Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Possible Effect of Astaxanthin on Obesity-related Increased COVID-19 Infection Morbidity and Mortality

Author(s): Elif Didem Örs*, Şenay Burçin Alkan and Abdullah Öksüz *

Volume 18, Issue 3, 2022

Published on: 05 January, 2022

Page: [265 - 273] Pages: 9

DOI: 10.2174/1573401317666211011105732

Price: $65

Abstract

Obesity is defined by the World Health Organisation (WHO) as a body mass index equal to 30 kg/m2 or greater. It is an important and escalating global public health problem. Obesity is known to cause low-grade chronic inflammation, increasing the burden of noncommunicable and possibly communicable diseases. There is considerable evidence that obesity is associated with an increased risk of contracting coronavirus disease 2019 (COVID-19) infection as well as significantly higher COVID-19 morbidity and mortality. It appears plausible that controlling the chronic systemic low-grade inflammation associated with obesity may have a positive impact on the symptoms and the prognosis of COVID-19 disease in obese patients. Astaxanthin (ASTX) is a naturally occurring carotenoid with anti-inflammatory, antioxidant, and immunomodulatory activities. As a nutraceutical agent, it is used as a preventative and a co-treatment in a number of systemic neurological, cardiovascular, and metabolic diseases. This review article will discuss the pathogenesis of COVID-19 infection and the effect of ASTX on obesity and obesity-related inflammation. The potential positive impact of ASTX anti- inflammatory properties in obese COVID-19 patients will be discussed.

Keywords: Obesity, inflammation, coronavirus disease 2019, astaxanthin, adipose tissue, Haematococcus pluvialis.

Graphical Abstract

[1]
WHO. WHO Obesity Available from: https://www.who.int/health-topics/obesity#tab=tab_1 (Accessed January 17, 2021).
[2]
World Obesity Federation. Obesity: missing the 2025 global targets 2020.
[3]
Vasileva LV, Savova MS, Amirova KM, Dinkova-Kostova AT, Georgiev MI. Obesity and NRF2-mediated cytoprotection: Where is the missing link? Pharmacol Res 2020; 156: 104760.
[http://dx.doi.org/10.1016/j.phrs.2020.104760] [PMID: 32205234]
[4]
Moini J, Ahangari R, Miller C, Samsam M. Risk factors of obesity.Global health complications of obesity. USA: Elsevier 2020; pp. 29-40.
[http://dx.doi.org/10.1016/B978-0-12-819751-6.00003-7]
[5]
Kadouh HC, Acosta A. Current paradigms in the etiology of obesity. Tech Gastrointest Endosc 2017; 19(1): 2-11.
[http://dx.doi.org/10.1016/j.tgie.2016.12.001]
[6]
Karczewski J, Śledzińska E, Baturo A, et al. Obesity and inflammation. Eur Cytokine Netw 2018; 29(3): 83-94.
[http://dx.doi.org/10.1684/ecn.2018.0415] [PMID: 30547890]
[7]
Botchlett R, Woo SL, Liu M, et al. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233(3): R145-71.
[http://dx.doi.org/10.1530/JOE-16-0580] [PMID: 28400405]
[8]
WHO. Coronavirus disease (COVID-19) 2020 Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19 (Accessed January 20, 2021).
[9]
Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[10]
Qu J-M, Cao B, Chen R-C. Clinical features of COVID-19. In: COVID-19. USA: Elsevier 2021; pp. 13-39.
[http://dx.doi.org/10.1016/B978-0-12-824003-8.00003-6]
[11]
de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the oxford royal college of general practitioners research and surveillance centre primary care network: A cross-sectional study. Lancet Infect Dis 2020; 20(9): 1034-42.
[http://dx.doi.org/10.1016/S1473-3099(20)30371-6] [PMID: 32422204]
[12]
Finer N, Garnett SP, Bruun JM. COVID-19 and obesity. Clin Obes 2020; 10(3): e12365.
[http://dx.doi.org/10.1111/cob.12365] [PMID: 32342637]
[13]
Huang Y, Lu Y, Huang YM, et al. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020; 113: 154378.
[http://dx.doi.org/10.1016/j.metabol.2020.154378] [PMID: 33002478]
[14]
Chu Y, Yang J, Shi J, Zhang P, Wang X. Obesity is associated with increased severity of disease in COVID-19 pneumonia: A systematic review and meta-analysis. Eur J Med Res 2020; 25(1): 64.
[http://dx.doi.org/10.1186/s40001-020-00464-9] [PMID: 33267871]
[15]
Kalligeros M, Shehadeh F, Mylona EK, et al. Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity (Silver Spring) 2020; 28(7): 1200-4.
[http://dx.doi.org/10.1002/oby.22859] [PMID: 32352637]
[16]
Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev 2020; 21(11): e13128.
[http://dx.doi.org/10.1111/obr.13128] [PMID: 32845580]
[17]
Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: An updated systematic review and meta-analysis. J Med Virol 2021; 93(5): 2662-74.
[http://dx.doi.org/10.1002/jmv.26677] [PMID: 33200825]
[18]
Tchang BG, Saunders KH, Igel LI. Best practices in the management of overweight and obesity. Med Clin North Am 2021; 105(1): 149-74.
[http://dx.doi.org/10.1016/j.mcna.2020.08.018] [PMID: 33246516]
[19]
Jayarathne S, Koboziev I, Park O-H, Oldewage-Theron W, Shen C-L, Moustaid-Moussa N. Anti-ınflammatory and anti-obesity properties of food bioactive components: Effects on adipose tissue. Prev Nutr Food Sci 2017; 22(4): 251-62.
[http://dx.doi.org/10.3746/pnf.2017.22.4.251] [PMID: 29333376]
[20]
Abdali D, Samson SE, Grover AK. How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract 2015; 24(3): 201-15.
[http://dx.doi.org/10.1159/000375305] [PMID: 25791371]
[21]
Tun S, Spainhower CJ, Cottrill CL, et al. Therapeutic efficacy of antioxidants in ameliorating obesity phenotype and associated comorbidities. Front Pharmacol 2020; 11: 1234.
[http://dx.doi.org/10.3389/fphar.2020.01234] [PMID: 32903449]
[22]
Chang MX, Xiong F. Astaxanthin and its effects in ınflammatory responses and ınflammation-associated diseases: Recent advances and future directions. Molecules 2020; 25(22): E5342.
[http://dx.doi.org/10.3390/molecules25225342] [PMID: 33207669]
[23]
Donoso A, González-Durán J, Muñoz AA, González PA, Agurto-Muñoz C. "Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials". Pharmacol Res 2021; 166: 105479.
[http://dx.doi.org/10.1016/j.phrs.2021.105479] [PMID: 33549728]
[24]
Wu D, Xu H, Chen J, Zhang L. Effects of astaxanthin supplementation on oxidative stress. Int J Vitam Nutr Res 2020; 90(1-2): 179-94.
[http://dx.doi.org/10.1024/0300-9831/a000497] [PMID: 30982442]
[25]
Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother 2020; 132: 110886.
[http://dx.doi.org/10.1016/j.biopha.2020.110886] [PMID: 33113418]
[26]
Brotosudarmo THP, Limantara L, Setiyono E. Heriyanto. Structures of Astaxanthin and their consequences for therapeutic application. Int J Food Sci 2020; 2020: 2156582.
[http://dx.doi.org/10.1155/2020/2156582] [PMID: 32775406]
[27]
Ng QX, De Deyn MLZQ, Loke W, Foo NX, Chan HW, Yeo WS. Effects of astaxanthin supplementation on skin health: A systematic review of clinical studies. J Diet Suppl 2020; 18(2): 169-82.
[http://dx.doi.org/10.1080/19390211.2020.1739187] [PMID: 32202443]
[28]
Yuan JP, Peng J, Yin K, Wang JH. Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol Nutr Food Res 2011; 55(1): 150-65.
[http://dx.doi.org/10.1002/mnfr.201000414] [PMID: 21207519]
[29]
Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs 2014; 12(1): 128-52.
[http://dx.doi.org/10.3390/md12010128] [PMID: 24402174]
[30]
Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93(1): 250-6.
[http://dx.doi.org/10.1002/jmv.26232] [PMID: 32592501]
[31]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[32]
Klimczak A. Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19. World J Stem Cells 2020; 12(9): 1013-22.
[http://dx.doi.org/10.4252/wjsc.v12.i9.1013] [PMID: 33033561]
[33]
Saghir SAM, AlGabri NA, Alagawany MM, et al. Chloroquine and hydroxychloroquine for the prevention and treatment of COVID-19: A fiction, hope or hype? An updated review. Ther Clin Risk Manag 2021; 17: 371-87.
[http://dx.doi.org/10.2147/TCRM.S301817] [PMID: 33953559]
[34]
Chandra A, Chakraborty U, Ghosh S, Dasgupta S. Anticoagulation in COVID-19: Current concepts and controversies. Postgrad Med J 2021. Epub ahead of print
[http://dx.doi.org/10.1136/postgradmedj-2021-139923] [PMID: 33850011]
[35]
Singh A, Gupta V. SARS-CoV-2 therapeutics: how far do we stand from a remedy? Pharmacol Rep 2021; 73(3): 750-68.
[http://dx.doi.org/10.1007/s43440-020-00204-0] [PMID: 33389724]
[36]
Hussman JP. Cellular and molecular pathways of COVID-19 and potential points of therapeutic intervention. Front Pharmacol 2020; 11: 1169.
[http://dx.doi.org/10.3389/fphar.2020.01169] [PMID: 32848776]
[37]
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama 2020; 323(11): 1061-9.
[38]
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[39]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[40]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2(-) mesenchymal stem cells ımproves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[41]
Zhou Y, Fu B, Zheng X, Wang D, Zhao C. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+ CD16+monocytes in severe pulmonary syndrome patients of a new coronavirus. Natl Sci Rev 2020; 7(6): 998-1002.
[http://dx.doi.org/10.1093/nsr/nwaa041]
[42]
Eguchi S, Kawai T, Scalia R, Rizzo V. Understanding angiotensin II type 1 receptor signaling in vascular pathophysiology. Hypertension 2018; 71(5): 804-10.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10266] [PMID: 29581215]
[43]
Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: Insights from the interleukin 6 family of cytokines. Immunity 2019; 50(4): 812-31.
[http://dx.doi.org/10.1016/j.immuni.2019.03.027] [PMID: 30995501]
[44]
Janiuk K, Jabłońska E, Garley M. Significance of NETs formation in COVID-19. Cells 2021; 10(1): 151.
[http://dx.doi.org/10.3390/cells10010151] [PMID: 33466589]
[45]
Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: Systematic review and meta-analysis. Eur J Clin Invest 2021; 51(1): e13429.
[http://dx.doi.org/10.1111/eci.13429] [PMID: 33058143]
[46]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[47]
Ikeuchi M, Koyama T, Takahashi J, Yazawa K. Effects of astaxanthin in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 2007; 71(4): 893-9.
[http://dx.doi.org/10.1271/bbb.60521] [PMID: 17420580]
[48]
Tsai MC, Huang SC, Chang WT, Chen SC, Hsu CL. Effect of astaxanthin on the İnhibition of lipid accumulation in 3T3-L1 adipocytes via modulation of lipogenesis and fatty acid transport pathways. Molecules 2020; 25(16): E3598.
[http://dx.doi.org/10.3390/molecules25163598] [PMID: 32784687]
[49]
Wang J, Liu S, Wang H, et al. Xanthophyllomyces dendrorhous-derived astaxanthin regulates lipid metabolism and gut microbiota in obese mice ınduced by a high-fat diet. Mar Drugs 2019; 17(6): E337.
[http://dx.doi.org/10.3390/md17060337] [PMID: 31195737]
[50]
Choi HD, Youn YK, Shin WG. Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects. Plant Foods Hum Nutr 2011; 66(4): 363-9.
[http://dx.doi.org/10.1007/s11130-011-0258-9] [PMID: 21964877]
[51]
Choi HD, Kim JH, Chang MJ, Kyu-Youn Y, Shin WG. Effects of astaxanthin on oxidative stress in overweight and obese adults. Phytother Res 2011; 25(12): 1813-8.
[http://dx.doi.org/10.1002/ptr.3494] [PMID: 21480416]
[52]
Xia W, Tang N, Kord-Varkaneh H, et al. The effects of astaxanthin supplementation on obesity, blood pressure, CRP, glycemic biomarkers, and lipid profile: A meta-analysis of randomized controlled trials. Pharmacol Res 2020; 161: 105113.
[http://dx.doi.org/10.1016/j.phrs.2020.105113] [PMID: 32755613]
[53]
Kim B, Farruggia C, Ku CS, et al. Astaxanthin inhibits inflammation and fibrosis in the liver and adipose tissue of mouse models of diet-induced obesity and nonalcoholic steatohepatitis. J Nutr Biochem 2017; 43: 27-35.
[http://dx.doi.org/10.1016/j.jnutbio.2016.01.006] [PMID: 28193580]
[54]
Farruggia C, Kim MB, Bae M, et al. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J Nutr Biochem 2018; 62: 202-9.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.005] [PMID: 30308382]
[55]
Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond) 2010; 7: 18.
[http://dx.doi.org/10.1186/1743-7075-7-18] [PMID: 20205737]
[56]
Brendler T, Williamson EM. Astaxanthin: How much is too much? A safety review. Phytother Res 2019; 33(12): 3090-111.
[http://dx.doi.org/10.1002/ptr.6514] [PMID: 31788888]
[57]
Fakhri S, Nouri Z, Moradi SZ, Farzaei MH. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytother Res 2020; 34(11): 2790-2.
[http://dx.doi.org/10.1002/ptr.6797] [PMID: 32754955]
[58]
Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M. Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway. Eur J Pain 2019; 23(4): 750-64.
[http://dx.doi.org/10.1002/ejp.1342] [PMID: 30427581]
[59]
Heidari Khoei H, Fakhri S, Parvardeh S, Shams Mofarahe Z, Baninameh Z, Vardiani M. Astaxanthin prevents the methotrexate-induced reproductive toxicity by targeting oxidative stress in male mice. Toxin Rev 2019; 38(3): 248-54.
[http://dx.doi.org/10.1080/15569543.2018.1452263]
[60]
Nishida Y, Yamashita E, Miki W. Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Sci 2007; 11: 16-20.
[61]
Augusti PR, Quatrin A, Somacal S, et al. Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits. J Clin Biochem Nutr 2012; 51(1): 42-9.
[http://dx.doi.org/10.3164/jcbn.11-74] [PMID: 22798712]
[62]
Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 2006; 69(3): 443-9.
[http://dx.doi.org/10.1021/np050354+] [PMID: 16562856]
[63]
Fassett RG, Coombes JS. Astaxanthin: A potential therapeutic agent in cardiovascular disease. Mar Drugs 2011; 9(3): 447-65.
[http://dx.doi.org/10.3390/md9030447] [PMID: 21556169]
[64]
Landon R, Gueguen V, Petite H, Letourneur D, Pavon-Djavid G, Anagnostou F. Impact of astaxanthin on diabetes pathogenesis and chronic complications. Mar Drugs 2020; 18(7): 357.
[http://dx.doi.org/10.3390/md18070357] [PMID: 32660119]
[65]
Zhou L, Gao M, Xiao Z, Zhang J, Li X, Wang A. Protective effect of astaxanthin against multiple organ injury in a rat model of sepsis. J Surg Res 2015; 195(2): 559-67.
[http://dx.doi.org/10.1016/j.jss.2015.02.026] [PMID: 25770740]
[66]
Cai X, Chen Y, Xie X, Yao D, Ding C, Chen M. Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. Am J Transl Res 2019; 11(3): 1884-94.
[PMID: 30972212]
[67]
Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A. Safety of astaxanthin for its use as a novel food in food supplements. EFSA J 2020; 18(2): e05993.
[68]
Cao W, Li T. COVID-19: Towards understanding of pathogenesis. Cell Res 2020; 30(5): 367-9.
[http://dx.doi.org/10.1038/s41422-020-0327-4] [PMID: 32346073]
[69]
Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020; 368(6490): 473-4.
[http://dx.doi.org/10.1126/science.abb8925] [PMID: 32303591]
[70]
Jyonouchi H, Sun S, Gross M. Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: Astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr Cancer 1995; 23(2): 171-83.
[http://dx.doi.org/10.1080/01635589509514373] [PMID: 7644386]
[71]
Liu Y, Zhang C, Huang F, Yang Y, Wang F, Yuan J, et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl Sci Rev 2020; 7(6): 1003-11.
[http://dx.doi.org/10.1093/nsr/nwaa037]
[72]
Chew BP, Wong MW, Park JS, Wong TS. Dietary beta-carotene and astaxanthin but not canthaxanthin stimulate splenocyte function in mice. Anticancer Res 1999; 19(6B): 5223-7.
[http://dx.doi.org/10697539]
[73]
Okai Y, Higashi-Okai K. Possible immunomodulating activities of carotenoids in in vitro cell culture experiments. Int J Immunopharmacol 1996; 18(12): 753-8.
[http://dx.doi.org/10.1016/S0192-0561(97)85558-0] [PMID: 9172019]
[74]
Bi J, Cui R, Li Z, Liu C, Zhang J. Astaxanthin alleviated acute lung injury by inhibiting oxidative/nitrative stress and the inflammatory response in mice. Biomed Pharmacother 2017; 95: 974-82.
[http://dx.doi.org/10.1016/j.biopha.2017.09.012] [PMID: 28915539]
[75]
Wu J. Tackle the free radicals damage in COVID-19. Nitric Oxide 2020; 102: 39-41.
[http://dx.doi.org/10.1016/j.niox.2020.06.002] [PMID: 32562746]
[76]
Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses 2020; 143: 110102.
[http://dx.doi.org/10.1016/j.mehy.2020.110102] [PMID: 32721799]
[77]
Iwamoto T, Hosoda K, Hirano R, et al. Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 2000; 7(4): 216-22.
[http://dx.doi.org/10.5551/jat1994.7.216] [PMID: 11521685]
[78]
Xu W, Wang M, Cui G, et al. Astaxanthin protects OTA-induced lung injury in mice through the Nrf2/NF-κB pathway. Toxins (Basel) 2019; 11(9): E540.
[http://dx.doi.org/10.3390/toxins11090540] [PMID: 31533259]
[79]
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020; 5(1): 84.
[http://dx.doi.org/10.1038/s41392-020-0191-1] [PMID: 32467561]
[80]
Zhang ZW, Xu XC, Liu T, Yuan S. Mitochondrion-permeable antioxidants to treat ROS-burst-mediated acute diseases. Oxid Med Cell Longev 2016; 2016: 6859523.
[http://dx.doi.org/10.1155/2016/6859523] [PMID: 26649144]
[81]
Hirano T, Murakami M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity 2020; 52(5): 731-3.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[82]
Zuluaga M, Gueguen V, Letourneur D, Pavon-Djavid G. Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury. Chem Biol Interact 2018; 279: 145-58.
[http://dx.doi.org/10.1016/j.cbi.2017.11.012] [PMID: 29179950]
[83]
Li J, Wang F, Xia Y, et al. Astaxanthin pretreatment attenuates hepatic ıschemia reperfusion-ınduced apoptosis and autophagy via the ROS/MAPK pathway in mice. Mar Drugs 2015; 13(6): 3368-87.
[http://dx.doi.org/10.3390/md13063368] [PMID: 26023842]
[84]
Roohbakhsh A, Karimi G, Iranshahi M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother 2017; 91: 31-42.
[http://dx.doi.org/10.1016/j.biopha.2017.04.057] [PMID: 28445831]
[85]
Shenoy S. Coronavirus (Covid-19) sepsis: Revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm Res 2020; 69(11): 1077-85.
[http://dx.doi.org/10.1007/s00011-020-01389-z] [PMID: 32767095]
[86]
Shen M, Chen K, Lu J, Cheng P, Xu L, Dai W. Protective effect of astaxanthin on liver fibrosis through modulation of TGF-1 expression and autophagy. Mediators Inflamm 2014 2014.
[87]
Miyawaki H, Takahashi J, Tsukahara H, Takehara I. Effects of astaxanthin on human blood rheology. J Clin Biochem Nutr 2008; 43(2): 69-74.
[http://dx.doi.org/10.3164/jcbn.2008048] [PMID: 18818755]
[88]
Zhang J, Wang QZ, Zhao SH, et al. Astaxanthin attenuated pressure overload-induced cardiac dysfunction and myocardial fibrosis: Partially by activating SIRT1. Biochim Biophys Acta, Gen Subj 2017; 1861(7): 1715-28.
[http://dx.doi.org/10.1016/j.bbagen.2017.03.007] [PMID: 28300638]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy