Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Modeling Study for the Evaluation of Natural Compounds as Potential Lanosterol 14α-Demethylase Inhibitors

Author(s): Nidhi Rani*, Randhir Singh and Praveen Kumar

Volume 19, Issue 5, 2022

Page: [459 - 471] Pages: 13

DOI: 10.2174/1570180818666211027114007

Price: $65

Abstract

Background: Candida albicans is one of the most important causes of fatal fungal infections. Ergosterol, the main sterol in the fungal cell membrane, is the resultant product of Lanosterol in the presence of the enzyme Lanosterolα-demethylase (Cytochrome P450DM). This enzyme is the target enzyme of azole antifungal agents.

Aim: To evaluate the antifungal potency of some of the natural compounds via molecular modeling and Absorption, Distribution, Metabolism and Excretion (ADME) study.

Methods: The study involved the selection and modeling of the target enzyme, followed by the refinement of the model using molecular dynamic simulation. The modelled structure of the enzyme was validated using the Ramachandran plot and Sequence determination technique. A series of natural compounds was evaluated for cytochrome P450 inhibitory activity using molecular docking studies. The structures of compounds were prepared using a Chem sketch, and molecular docking was performed using Molergo Virtual Docker (MVD) program.

Results: The docking study indicated that all the natural compounds have interactivity with protein residue of 14α-demethylase, and the heme prosthetic group and water molecules are present at the active site. The data were also correlated with the synthetic compounds that were experimentally inactive against the fungus and had a low docking score. The compounds with a high dock score were further screened for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile, and it was predicted that these compounds can be used as lead with a good ADME profile and low toxicity.

Conclusion: The natural compound, i.e., curcumin, can easily be used further for lead optimization.

Keywords: Antifungal agents, candida P450DM, lanosterol 14α-demethylase, natural compounds, molecular docking, molecular modeling

« Previous
Graphical Abstract

[1]
Hay, R.J. Fungal infections. Clin. Dermatol., 2006, 24(3), 201-212.
[http://dx.doi.org/10.1016/j.clindermatol.2005.11.011] [PMID: 16714201]
[2]
Menozzi, G.; Merello, L.; Fossa, P.; Schenone, S.; Ranise, A.; Mosti, L.; Bondavalli, F.; Loddo, R.; Murgioni, C.; Mascia, V.; La Colla, P.; Tamburini, E. Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles. Bioorg. Med. Chem., 2004, 12(20), 5465-5483.
[http://dx.doi.org/10.1016/j.bmc.2004.07.029] [PMID: 15388173]
[3]
(a) Gupta, G.K.; Rani, N.; Kumar, V. Microwave assisted synthesis of imidazoles-A review. Mini-review Org. Chem, 2012, 9, 270-284.
(b) Rani, N.; Sharma, A.; Singh, R. Trisubstituted imidazole synthesis: A review. Mini Rev. Org. Chem., 2015, 12(1), 34-65.
[http://dx.doi.org/10.2174/1570193X11666141028235010]
[4]
Arif, T.; Bhosale, J.D.; Kumar, N.; Mandal, T.K.; Bendre, R.S.; Lavekar, G.S.; Dabur, R. Natural products-antifungal agents derived from plants. J. Asian Nat. Prod. Res., 2009, 11(7), 621-638.
[http://dx.doi.org/10.1080/10286020902942350] [PMID: 20183299]
[5]
Fromtling, R.A. Overview of medically important antifungal azole derivatives. Clin. Microbiol. Rev., 1988, 1(2), 187-217.
[http://dx.doi.org/10.1128/CMR.1.2.187] [PMID: 3069196]
[6]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[7]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[8]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717-42720.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[9]
Mishra, S. Dahima, R. In-vitro ADME studies of TUG891, a GPR120 inhibitor using Swiss ADME predictor. J. Drug Deliv. Ther., 2019, 9(2), 266-369.
[10]
Rani, N.; Sharma, A.; Gupta, G.K.; Singh, R. Imidazoles as potential antifungal agents: a review. Mini Rev. Med. Chem., 2013, 13(11), 1626-1655.
[http://dx.doi.org/10.2174/13895575113139990069] [PMID: 23815583]
[11]
Rani, N.; Sharma, A.; Singh, R. Imidazoles as promising scaffold for antibacterial activity: A review. Mini Rev. Med. Chem., 2013, 13(11), 1812-1835.
[http://dx.doi.org/10.2174/13895575113136660091] [PMID: 23815583]
[12]
(a) Rani, N.; Singh, R. Molecular modeling study of fluorosubstituted imidazole derivatives as 14α-demethylase inhibitors. Int. J. Drug Res. Tech., 2018, 7(7), 297-317.
(b) Rani, N.; Kumar, P.; Singh, R.; Sharma, A. Molecular Docking evaluation of imidazole analogues as potent C. albicans 14α-demethylase inhibitors. Curr. Computeraided Drug Des., 2015, 11(1), 8-20.
[http://dx.doi.org/10.2174/1573409911666150617113645] [PMID: 26081558]
[13]
(a) Rani, N.; Singh, R. Molecular modeling investigation of some new 2-mercaptoimidazoles. Curr. Computeraided Drug Des 2017, 13(1), 48-56.
[http://dx.doi.org/10.2174/1573409912666160915154939] [PMID: 27632987]
(b) Rani, N.; Kumar, P.; Singh, R. Synthesis, molecular docking and biological evaluation of 2-mercaptoimidazoles using solid phase synthesis. Comb. Chem. High Throughput Screen., 2019, 22(2), 89-96.
[http://dx.doi.org/10.2174/1386207322666190425150818] [PMID: 31020935]
[14]
(a) Rani, N.; Singh, R. Design, synthesis, antimicrobial evaluation and molecular modeling study of new 2-mercaptoimidazoles (Series- III). Lett. Drug Des. Discov. 2019, 16(5), 512-521.
[http://dx.doi.org/10.2174/1570180815666181015144431]
(b) Rani, N.; Singh, R. Molecular modeling studies of 1,4-diaryl-2- mercaptoimidazole derivatives for antimicrobial potency. Curr. Computeraided Drug Des. 2019, 15(5), 409-420.
[http://dx.doi.org/10.2174/1573409915666181219124956] [PMID: 30569875]
(c) Rani, N.; Kumar, P.; Singh, R. Molecular modeling studies of halogenated imidazoles against 14α- demethylase from Candida Albicans for treating fungal infections. Infect. Disord. Drug Targets, 2020, 20(2), 208-222.
[http://dx.doi.org/10.2174/1871526519666181130101054] [PMID: 30499421]
[15]
Varoli, L.; Burnelli, S.; Garuti, L.; Vitali, B. Synthesis and antimicrobial activity of new diazoimidazole derivatives containing an N-acylpyrrolidine ring. Farmaco, 2001, 56(11), 885-890.
[http://dx.doi.org/10.1016/S0014-827X(01)01154-5] [PMID: 11765041]
[16]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[17]
Pavesi, C.; Banks, L.A.; Hudaib, T. Antifungal and antibacterial activities of eugenol and non-polar extract of Syzygiumaromaticum L. J Pharma Sci Res. 2018, 10(2), 337-339.
[18]
Moujir, L.; Arajou, L.; Llanos, G.; Jimenez, I.; Bazzocchi, I. Evaluation of withafarein-A and analogues as antibacterial agents: Structure activity relationship study. Planta Med., 2014, 8(16), 132-149.
[http://dx.doi.org/10.1055s/0034-139496]
[19]
Xie, Y.; Liu, X.; Zhou, P. In vitro antifungal effects of berberine against Candida spp. In planktonic and biofilm conditions. Drug Des. Devel. Ther., 2020, 14, 87-101.
[http://dx.doi.org/10.2147/DDDT.S230857] [PMID: 32021094]
[20]
Manap, A.S.A.; Phuna, Z.X. In-vitro evaluationofnanoemulsion of curcumin, piperine and Tualang Honey as antifungal agents for Candida species. J App. Biotech. Reprts., 2020, 7(3), 19-198.
[21]
Khodavandi, A.; Alizadeh, F.; Harmal, N.S.; Sidik, S.M.; Othman, F.; Sekawi, Z.; Jahromi, M.A.F.; Ng, K.P.; Chong, P.P. Comparison between efficacy of allicin and fluconazole against Candida albicans in vitro and in a systemic candidiasis mouse model. FEMS Micro., 2011, 315(2), 87-93.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02170.x] [PMID: 21204918]
[22]
Carrero, S.; Romero, H.; Apitz-Castro, R. In vitro inhibitory effect of ajoene on Candida isolates recovered from vaginal discharges. Rev. Iberoam. Micol., 2009, 26(3), 189-193.
[http://dx.doi.org/10.1016/j.riam.2009.02.002] [PMID: 19635444]
[23]
Kumar, D. Ayesha, Jha, M.; Gautam, P.; Joshi, H.; Kumar, N. A recent report on “Plants with Anti-Candida Properties”. Int. J. Curr. Res. Rev., 2020, 12(18), 25-34.
[http://dx.doi.org/10.31782/IJCRR.2020.12186]
[24]
Ai, H.; Kang, Y.; Cao, Y.; Zheng, C. Antifungal properties and chemical analysis of essential oil from Vitex negundo seeds. Br. J. Pharm. Res., 2014, 4(5), 541-548.
[http://dx.doi.org/10.9734/BJPR/2014/7079]
[25]
Caltrider, P.G. Protoanemonin. In: Mechanism of Action. Antibiotics, vol 1; Gottlieb, D.; Shaw, P.D., Eds.; Springer: Berlin, Heidelberg, , 1967; pp. 671-673.
[http://dx.doi.org/10.1007/978-3-642-46051-7-55]
[26]
Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the antifungal activity of Menthax piperita (Laminaceae) of pancalieri (Turin, Italy) essential oil and its synergistic interaction with azoles. Molecules, 2019, 24, 3148.
[http://dx.doi.org/10.3390/molecules24173148]
[27]
Lima, I.G.; Pereira, F.; Oliveira, W.A.; Lima, E.O.; Menezes, A.; Cunha, F.A.; Diniz, M.F.F.M. Antifungal activity and mode of action of carvacrol against Candida albicans strains. J. Essent. Oil Res., 2013, 25, 138-142.
[http://dx.doi.org/10.1080/10412905.2012.754728]
[28]
Duraipandiyan, V.; Ignacimuthu, S. Antifungal activity of rhein isolated from Cassia fistula L. flower. Web Med Central Pharmacol., 2010, 1(9)
[29]
Nascimento, P.L.A. Nascimento, T.C.E.S.; Ramos, N.S.M.; Silva, G.R. Gomes, J.E.G.; Falco, R.E.A.; Moreira, K.A.; Porto, A.L.F.; Silva, T.M.S. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules, 2014, 19, 5434-5447.
[http://dx.doi.org/10.3390/molecules19045434] [PMID: 24879587]
[30]
Dash, B.K.; Faruquee, H.M.; Biswas, S.K.; Alam, M.K.; Sisir, S.M.; Prodhan, U.K. Antibacterial and antifungal activities of several extracts of CentellaasiaticaL. Against some human pathogenic microbes. Life sci. med. Res.,, 2011, 1-5.
[31]
Li, Z.J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.G.; Aibai, S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res., 2017, 31(7), 1039-1045.
[http://dx.doi.org/10.1002/ptr.5823] [PMID: 28524381]
[32]
Ateba, S.B.; Mvondo, M.A.; Dijogue, S.; Zingue, S. Krenn, L.; Njamen, D. A pharmacological overview of alpiumisoflavone, a natural flavanoid. Front. Pharmacol., 2019, 10, 952-971.
[http://dx.doi.org/10.3389/fphar.2019.00952] [PMID: 31551770]
[33]
Sytar, O.; Švedienė, J.; Ložienė, K.; Paškevičius, A.; Kosyan, A.; Taran, N. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm. Biol., 2016, 54(12), 3121-3125.
[http://dx.doi.org/10.1080/13880209.2016.1211716] [PMID: 27564138]
[34]
Maurice, H.B.; Tuarira, E.; Mwambete, K. Virtual high screening throughput and design of 14α-lanosterol demethylase inhibitors against Mycobacterium tuberculosis. Afr. J. Biotechnol., 2009, 8, 3072-3078.
[35]
Ji, H.; Zhang, W.; Zhou, Y.; Zhang, M.; Zhu, J.; Song, Y.; Lü, J.; Zhu, J. A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interaction with azole antifungals. J. Med. Chem., 2000, 43(13), 2493-2505.
[http://dx.doi.org/10.1021/jm990589g] [PMID: 10891108]

© 2024 Bentham Science Publishers | Privacy Policy