Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mutual Effects of Free and Nanoencapsulated Phenolic Compounds on Human Microbiota

Author(s): Carina Cassini, Pedro Henrique Zatti, Valéria Weiss Angeli, Catia Santos Branco* and Mirian Salvador

Volume 29, Issue 18, 2022

Published on: 14 January, 2022

Page: [3160 - 3178] Pages: 19

DOI: 10.2174/0929867328666211101095131

Price: $65

Abstract

Phenolic compounds (PC) have many health benefits such as antioxidant, anticarcinogenic, neuroprotective, and anti-inflammatory activities. All of these activities depend on their chemical structures and their interaction with biological targets in the body. PC occur naturally in polymerized form, linked to glycosides and require metabolic transformation from their ingestion to their absorption. The gut microbiota can transform PC into more easily absorbed metabolites. PC, in turn, have prebiotic and antimicrobial actions on the microbiota. Despite this, their low oral bioavailability still compromises biological performance. Therefore, the use of nanocarriers has been demonstrated to be a useful strategy to improve PC absorption and, consequently, their health effects. Nanotechnology is an excellent alternative able to overcome the limits of oral bioavailability of PC, since it offers protection from degradation during their passage through the gastrointestinal tract. Moreover, nanotechnology is also capable of promoting controlled PC release and modulating the interaction between PC and the microbiota. However, little is known about the impact of nanotechnology on PC effects on the gut microbiota. This review highlights the use of nanotechnology for PC delivery on gut microbiota, focusing on the ability of such formulations to enhance oral bioavailability by applying nanocarriers (polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles). In addition, the effects of free and nanocarried PC or nanocarriers per se on gut microbiota are also described.

Keywords: Phenolic compounds, gut microbiota, nanotechnology, mutual effects, bioavailability, dysbiosis.

[1]
Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), 901.
[http://dx.doi.org/10.3390/molecules21070901]
[2]
Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr., 2018, 58(15), 2531-2548.
[http://dx.doi.org/10.1080/10408398.2017.1331200] [PMID: 28609142]
[3]
Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct., 2017, 8(1), 15-38.
[http://dx.doi.org/10.1039/C6FO01475E] [PMID: 28074953]
[4]
Ferreira, I.C.F.R.; Martins, N.; Barros, L. Phenolic compounds and its bioavailability: in vitro bioactive compounds or health promoters? Adv. Food Nutr. Res., 2017, 82, 1-44.
[http://dx.doi.org/10.1016/bs.afnr.2016.12.004] [PMID: 28427530]
[5]
Dai, J.; Mumper, R.J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15(10), 7313-7352.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[6]
Awortwe, C.; Fasinu, P.S.; Rosenkranz, B. Application of Caco-2 cell line in herb-drug interaction studies: current approaches and challenges. J. Pharm. Pharm. Sci., 2014, 17(1), 1-19.
[http://dx.doi.org/10.18433/J30K63] [PMID: 24735758]
[7]
Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem., 2018, 82(4), 600-610.
[http://dx.doi.org/10.1080/09168451.2018.1444467] [PMID: 29504827]
[8]
Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3031-3065.
[http://dx.doi.org/10.1080/10408398.2020.1792409] [PMID: 32691612]
[9]
Luca, M.; Di Mauro, M.; Di Mauro, M.; Luca, A. Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid. Med. Cell. Longev., 2019, 2019, 4730539.
[http://dx.doi.org/10.1155/2019/4730539] [PMID: 31178961]
[10]
Lin, C.; Cai, X.; Zhang, J.; Wang, W.; Sheng, Q.; Hua, H.; Zhou, X. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion, 2019, 100(1), 72-78.
[http://dx.doi.org/10.1159/000494052] [PMID: 30332668]
[11]
Berer, K.; Gerdes, L.A.; Cekanaviciute, E.; Jia, X.; Xiao, L.; Xia, Z.; Liu, C.; Klotz, L.; Stauffer, U.; Baranzini, S.E.; Kümpfel, T.; Hohlfeld, R.; Krishnamoorthy, G.; Wekerle, H. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. USA, 2017, 114(40), 10719-10724.
[http://dx.doi.org/10.1073/pnas.1711233114] [PMID: 28893994]
[12]
Cassani, E.; Barichella, M.; Cancello, R.; Cavanna, F.; Iorio, L.; Cereda, E.; Bolliri, C.; Zampella Maria, P.; Bianchi, F.; Cestaro, B.; Pezzoli, G. Increased urinary indoxyl sulfate (indican): new insights into gut dysbiosis in Parkinson’s disease. Parkinsonism Relat. Disord., 2015, 21(4), 389-393.
[http://dx.doi.org/10.1016/j.parkreldis.2015.02.004] [PMID: 25707302]
[13]
Saltzman, E.T.; Palacios, T.; Thomsen, M.; Vitetta, L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol., 2018, 9, 61.
[http://dx.doi.org/10.3389/fmicb.2018.00061] [PMID: 29441049]
[14]
El Gharras, H. Polyphenols: food sources, properties and applications – a review. Food Sci. Technol., 2009, 44, 2512-2518.
[http://dx.doi.org/10.1111/j.1365-2621.2009.02077.x]
[15]
Seyed, M.A.; Jantan, I.; Bukhari, S.N.A.; Vijayaraghavan, K. A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem., 2016, 64(4), 725-737.
[http://dx.doi.org/10.1021/acs.jafc.5b05993] [PMID: 26758628]
[16]
Jiang, Y.L.; Liu, Z.P. Natural products as anti-invasive and anti-metastatic agents. Curr. Med. Chem., 2011, 18(6), 808-829.
[http://dx.doi.org/10.2174/092986711794927711] [PMID: 21182481]
[17]
Siddiqui, I.A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol nanoformulation for cancer prevention and therapy. Ann. N. Y. Acad. Sci., 2015, 1348(1), 20-31.
[http://dx.doi.org/10.1111/nyas.12811] [PMID: 26109073]
[18]
González-Vallinas, M.; González-Castejón, M.; Rodríguez-Casado, A.; Ramírez de Molina, A.; De, D. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr. Rev., 2013, 71(9), 585-599.
[http://dx.doi.org/10.1111/nure.12051] [PMID: 24032363]
[19]
Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[20]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013, 2013(29), 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[21]
Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 2014, 559, 75-90.
[http://dx.doi.org/10.1016/j.abb.2014.05.017]]
[22]
Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res., 2018, 135, 122-126.
[http://dx.doi.org/10.1016/j.phrs.2018.08.002] [PMID: 30081177]
[23]
Ranka, S.; Gee, J.M.; Biro, L.; Brett, G.; Saha, S.; Kroon, P.; Skinner, J.; Hart, A.R.; Cassidy, A.; Rhodes, M.; Johnson, I.T. Development of a food frequency questionnaire for the assessment of quercetin and naringenin intake. Eur. J. Clin. Nutr., 2008, 62(9), 1131-1138.
[http://dx.doi.org/10.1038/sj.ejcn.1602827] [PMID: 17538531]
[24]
Rienks, J.; Barbaresko, J.; Nöthlings, U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients, 2017, 9(4), 415.
[http://dx.doi.org/10.3390/nu9040415] [PMID: 28441720]
[25]
Rodríguez-Pérez, C.; Segura-Carretero, A.; Del Mar Contreras, M.; Segura-Carretero, A.; Contreras, M.; Rodr, C. Phenolic compounds as natural and multifunctional anti-obesity agents: a review. Crit. Rev. Food Sci. Nutr., 2019, 59(8), 1212-1229.
[http://dx.doi.org/10.1080/10408398.2017.1399859] [PMID: 29156939]
[26]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(5), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[27]
Conte, R.; Marturano, V.; Peluso, G.; Calarco, A.; Cerruti, P. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int. J. Mol. Sci., 2017, 18(4), 1-23.
[http://dx.doi.org/10.3390/ijms18040709] [PMID: 28350317]
[28]
Akhlaghi, M.; Ghobadi, S.; Mohammad Hosseini, M.; Gholami, Z.; Mohammadian, F. Flavanols are potential anti-obesity agents, a systematic review and meta-analysis of controlled clinical trials. Nutr. Metab. Cardiovasc. Dis., 2018, 28(7), 675-690.
[http://dx.doi.org/10.1016/j.numecd.2018.04.001] [PMID: 29759310]
[29]
Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother. Res., 2019, 33(9), 2221-2243.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[30]
Adriouch, S.; Kesse-Guyot, E.; Feuillet, T.; Touvier, M.; Olié, V.; Andreeva, V.; Hercberg, S.; Galan, P.; Fezeu, L.K. Total and specific dietary polyphenol intakes and 6-year anthropometric changes in a middle-aged general population cohort. Int. J. Obes., 2018, 42(3), 310-317.
[http://dx.doi.org/10.1038/ijo.2017.227] [PMID: 28928462]
[31]
Mohammadi, V.; Dehghani, S.; Larijani, B.; Azadbakht, L. Ovarian cancer risk and nonisoflavone flavonoids intake: A systematic review of epidemiological studies. J. Res. Med. Sci., 2016, 21, 123.
[http://dx.doi.org/10.4103/1735-1995.196605] [PMID: 28331509]
[32]
Abrankó, L.; Nagy, Á.; Szilvássy, B.; Stefanovits-Bányai, É.; Hegedűs, A. Genistein isoflavone glycoconjugates in sour cherry (Prunus cerasus L.) cultivars. Food Chem., 2015, 166, 215-222.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.007] [PMID: 25053048]
[33]
Weber, F.; Larsen, L.R. Influence of fruit juice processing on anthocyanin stability. Food Res. Int., 2017, 100(Pt 3), 354-365.
[http://dx.doi.org/10.1016/j.foodres.2017.06.033] [PMID: 28964358]
[34]
Hornedo-Ortega, R.; Cerezo, A.B.; de Pablos, R.M.; Krisa, S.; Richard, T.; García-Parrilla, M.C.; Troncoso, A.M. Phenolic compounds characteristic of the mediterranean diet in mitigating microglia-mediated neuroinflammation. Front. Cell. Neurosci., 2018, 12, 373-393.
[http://dx.doi.org/10.3389/fncel.2018.00373] [PMID: 30405355]
[35]
Westfall, S.; Pasinetti, G.M. The gut microbiota links dietary polyphenols with management of psychiatric mood disorders. Front. Neurosci., 2019, 13, 1196.
[http://dx.doi.org/10.3389/fnins.2019.01196] [PMID: 31749681]
[36]
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[37]
De Angelis, M.; Garruti, G.; Minervini, F.; Bonfrate, L.; Portincasa, P.; Gobbetti, M. The food-gut human axis: The effects of diet on gut microbiota and metabolome. Curr. Med. Chem., 2019, 26(19), 3567-3583.
[http://dx.doi.org/10.2174/0929867324666170428103848] [PMID: 28462705]
[38]
Moreno-Indias, I.; Sánchez-Alcoholado, L.; Pérez-Martínez, P.; Andrés-Lacueva, C.; Cardona, F.; Tinahones, F.; Queipo-Ortuño, M.I. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct., 2016, 7(4), 1775-1787.
[http://dx.doi.org/10.1039/C5FO00886G] [PMID: 26599039]
[39]
Rajilić-Stojanović, M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev., 2014, 38(5), 996-1047.
[http://dx.doi.org/10.1111/1574-6976.12075] [PMID: 24861948]
[40]
Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13073-016-0307-y] [PMID: 27122046]
[41]
Matarazzo, I.; Toniato, E.; Robuffo, I. Psychobiome feeding mind: Polyphenolics in depression and anxiety. Curr. Top. Med. Chem., 2018, 18(24), 2108-2115.
[http://dx.doi.org/10.2174/1568026619666181210151348] [PMID: 30526463]
[42]
Filosa, S.; Di Meo, F.; Crispi, S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen. Res., 2018, 13(12), 2055-2059.
[http://dx.doi.org/10.4103/1673-5374.241429] [PMID: 30323120]
[43]
Huang, T.T.; Lai, J.B.; Du, Y.L.; Xu, Y.; Ruan, L.M.; Hu, S.H. Current understanding of gut microbiota in mood disorders: an update of human studies. Front. Genet., 2019, 10, 98.
[http://dx.doi.org/10.3389/fgene.2019.00098] [PMID: 30838027]
[44]
Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, 7(3), 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082] [PMID: 26963409]
[45]
Vitetta, L.; Vitetta, G.; Hall, S. Immunological tolerance and function: associations between intestinal bacteria, probiotics, prebiotics, and phages. Front. Immunol., 2018, 9(2240), 2240.
[http://dx.doi.org/10.3389/fimmu.2018.02240] [PMID: 30356736]
[46]
Kim, M.H.; Kang, S.G.; Park, J.H.; Yanagisawa, M.; Kim, C.H. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology, 2013, 145(2), 396-406.e.
[http://dx.doi.org/10.1053/j.gastro.2013.04.056] [PMID: 23665276]
[47]
Mangiola, F.; Ianiro, G.; Franceschi, F.; Fagiuoli, S.; Gasbarrini, G.; Gasbarrini, A. Gut microbiota in autism and mood disorders. World J. Gastroenterol., 2016, 22(1), 361-368.
[http://dx.doi.org/10.3748/wjg.v22.i1.361] [PMID: 26755882]
[48]
Aoun, A.; Darwish, F.; Hamod, N. The influence of the gut microbiome on obesity in adults and the role of probiotifcs prebiotics and synbiotics for weight loss. Prev. Nutr. Food Sci., 2020, 25(2), 113-123.
[http://dx.doi.org/10.3746/pnf.2020.25.2.113] [PMID: 32676461]
[49]
Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; Claes, S.; Van Oudenhove, L.; Zhernakova, A.; Vieira-Silva, S.; Raes, J. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol., 2019, 4(4), 623-632.
[http://dx.doi.org/10.1038/s41564-018-0337-x] [PMID: 30718848]
[50]
Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med., 2016, 8(1), 42.
[http://dx.doi.org/10.1186/s13073-016-0303-2] [PMID: 27098727]
[51]
Jonsson, A.L.; Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol., 2017, 14(2), 79-87.
[http://dx.doi.org/10.1038/nrcardio.2016.183] [PMID: 27905479]
[52]
Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.; Dixon, D.; Liu, M.; Molitoris, D.R.; Green, J.A., III Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 2010, 16(4), 444-453.
[http://dx.doi.org/10.1016/j.anaerobe.2010.06.008] [PMID: 20603222]
[53]
Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil., 2014, 26(8), 1155-1162.
[http://dx.doi.org/10.1111/nmo.12378] [PMID: 24888394]
[54]
Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; Li, L.; Ruan, B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun., 2015, 48, 186-194.
[http://dx.doi.org/10.1016/j.bbi.2015.03.016] [PMID: 25882912]
[55]
Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol., 2017, 139, 82-93.
[http://dx.doi.org/10.1016/j.bcp.2017.04.033] [PMID: 28483461]
[56]
Williamson, G.; Clifford, M.N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem. Pharmacol., 2017, 139, 24-39.
[http://dx.doi.org/10.1016/j.bcp.2017.03.012] [PMID: 28322745]
[57]
Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 2016, 8(2), 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[58]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[59]
Anhê, F.F.; Varin, T.V.; Le Barz, M.; Desjardins, Y.; Levy, E.; Roy, D.; Marette, A. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr. Obes. Rep., 2015, 4(4), 389-400.
[http://dx.doi.org/10.1007/s13679-015-0172-9] [PMID: 26343880]
[60]
Neyrinck, A.M.; Etxeberria, U.; Taminiau, B.; Daube, G.; Van Hul, M.; Everard, A.; Cani, P.D.; Bindels, L.B.; Delzenne, N.M. Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Mol. Nutr. Food Res., 2017, 61(1), 1-12.
[http://dx.doi.org/10.1002/mnfr.201500899] [PMID: 26990039]
[61]
Etxeberria, U.; Arias, N.; Boqué, N.; Macarulla, M.T.; Portillo, M.P.; Martínez, J.A.; Milagro, F.I. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem., 2015, 26(6), 651-660.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.002] [PMID: 25762527]
[62]
Magistrelli, D.; Zanchi, R.; Malagutti, L.; Galassi, G.; Canzi, E.; Rosi, F. Effects of cocoa husk feeding on the composition of swine intestinal microbiota. J. Agric. Food Chem., 2016, 64(10), 2046-2052.
[http://dx.doi.org/10.1021/acs.jafc.5b05732] [PMID: 26877143]
[63]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[64]
Vikram, A.; Jesudhasan, P.R.; Jayaprakasha, G.K.; Pillai, S.D.; Jayaraman, A.; Patil, B.S. Citrus flavonoid represses Salmonella pathogenicity island 1 and motility in S. Typhimurium LT2. Int. J. Food Microbiol., 2011, 145(1), 28-36.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.11.013] [PMID: 21168230]
[65]
Yi, S.; Wang, W.; Bai, F.; Zhu, J.; Li, J.; Li, X.; Xu, Y.; Sun, T.; He, Y. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens. World J. Microbiol. Biotechnol., 2014, 30(2), 451-460.
[http://dx.doi.org/10.1007/s11274-013-1464-4] [PMID: 23979827]
[66]
Gopu, V.; Kothandapani, S.; Shetty, P.H. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb. Pathog., 2015, 79, 61-69.
[http://dx.doi.org/10.1016/j.micpath.2015.01.010] [PMID: 25637095]
[67]
Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res. Int., 2015, 2015, 905215.
[http://dx.doi.org/10.1155/2015/905215] [PMID: 25802870]
[68]
Most, J.; Penders, J.; Lucchesi, M.; Goossens, G.H.; Blaak, E.E. Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. Eur. J. Clin. Nutr., 2017, 71(9), 1040-1045.
[http://dx.doi.org/10.1038/ejcn.2017.89] [PMID: 28589947]
[69]
Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; Rodriguez-Mateos, A. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: a double-blind randomized controlled trial in adult men. Am. J. Clin. Nutr., 2019, 110(2), 316-329.
[http://dx.doi.org/10.1093/ajcn/nqz075] [PMID: 31152545]
[70]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[71]
Martín-Peláez, S.; Mosele, J.I.; Pizarro, N.; Farràs, M.; de la Torre, R.; Subirana, I.; Pérez-Cano, F.J.; Castañer, O.; Solà, R.; Fernandez-Castillejo, S.; Heredia, S.; Farré, M.; Motilva, M.J.; Fitó, M. Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota. Eur. J. Nutr., 2017, 56(1), 119-131.
[http://dx.doi.org/10.1007/s00394-015-1063-2] [PMID: 26541328]
[72]
Song, M.Y.; Wang, J.H.; Eom, T.; Kim, H. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: a randomized, double-blind placebo-controlled study. Nutr. Res., 2015, 35(8), 655-663.
[http://dx.doi.org/10.1016/j.nutres.2015.05.001] [PMID: 26048342]
[73]
Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona Diaz, F.; Andrés-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr., 2012, 95(6), 1323-1334.
[http://dx.doi.org/10.3945/ajcn.111.027847] [PMID: 22552027]
[74]
Clemente-Postigo, M.; Queipo-Ortuño, M.I.; Boto-Ordoñez, M.; Coin-Aragüez, L.; Roca-Rodriguez, M.M.; Delgado-Lista, J.; Cardona, F.; Andres-Lacueva, C.; Tinahones, F.J. Effect of acute and chronic red wine consumption on lipopolysaccharide concentrations. Am. J. Clin. Nutr., 2013, 97(5), 1053-1061.
[http://dx.doi.org/10.3945/ajcn.112.051128] [PMID: 23576043]
[75]
Barroso, E.; Muñoz-González, I.; Jiménez, E.; Bartolomé, B.; Moreno-Arribas, M.V.; Peláez, C.; Del Carmen Martínez-Cuesta, M.; Requena, T. Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Mol. Nutr. Food Res., 2017, 61(3), 1-12.
[http://dx.doi.org/10.1002/mnfr.201600620] [PMID: 27794201]
[76]
Conterno, L.; Martinelli, F.; Tamburini, M.; Fava, F.; Mancini, A.; Sordo, M.; Pindo, M.; Martens, S.; Masuero, D.; Vrhovsek, U.; Dal Lago, C.; Ferrario, G.; Morandini, M.; Tuohy, K. Measuring the impact of olive pomace enriched biscuits on the gut microbiota and its metabolic activity in mildly hypercholesterolaemic subjects. Eur. J. Nutr., 2019, 58(1), 63-81.
[http://dx.doi.org/10.1007/s00394-017-1572-2] [PMID: 29124388]
[77]
Rodríguez-Morató, J.; Matthan, N.R.; Liu, J.; de la Torre, R.; Chen, C.O. Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. J. Nutr. Biochem., 2018, 62, 76-86.
[http://dx.doi.org/10.1016/j.jnutbio.2018.08.019] [PMID: 30269035]
[78]
González-Sarrías, A.; Romo-Vaquero, M.; García-Villalba, R.; Cortés-Martín, A.; Selma, M.V.; Espín, J.C. The endotoxemia marker lipopolysaccharide-binding protein is reduced in overweight-obese subjects consuming pomegranate extract by modulating the gut microbiota: a randomized clinical trial. Mol. Nutr. Food Res., 2018, 62(11), e1800160.
[http://dx.doi.org/10.1002/mnfr.201800160] [PMID: 29665619]
[79]
González-Sarrías, A.; García-Villalba, R.; Romo-Vaquero, M.; Alasalvar, C.; Örem, A.; Zafrilla, P.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomized clinical trial. Mol. Nutr. Food Res., 2017, 61(5), 1-43.
[http://dx.doi.org/10.1002/mnfr.201600830] [PMID: 27879044]
[80]
Wilson, R.; Willis, J.; Gearry, R.B.; Hughes, A.; Lawley, B.; Skidmore, P.; Frampton, C.; Fleming, E.; Anderson, A.; Jones, L.; Tannock, G.W.; Carr, A.C. Sungold kiwifruit supplementation of individuals with prediabetes alters gut microbiota and improves vitamin c status, anthropometric and clinical markers. Nutrients, 2018, 10(7), 895.
[http://dx.doi.org/10.3390/nu10070895] [PMID: 30002355]
[81]
Eid, N.; Osmanova, H.; Natchez, C.; Walton, G.; Costabile, A.; Gibson, G.; Rowland, I.; Spencer, J.P.E. Impact of palm date consumption on microbiota growth and large intestinal health: A randomised, controlled, cross-over, human intervention study. Br. J. Nutr., 2015, 114(8), 1226-1236.
[http://dx.doi.org/10.1017/S0007114515002780] [PMID: 26428278]
[82]
Ravn-Haren, G.; Dragsted, L.O.; Buch-Andersen, T.; Jensen, E.N.; Jensen, R.I.; Németh-Balogh, M.; Paulovicsová, B.; Bergström, A.; Wilcks, A.; Licht, T.R.; Markowski, J.; Bügel, S. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur. J. Nutr., 2013, 52(8), 1875-1889.
[http://dx.doi.org/10.1007/s00394-012-0489-z] [PMID: 23271615]
[83]
Lear, R.; O’Leary, M.; O’Brien Andersen, L.; Holt, C.C.; Stensvold, C.R.; van der Giezen, M.; Bowtell, J.L. Tart cherry concentrate does not alter the gut microbiome, glycaemic control or systemic inflammation in a middle-aged population. Nutrients, 2019, 11(5), 1-16.
[http://dx.doi.org/10.3390/nu11051063] [PMID: 31085979]
[84]
Puupponen-Pimiä, R.; Seppänen-Laakso, T.; Kankainen, M.; Maukonen, J.; Törrönen, R.; Kolehmainen, M.; Leppänen, T.; Moilanen, E.; Nohynek, L.; Aura, A.M.; Poutanen, K.; Tómas-Barberán, F.A.; Espín, J.C.; Oksman-Caldentey, K.M. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol. Nutr. Food Res., 2013, 57(12), 2258-2263.
[http://dx.doi.org/10.1002/mnfr.201300280] [PMID: 23934737]
[85]
Rebello, C.J.; Burton, J.; Heiman, M.; Greenway, F.L. Gastrointestinal microbiome modulator improves glucose tolerance in overweight and obese subjects: a randomized controlled pilot trial. J. Diabetes Complications, 2015, 29(8), 1272-1276.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.08.023] [PMID: 26424589]
[86]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[87]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A. dos S.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomedicine, 2014, 9, 1-15.
[http://dx.doi.org/10.2147/IJN.S52634] [PMID: 24363556]
[88]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[89]
Beconcini, D.; Fabiano, A.; Di Stefano, R.; Macedo, M.H.; Felice, F.; Zambito, Y.; Sarmento, B. Cherry extract from Prunus avium L. to improve the resistance of endothelial cells to oxidative stress: Mucoadhesive chitosan vs. poly (lactic- co -glycolic acid) nanoparticles. Int. J. Mol. Sci., 2019, 20(7), 1759.
[http://dx.doi.org/10.3390/ijms20071759] [PMID: 30974730]
[90]
Pereira, M.C.; Oliveira, D.A.; Hill, L.E.; Zambiazi, R.C.; Borges, C.D.; Vizzotto, M.; Mertens-Talcott, S.; Talcott, S.; Gomes, C.L.E. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem., 2018, 240, 396-404.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.144] [PMID: 28946289]
[91]
Fatma, S.; Talegaonkar, S.; Iqbal, Z.; Panda, A.K.; Negi, L.M.; Goswami, D.G.; Tariq, M. Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: an in vitro, ex vivo and in vivo investigations. Drug Deliv., 2016, 23(2), 500-511.
[http://dx.doi.org/10.3109/10717544.2014.923956] [PMID: 24937381]
[92]
Pohlmann, A.R.; Fonseca, F.N.; Paese, K.; Detoni, C.B.; Coradini, K.; Beck, R.C.; Guterres, S.S. Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin. Drug Deliv., 2013, 10(5), 623-638.
[http://dx.doi.org/10.1517/17425247.2013.769956] [PMID: 23387432]
[93]
Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm., 2008, 70(3), 735-740.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[94]
Pulicharla, R.; Marques, C.; Das, R.K.; Rouissi, T.; Brar, S.K. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation. Int. J. Biol. Macromol., 2016, 88, 171-178.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.036] [PMID: 27005769]
[95]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[96]
Weiss-Angeli, V.; Bourgeois, S.; Pelletier, J.; Guterres, S.S.; Fessi, H.; Bolzinger, M.A. Development of an original method to study drug release from polymeric nanocapsules in the skin. J. Pharm. Pharmacol., 2010, 62(1), 35-45.
[http://dx.doi.org/10.1211/jpp.62.01.0003] [PMID: 20722997]
[97]
Leonardi, A.; Bucolo, C.; Romano, G.L.; Platania, C.B.M.; Drago, F.; Puglisi, G.; Pignatello, R. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int. J. Pharm., 2014, 470(1-2), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.061] [PMID: 24792979]
[98]
Araújo, F.; Shrestha, N.; Granja, P.L.; Hirvonen, J.; Santos, H.A.; Sarmento, B. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin. Drug Metab. Toxicol., 2015, 11(3), 381-393.
[http://dx.doi.org/10.1517/17425255.2015.992781] [PMID: 25495133]
[99]
Fonte, P.; Araújo, F.; Reis, S.; Sarmento, B.; Reis, S.; Ph, D.; Sarmento, B. Oral insulin delivery: how far are we? J. Diabetes Sci. Technol., 2013, 7(2), 520-531.
[http://dx.doi.org/10.1177/193229681300700228] [PMID: 23567010]
[100]
du Preez, R.; Pahl, J.; Arora, M.; Ravi Kumar, M.N.V.; Brown, L.; Panchal, S.K. Low-dose curcumin nanoparticles normalise blood pressure in male wistar rats with diet-induced metabolic syndrome. Nutrients, 2019, 11(7), E1542.
[http://dx.doi.org/10.3390/nu11071542] [PMID: 31288419]
[101]
Ohno, M.; Nishida, A.; Sugitani, Y.; Nishino, K.; Inatomi, O.; Sugimoto, M.; Kawahara, M.; Andoh, A. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One, 2017, 12(10), e0185999.
[http://dx.doi.org/10.1371/journal.pone.0185999] [PMID: 28985227]
[102]
Madureira, A.R.; Nunes, S.; Campos, D.A.; Fernandes, J.C.; Marques, C.; Zuzarte, M.; Gullón, B.; Rodríguez-Alcalá, L.M.; Calhau, C.; Sarmento, B.; Gomes, A.M.; Pintado, M.M.; Reis, F. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches. Int. J. Nanomedicine, 2016, 11, 3621-3640.
[http://dx.doi.org/10.2147/IJN.S104623] [PMID: 27536103]
[103]
Chaplin, A.; Gao, H.; Asase, C.; Rengasamy, P.; Park, B.; Skander, D.; Bebek, G.; Rajagopalan, S.; Maiseyeu, A. Systemically-delivered biodegradable PLGA alters gut microbiota and induces transcriptomic reprogramming in the liver in an obesity mouse model. Sci. Rep., 2020, 10(1), 1-16.
[http://dx.doi.org/10.1038/s41598-020-69745-x] [PMID: 31913322]
[104]
Xu, Y.; Mao, H.; Yang, C.; Du, H.; Wang, H.; Tu, J. Effects of chitosan nanoparticle supplementation on growth performance, humoral immunity, gut microbiota and immune responses after lipopolysaccharide challenge in weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl.), 2020, 104(2), 597-605.
[http://dx.doi.org/10.1111/jpn.13283] [PMID: 31891214]
[105]
Madureira, A.R.; Campos, D.; Gullon, B.; Marques, C.; Rodríguez-Alcalá, L.M.; Calhau, C.; Alonso, J.L.; Sarmento, B.; Gomes, A.M.; Pintado, M. Fermentation of bioactive solid lipid nanoparticles by human gut microflora. Food Funct., 2016, 7(1), 516-529.
[http://dx.doi.org/10.1039/C5FO01004G] [PMID: 26606879]
[106]
Seabra, C.L.; Nunes, C.; Brás, M.; Gomez-Lazaro, M.; Reis, C.A.; Gonçalves, I.C.; Reis, S.; Martins, M.C.L. Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. Eur. J. Pharm. Biopharm., 2018, 127, 378-386.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.030] [PMID: 29524597]
[107]
Madureira, A.R.; Pereira, A.; Pintado, M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym., 2015, 130, 429-439.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.030] [PMID: 26076644]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy