60]
Hossain, M.S.; Dearing, J.A.; Rahman, M.M.; Salehin, M. Recent changes in ecosystem services and human well-being in the Bangladesh coastal zone. Reg. Environ. Change, 2016, 16(2), 429-443.
[http://dx.doi.org/10.1007/s10113-014-0748-z]
[61]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[62]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[63]
Cummings, J. Disease modification and Neuroprotection in neurodegenerative disorders. Transl. Neurodegener., 2017, 6(1), 25.
[http://dx.doi.org/10.1186/s40035-017-0096-2] [PMID: 29021896]
[64]
Pandareesh, M.D.; Mythri, R.B.; Srinivas Bharath, M.M. Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases. Neurochem. Int., 2015, 89, 198-208.
[http://dx.doi.org/10.1016/j.neuint.2015.07.003] [PMID: 26163045]
[65]
Squillaro, T.; Cimini, A.; Peluso, G.; Giordano, A.; Melone, M.A.B. Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochem. Pharmacol., 2018, 154, 303-317.
[http://dx.doi.org/10.1016/j.bcp.2018.05.016] [PMID: 29803506]
[66]
Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; Filipe, A.; McDougall, G.J.; Stewart, D.; Kim, K.S.; Palmela, I.; Brites, D.; Brito, M.A.; Brito, C.; Santos, C.N. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci. Rep., 2017, 7(1), 11456.
[http://dx.doi.org/10.1038/s41598-017-11512-6] [PMID: 28904352]
[67]
Janle, E.M.; Lila, M.A.; Grannan, M.; Wood, L.; Higgins, A.; Yousef, G.G.; Rogers, R.B.; Kim, H.; Jackson, G.S.; Ho, L.; Weaver, C.M. Pharmacokinetics and tissue distribution of 14C-labeled grape polyphenols in the periphery and the central nervous system following oral administration. J. Med. Food, 2010, 13(4), 926-933.
[http://dx.doi.org/10.1089/jmf.2009.0157] [PMID: 20673061]
[68]
Prasain, J.K.; Peng, N.; Dai, Y.; Moore, R.; Arabshahi, A.; Wilson, L.; Barnes, S.; Michael Wyss, J.; Kim, H.; Watts, R.L. Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine, 2009, 16(2-3), 233-243.
[http://dx.doi.org/10.1016/j.phymed.2008.08.006] [PMID: 19095430]
[69]
Hornedo-Ortega, R.; Cerezo, A.B.; de Pablos, R.M.; Krisa, S.; Richard, T.; García-Parrilla, M.C.; Troncoso, A.M. Phenolic compounds characteristic of the mediterranean diet in mitigating microglia-mediated neuroinflammation. Front. Cell. Neurosci., 2018, 12, 373.
[http://dx.doi.org/10.3389/fncel.2018.00373] [PMID: 30405355]
[70]
Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol., 2019, 94, 112-120.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004] [PMID: 31077796]
[71]
Li, K.; Li, J.; Zheng, J.; Qin, S. Reactive astrocytes in neurodegenerative diseases. Aging Dis., 2019, 10(3), 664-675.
[http://dx.doi.org/10.14336/AD.2018.0720] [PMID: 31165009]
[72]
Ben Haim, L.; Carrillo-de Sauvage, M.A.; Ceyzériat, K.; Escartin, C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9(AUGUST), 278.
[http://dx.doi.org/10.3389/fncel.2015.00278] [PMID: 26283915]
[73]
Weinberg, R.P.; Koledova, V.V.; Schneider, K.; Sambandan, T.G.; Grayson, A.; Zeidman, G.; Artamonova, A.; Sambanthamurthi, R.; Fairus, S.; Sinskey, A.J. Palm fruit bioactives modulate human astrocyte activity in vitro altering the cytokine secretome reducing levels of TNFα, rantes and IP-10. Sci. Rep., 2018, 8(1), 1-19.
[http://dx.doi.org/10.1038/s41598-018-34763-3] [PMID: 29311619]
[74]
Martín, S.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Neuroprotective properties of Spanish red wine and its isolated polyphenols on astrocytes. Food Chem., 2011, 128(1), 40-48.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.074] [PMID: 25214327]
[75]
Garcia, G.; Nanni, S.; Figueira, I.; Ivanov, I.; McDougall, G.J.; Stewart, D.; Ferreira, R.B.; Pinto, P.; Silva, R.F.M.; Brites, D.; Santos, C.N. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chem., 2017, 215, 274-283.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.128] [PMID: 27542476]
[76]
Winter, A.N.; Brenner, M.C.; Punessen, N.; Snodgrass, M.; Byars, C.; Arora, Y.; Linseman, D.A. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-Hydroxybenzoic acid. Oxid. Med. Cell. Longev., 2017, 2017, 6297080.
[http://dx.doi.org/10.1155/2017/6297080] [PMID: 28740571]
[77]
Grewal, R.; Reutzel, M.; Dilberger, B.; Hein, H.; Zotzel, J.; Marx, S.; Tretzel, J.; Sarafeddinov, A.; Fuchs, C.; Eckert, G.P. Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer’s disease and brain ageing. Exp. Neurol., 2020, 328(328), 113248.
[http://dx.doi.org/10.1016/j.expneurol.2020.113248] [PMID: 32084452]
[78]
Chen, Z.J.; Yang, Y.F.; Zhang, Y.T.; Yang, D.H. Dietary total prenylflavonoids from the Fruits of Psoralea corylifolia L. prevents age-related cognitive deficits and down-regulates Alzheimer’s markers in SAMP8 mice. Molecules, 2018, 23(1), E196.
[http://dx.doi.org/10.3390/molecules23010196] [PMID: 29346315]
[79]
Tan, L.; Yang, H.P.; Pang, W.; Lu, H.; Hu, Y.D.; Li, J.; Lu, S.J.; Zhang, W.Q.; Jiang, Y.G. Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice. Biomed. Environ. Sci., 2014, 27(3), 186-196.
[http://dx.doi.org/10.3967/bes2014.007] [PMID: 24709099]
[80]
Liao, H.; Chou, L.M.; Chien, Y.W.; Wu, C.H.; Chang, J.S.; Lin, C.I.; Lin, S.H. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet. J. Nutr. Biochem., 2017, 43, 132-140.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.013] [PMID: 28285155]
[81]
Toth, P.; Tarantini, S.; Springo, Z.; Tucsek, Z.; Gautam, T.; Giles, C.B.; Wren, J.D.; Koller, A.; Sonntag, W.E.; Csiszar, A.; Ungvari, Z. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: Role of resveratrol treatment in vasoprotection. Aging Cell, 2015, 14(3), 400-408.
[http://dx.doi.org/10.1111/acel.12315] [PMID: 25677910]
[82]
Navarro-Cruz, A.R.; Ramírez, Y.; Ayala, R.; Ochoa-Velasco, C.; Brambila, E.; Avila-Sosa, R.; Pérez-Fernández, S.; Morales-Medina, J.C.; Aguilar-Alonso, P. Effect of chronic administration of resveratrol on cognitive performance during aging process in rats. Oxid. Med. Cell. Longev., 2017, 2017, 8510761.
[http://dx.doi.org/10.1155/2017/8510761] [PMID: 29163756]
[83]
Rastogi, M.; Ojha, R.P.; Sagar, C.; Agrawal, A.; Dubey, G.P. Protective effect of curcuminoids on age-related mitochondrial impairment in female Wistar rat brain. Biogerontology, 2014, 15(1), 21-31.
[http://dx.doi.org/10.1007/s10522-013-9466-z] [PMID: 24048922]
[84]
Whyte, A.R.; Cheng, N.; Fromentin, E.; Williams, C.M.A. Randomized, double-blinded, placebo-controlled study to compare the safety and efficacy of low dose enhanced wild blueberry powder and wild blueberry extract (ThinkBlue™) in maintenance of episodic and working memory in older adults. Nutrients, 2018, 10(6), E660.
[http://dx.doi.org/10.3390/nu10060660] [PMID: 29882843]
[85]
Whyte, A.R.; Rahman, S.; Bell, L.; Edirisinghe, I.; Krikorian, R.; Williams, C.M.; Burton-Freeman, B. Improved metabolic function and cognitive performance in middle-aged adults following a single dose of wild blueberry. Eur. J. Nutr., 2021, 60(3), 1521-1536.
[http://dx.doi.org/10.1007/s00394-020-02336-8] [PMID: 32747995]
[86]
Krikorian, R.; Boespflug, E.L.; Fleck, D.E.; Stein, A.L.; Wightman, J.D.; Shidler, M.D.; Sadat-Hossieny, S. Concord grape juice supplementation and neurocognitive function in human aging. J. Agric. Food Chem., 2012, 60(23), 5736-5742.
[http://dx.doi.org/10.1021/jf300277g] [PMID: 22468945]
[87]
Anton, S.D.; Ebner, N.; Dzierzewski, J.M.; Zlatar, Z.Z.; Gurka, M.J.; Dotson, V.M.; Kirton, J.; Mankowski, R.T.; Marsiske, M.; Manini, T.M. Effects of 90 days of resveratrol supplementation on cognitive function in elders: A pilot study. J. Altern. Complement. Med., 2018, 24(7), 725-732.
[http://dx.doi.org/10.1089/acm.2017.0398] [PMID: 29583015]
[88]
Renaud, J.; Martinoli, M.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(8), E1883.
[http://dx.doi.org/10.3390/ijms20081883] [PMID: 30995776]
[89]
Vellas, B.; Coley, N.; Ousset, P.J.; Berrut, G.; Dartigues, J.F.; Dubois, B.; Grandjean, H.; Pasquier, F.; Piette, F.; Robert, P.; Touchon, J.; Garnier, P.; Mathiex-Fortunet, H.; Andrieu, S. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): A randomised placebo-controlled trial. Lancet Neurol., 2012, 11(10), 851-859.
[http://dx.doi.org/10.1016/S1474-4422(12)70206-5] [PMID: 22959217]
[90]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[91]
Molino, S.; Dossena, M.; Buonocore, D.; Ferrari, F.; Venturini, L.; Ricevuti, G.; Verri, M. Polyphenols in dementia: From molecular basis to clinical trials. Life Sci., 2016, 161, 69-77.
[http://dx.doi.org/10.1016/j.lfs.2016.07.021] [PMID: 27493077]
[92]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S.A. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy