Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Multicomponent Reactions in the Synthesis of Antiviral Compounds

Author(s): Lorenzo Botta, Silvia Cesarini, Claudio Zippilli, Bruno Mattia Bizzarri, Angelica Fanelli and Raffaele Saladino*

Volume 29, Issue 12, 2022

Published on: 11 January, 2022

Page: [2013 - 2050] Pages: 38

DOI: 10.2174/0929867328666211007121837

Price: $65

Abstract

Background: Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity.

Objective: Multicomponent reactions are considered green processes with a high atom economy. In addition, they present advantages compared to the classic synthetic methods, such as high efficiency and low waste production.

Methods: In these reactions, two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials.

Results: The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target.

Conclusion: Multicomponent reactions can be applied to all the stages of the drug discovery and development process, making them very useful in the search for new agents active against emerging (viral) pathogens.

Keywords: Multicomponent reactions, antiviral activity, DNA/RNA viruses, passerini, ugi, strecker, hantzsch, biginelli.

[1]
Sheldon, R.A. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain. Chem. Eng., 2018, 6(1), 32-48.
[http://dx.doi.org/10.1021/acssuschemeng.7b03505]
[2]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[3]
Trost, B.M. Atom economy a challenge for organic synthesis: homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl., 1995, 34(3), 259-281.
[http://dx.doi.org/10.1002/anie.199502591]
[4]
Simon, M-O.; Li, C-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[5]
Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Photoinduced multicomponent reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(50), 15476-15484.
[http://dx.doi.org/10.1002/anie.201605288] [PMID: 27487327]
[6]
Laurent, A.; Gerhardt, C.F. Multicomponent reactions. Ann. Chim. Phys., 1838, 66, 181.
[7]
Laurent, A.; Gerhardt, C.F. Ueber einige stickstoffverbindungen des benzoyls. Ann. Chim. Phys., 1838, 66, 181.
[8]
Strecker, A. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper. Justus Liebigs Ann. Chem., 1850, 75(1), 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[9]
Dömling, A. The discovery of new isocyanide-based multi-component reactions. Curr. Opin. Chem. Biol., 2000, 4(3), 318-323.
[http://dx.doi.org/10.1016/S1367-5931(00)00095-8] [PMID: 10826976]
[10]
Passerini, M.; Isonitriles, I.I. Compounds with aldehydes or with ketones and monobasic organic acids. Gazz. Chim. Ital., 1921, 51, 181-189.
[11]
Ugi, I.; Meyr, R.; Fetzer, U.; Steinbr Ückner, C. Versammlungsberichte. Angew. Chem., 1959, 71, 386.
[12]
Hantzsch, A. Condensationsprodukte aus aldehydammoniak und ketonartigen verbindungen. Ber. Dtsch. Chem. Ges., 1881, 14(2), 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]
[13]
Biginelli, P. Ueber Aldehyduramide Des Acetessigäthers. Ber. Dtsch. Chem. Ges., 1891, 24(1), 1317-1319.
[http://dx.doi.org/10.1002/cber.189102401228]
[14]
Weber, L.; Wallbaum, S.; Broger, C.; Gubernator, K. Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm. Angew. Chem. Int. Ed. Engl., 1995, 34(20), 2280-2282.
[http://dx.doi.org/10.1002/anie.199522801]
[15]
Lack, O.; Weber, L. Neue reaktionen für die kombinatorische chemie. Chim. Int. J. Chem., 1996, 50, 445-447.
[16]
Rossen, K.; Pye, P.J.; DiMichele, L.M.; Volante, R.P.; Reider, P.J. An efficient asymmetric hydrogenation approach to the synthesis of the crixivan® piperazine intermediate. Tetrahedron Lett., 1998, 39(38), 6823-6826.
[http://dx.doi.org/10.1016/S0040-4039(98)01484-1]
[17]
Roldão, A.; Silva, A.C.; Mellado, M.C.M.; Alves, P.M.; Carrondo, M.J.T. 1.47 - Viruses and Virus-Like Particles in Biotechnology: Fundamentals and Applications☆. In: Comprehensive Biotechnology (Third Edition); Moo-Young, M., Ed.; Pergamon: Oxford, , 2017; pp. 633-656.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.09046-4]
[18]
Blattner, W.A. 386 - Retroviruses Other Than Human Immunodeficiency Virus. In: Goldman’s Cecil Medicine, 24th ed; Goldman, L.; Schafer, A.I., Eds.; W.B. Saunders: Philadelphia, , 2012; pp. 2136-2140.
[http://dx.doi.org/10.1016/B978-1-4377-1604-7.00386-9]
[19]
Ward, J.W.; Hinman, A.R. What Is Needed to Eliminate Hepatitis B Virus and Hepatitis C Virus as Global Health Threats. Gastroenterology, 2019, 156(2), 297-310.
[http://dx.doi.org/10.1053/j.gastro.2018.10.048] [PMID: 30391470]
[20]
Ryu, W-S. Part II. DNA Viruses.In: Molecular Virology of Human Pathogenic Viruses; Ryu, W-S., Ed.; Academic Press: Boston, 2017, pp. 83-84.https://doi.org/https://doi.org/10.1016/B978-0-12-800838-6.00043-6
[21]
Locarnini, S. Molecular Virology of Hepatitis B Virus.In: Semi. Liver Dis.,; , 2004, 24, pp. (Suppl 1)3-10.
[http://dx.doi.org/10.1055/s-2004-828672]
[22]
Stoltefuss, J.; Goldmann, S.; Krämer, T.; Schlemmer, K.H.; Niewöhner, U.; Paessens, A.; Lottmann, S.; Deres, K.; Weber, O. New dihydropyrimidine derivatives and their corresponding mesomers useful as antiviral agents. Bayer.Leverkusen, Ger. WO Pat.,; , 1999, p. 9.
[23]
Deres, K.; Schröder, C. H.; Paessens, A.; Goldmann, S.; Hacker, H. J.; Weber, O.; Krämer, T.; Niewöhner, U.; Pleiss, U.; Stoltefuss, J. .Inhibition of Hepatitis B Virus Replication by Drug-Induced Depletion of Nucleocapsids. Science (80-. ) 2003, 299(5608), 893-896.
[http://dx.doi.org/10.1126/science.1077215]
[24]
Weber, O.; Schlemmer, K-H.; Hartmann, E.; Hagelschuer, I.; Paessens, A.; Graef, E.; Deres, K.; Goldmann, S.; Niewoehner, U.; Stoltefuss, J.; Haebich, D.; Ruebsamen-Waigmann, H.; Wohlfeil, S. Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antiviral Res., 2002, 54(2), 69-78.https://doi.org/https://doi.org/10.1016/S0166-3542(01)00216-9
[http://dx.doi.org/10.1016/S0166-3542(01)00216-9] [PMID: 12062392]
[25]
Ogilvie, W.; Bailey, M.; Poupart, M-A.; Abraham, A.; Bhavsar, A.; Bonneau, P.; Bordeleau, J.; Bousquet, Y.; Chabot, C.; Duceppe, J.S.; Fazal, G.; Goulet, S.; Grand-Maître, C.; Guse, I.; Halmos, T.; Lavallée, P.; Leach, M.; Malenfant, E.; O’Meara, J.; Plante, R.; Plouffe, C.; Poirier, M.; Soucy, F.; Yoakim, C.; Déziel, R. Peptidomimetic inhibitors of the human cytomegalovirus protease. J. Med. Chem., 1997, 40(25), 4113-4135.
[http://dx.doi.org/10.1021/jm970104t] [PMID: 9406601]
[26]
Waxman, L.; Darke, P.L. The herpesvirus proteases as targets for antiviral chemotherapy. Antivir. Chem. Chemother., 2000, 11(1), 1-22.
[http://dx.doi.org/10.1177/095632020001100101] [PMID: 10693650]
[27]
Banfi, L.; Guanti, G.; Riva, R.; Basso, A.; Calcagno, E. Short synthesis of protease inhibitors via modified passerini condensation of N-Boc-α-aminoaldehydes. Tetrahedron Lett., 2002, 43(22), 4067-4069.https://doi.org/https://doi.org/10.1016/S0040-4039(02)00728-1
[http://dx.doi.org/10.1016/S0040-4039(02)00728-1]
[28]
Tong, L.; Qian, C.; Massariol, M-J.; Déziel, R.; Yoakim, C.; Lagacé, L. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nat. Struct. Biol., 1998, 5(9), 819-826.
[http://dx.doi.org/10.1038/1860] [PMID: 9731777]
[29]
Xu, P.; Lin, W.; Zou, X. Synthesis of a Peptidomimetic HCMV Protease Inhibitor Library. Synthesis; Stuttg, 2002.
[http://dx.doi.org/10.1055/s-2002-31948]
[30]
Ray, C.G.; Ryan, K.J. Sherris Medical Microbiology; McGraw-Hill Education/Medical, 2014.
[31]
Hays, J.N. Epidemics and Pandemics: Their Impacts on Human History; Abc-clio, 2005.
[32]
Torrence, P.F. Antiviral Drug Discovery for Emerging Diseases and Bioterrorism Threats; John Wiley & Sons, 2005.
[http://dx.doi.org/10.1002/0471716715]
[33]
Mahalingam, S.; Damon, I.K.; Lidbury, B.A. 25 years since the eradication of smallpox: why poxvirus research is still relevant. Trends Immunol., 2004, 25(12), 636-639.
[http://dx.doi.org/10.1016/j.it.2004.10.002] [PMID: 15530831]
[34]
Fan, X.; Zhang, X.; Zhou, L.; Keith, K.A.; Kern, E.R.; Torrence, P.F. Assembling a smallpox biodefense by interrogating 5-substituted pyrimidine nucleoside chemical space. Antiviral Res., 2006, 71(2-3), 201-205.https://doi.org/https://doi.org/10.1016/j.antiviral.2006.04.015
[http://dx.doi.org/10.1016/j.antiviral.2006.04.015] [PMID: 16759713]
[35]
Fan, X.; Zhang, X.; Zhou, L.; Keith, K.A.; Kern, E.R.; Torrence, P.F. A pyrimidine-pyrazolone nucleoside chimera with potent in vitro anti-orthopoxvirus activity. Bioorg. Med. Chem. Lett., 2006, 16(12), 3224-3228.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.043] [PMID: 16603351]
[36]
Fan, X.; Zhang, X.; Zhou, L.; Keith, K.A.; Prichard, M.N.; Kern, E.R.; Torrence, P.F. Toward orthopoxvirus countermeasures: a novel heteromorphic nucleoside of unusual structure. J. Med. Chem., 2006, 49(14), 4052-4054.
[http://dx.doi.org/10.1021/jm060404n] [PMID: 16821766]
[37]
Peyron, C.; Benhida, R.; Bories, C.; Loiseau, P.M. Synthesis and in vitro antileishmanial activity of 5-substituted-2¢-deoxyuridine derivatives. Bioorg. Chem., 2005, 33(6), 439-447.
[http://dx.doi.org/10.1016/j.bioorg.2005.07.001] [PMID: 16168460]
[38]
Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in leishmaniasis. Lancet, 2005, 366(9496), 1561-1577.
[http://dx.doi.org/10.1016/S0140-6736(05)67629-5] [PMID: 16257344]
[39]
Umesha, K.; Sarojini, B.K.; Raj, C.G.D.; Bhanuprakash, V.; Yogisharadhya, R.; Raghavendra, R.; Khan, M.T.H. In vitro and in silico biological studies of novel thiazolo [3, 2-a] pyrimidine-6-carboxylate derivatives. Med. Chem. Res., 2014, 23(1), 168-180.
[http://dx.doi.org/10.1007/s00044-013-0606-4]
[40]
Ramalingan, C.; Kwak, Y-W. Tetrachlorosilane catalyzed multicomponent one-step fusion of biopertinent pyrimidine heterocycles. Tetrahedron, 2008, 64(22), 5023-5031.
[http://dx.doi.org/10.1016/j.tet.2008.03.078]
[41]
Fan, X.; Zhang, X.; Bories, C.; Loiseau, P.M.; Torrence, P.F. The Ugi reaction in the generation of new nucleosides as potential antiviral and antileishmanial agents. Bioorg. Chem., 2007, 35(2), 121-136.
[http://dx.doi.org/10.1016/j.bioorg.2006.08.004] [PMID: 16996561]
[42]
Bizzarri, B.M.; Pieri, C.; Botta, G.; Arabuli, L.; Mosesso, P.; Cinelli, S.; Schinoppi, A.; Saladino, R. Synthesis and Antioxidant Activity of DOPA Peptidomimetics by a Novel IBX Mediated Aromatic Oxidative Functionalization. RSC Advances, 2015, 5(74), 60354-60364.
[http://dx.doi.org/10.1039/C5RA09464J]
[43]
Bizzarri, B.M.; Tortolini, S.; Rotelli, L.; Botta, G.; Saladino, R. Current advances in L-DOPA and DOPA-peptidomimetics: Chemistry, applications and biological activity. Curr. Med. Chem., 2015, 22(36), 4138-4165.
[http://dx.doi.org/10.2174/0929867322666150625095748] [PMID: 26112144]
[44]
Bizzarri, B.M.; Martini, A.; Serafini, F.; Aversa, D.; Piccinino, D.; Botta, L.; Berretta, N.; Guatteo, E.; Saladino, R. Tyrosinase mediated oxidative functionalization in the synthesis of DOPA-derived peptidomimetics with anti-parkinson activity. RSC Advances, 2017, 7(33), 20502-20509.
[http://dx.doi.org/10.1039/C7RA03326E]
[45]
Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; Ward, T.G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med., 1953, 84(3), 570-573.
[http://dx.doi.org/10.3181/00379727-84-20714] [PMID: 13134217]
[46]
Hakim, F.A.; Tleyjeh, I.M. Severe adenovirus pneumonia in immunocompetent adults: a case report and review of the literature. Eur. J. Clin. Microbiol. Infect. Dis., 2008, 27(2), 153-158.
[http://dx.doi.org/10.1007/s10096-007-0416-z] [PMID: 18030505]
[47]
Curiel, D.T.; Garver, J.R. R.I. I Overview of Adenovirus Biology. Gene Ther. Dis. Lung, 2020.
[48]
Harrach, B.; Benkö, M.; Both, G. W.; Brown, M.; Davison, A. J.; Echavarria, M.; Hess, M.; Jones, M. S.; Kajon, A.; Lehmkuhl, H. D. Virus Taxonomy.Fam. Adenoviridae Classif. Nomencl. Viruses. Ninth Rep. Int. Comm. Taxon. Viruses, 2012, 125-141.
[49]
Benkö, M.; Harrach, B. Molecular evolution of adenoviruses; Adenoviruses Model Vectors Virus-Host Interact, 2003, pp. 3-35.
[50]
Jones, M.S., II; Harrach, B.; Ganac, R.D.; Gozum, M.M.A.; Dela Cruz, W.P.; Riedel, B.; Pan, C.; Delwart, E.L.; Schnurr, D.P. New adenovirus species found in a patient presenting with gastroenteritis. J. Virol., 2007, 81(11), 5978-5984.
[http://dx.doi.org/10.1128/JVI.02650-06] [PMID: 17360747]
[51]
Tang, L.; An, J.; Xie, Z.; Dehghan, S.; Seto, D.; Xu, W.; Ji, Y. Genome and bioinformatic analysis of a HAdV-B14p1 virus isolated from a baby with pneumonia in Beijing, China. PLoS One, 2013, 8(3)e60345
[http://dx.doi.org/10.1371/journal.pone.0060345] [PMID: 23555956]
[52]
Waye, M.M.Y.; Sing, C.W. Anti-viral drugs for human adenoviruses. Pharmaceuticals, 2010, 3(10), 3343-3354.
[http://dx.doi.org/10.3390/ph3103343]
[53]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M.F. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch. Pharm. (Weinheim), 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[54]
Ghashghaei, O.; Caputo, S.; Sintes, M.; Revés, M.; Kielland, N.; Estarellas, C.; Luque, F.J.; Aviñó, A.; Eritja Casadellà, R.; Serna-Gallego, A. Multiple multicomponent reactions: Unexplored substrates, selective processes, and versatile chemotypes in biomedicine. 2018, 24, 14513- 14521.
[55]
Groebke, K.; Weber, L.; Mehlin, F. Synthesis of imidazo [1, 2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett, 1998, 1998(06), 661-663.
[http://dx.doi.org/10.1055/s-1998-1721]
[56]
Jaros, S.W.; Król, J.; Bażanów, B.; Poradowski, D.; Chrószcz, A.; Nesterov, D.S.; Kirillov, A.M.; Smoleński, P. Antiviral, antibacterial, antifungal, and cytotoxic silver(I) BioMOF assembled from 1,3,5-triaza-7-phoshaadamantane and pyromellitic acid. Molecules, 2020, 25(9), 2119.
[http://dx.doi.org/10.3390/molecules25092119] [PMID: 32369972]
[57]
Adalja, A.; Inglesby, T. Broad-spectrum antiviral agents: A crucial pandemic tool. Expert Rev. Anti Infect. Ther., 2019, 17(7), 467-470.
[http://dx.doi.org/10.1080/14787210.2019.1635009] [PMID: 31216912]
[58]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[59]
Arvin, A.; Campadelli-Fiume, G.; Mocarski, E.; Moore, P.S.; Roizman, B.; Whitley, R.; Yamanishi, K. Early viral gene expression and function-human herpesviruses: Biology, therapy, and immunoprophylaxis. 2007.
[60]
Becerra, J.C.L.; Sieber, R.; Martinetti, G.; Costa, S.T.; Meylan, P.; Bernasconi, E. Infection of the central nervous system caused by varicella zoster virus reactivation: a retrospective case series study. Int. J. Infect. Dis., 2013, 17(7), e529-e534.
[http://dx.doi.org/10.1016/j.ijid.2013.01.031] [PMID: 23566589]
[61]
Cornelissen, C.N.; Harvey, R.A.; Fisher, B.D. Microbiology; Lippincott Williams & Wilkins, 2012, Vol. 3, .
[62]
Tillieux, S.L.; Halsey, W.S.; Thomas, E.S.; Voycik, J.J.; Sathe, G.M.; Vassilev, V. Complete DNA sequences of two oka strain varicella-zoster virus genomes. J. Virol., 2008, 82(22), 11023-11044.
[http://dx.doi.org/10.1128/JVI.00777-08] [PMID: 18787000]
[63]
Holmes, S. J.; Reef, S. E.; Hadler, S. C.; Williams, W. W.; Wharton, M. Prevention of Varicella; Recommendations of the Advisory Committee on Immunization Practices. 1996.
[64]
Gagliardi, A.M.Z.; Andriolo, B.N.G.; Torloni, M.R.; Soares, B.G.O. Vaccines for Preventing Herpes Zoster in Older Adults. Cochrane Database Syst. Rev., 2016, 3.
[http://dx.doi.org/10.1002/14651858.CD008858.pub3]
[65]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[66]
Zhang, X.; Qu, Y.; Fan, X.; Bores, C.; Feng, D.; Andrei, G.; Snoeck, R.; De Clercq, E.; Loiseau, P.M. Solvent-free synthesis of pyrimidine nucleoside-aminophosphonate hybrids and their biological activity evaluation. Nucleosides Nucleotides Nucleic Acids, 2010, 29(8), 616-627.
[http://dx.doi.org/10.1080/15257770.2010.496281] [PMID: 20661815]
[67]
Lehman, I.R.; Boehmer, P.E. Replication of herpes simplex virus DNA. J. Biol. Chem., 1999, 274(40), 28059-28062.
[http://dx.doi.org/10.1074/jbc.274.40.28059] [PMID: 10497152]
[68]
Boehmer, P.E.; Nimonkar, A.V. Herpes virus replication. IUBMB Life, 2003, 55(1), 13-22.
[http://dx.doi.org/10.1080/1521654031000070645] [PMID: 12716057]
[69]
Vere Hodge, R.A.; Field, H.J. Antiviral agents for herpes simplex virus. Adv. Pharmacol., 2013, 67, 1-38.
[http://dx.doi.org/10.1016/B978-0-12-405880-4.00001-9] [PMID: 23885997]
[70]
Kłysik, K.; Pietraszek, A.; Karewicz, A.; Nowakowska, M. Acyclovir in the Treatment of Herpes Viruses - A Review. Curr. Med. Chem., 2020, 27(24), 4118-4137.
[http://dx.doi.org/10.2174/0929867325666180309105519] [PMID: 29521211]
[71]
Brown, C.E.; Kong, T.; McNulty, J.; D’Aiuto, L.; Williamson, K.; McClain, L.; Piazza, P.; Nimgaonkar, V.L. Discovery of potent antiviral (HSV-1) quinazolinones and initial structure-activity relationship studies. Bioorg. Med. Chem. Lett., 2017, 27(20), 4601-4605.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.026] [PMID: 28943043]
[72]
Shamsabadipour, S.; Ghanadian, M.; Saeedi, H.; Rahimnejad, M.R.; Mohammadi-Kamalabadi, M.; Ayatollahi, S.M.; Salimzadeh, L. Triterpenes and Steroids from Euphorbia denticulata Lam. Iran. J. Pharm. Res., 2013, 12(4), 759-767.
[PMID: 24523756]
[73]
Wachsman, M.B.; Ramirez, J.A.; Galagovsky, L.R.; Coto, C.E. Antiviral activity of brassinosteroids derivatives against measles virus in cell cultures. Antivir. Chem. Chemother., 2002, 13(1), 61-66.
[http://dx.doi.org/10.1177/095632020201300105] [PMID: 12180649]
[74]
Michelini, F.M.; Ramírez, J.A.; Berra, A.; Galagovsky, L.R.; Alché, L.E. Anti-herpetic and anti-inflammatory activities of two new synthetic 22,23-dihydroxylated stigmastane derivatives. J. Steroid Biochem. Mol. Biol., 2008, 111(1-2), 111-116.https://doi.org/https://doi.org/10.1016/j.jsbmb.2008.05.005
[http://dx.doi.org/10.1016/j.jsbmb.2008.05.005] [PMID: 18619833]
[75]
Castilla, V.; Ramírez, J.; Coto, C.E. Plant and animal steroids a new hope to search for antiviral agents. Curr. Med. Chem., 2010, 17(18), 1858-1873.
[http://dx.doi.org/10.2174/092986710791163975] [PMID: 20377516]
[76]
Dávola, M.E.; Alonso, F.; Cabrera, G.M.; Ramírez, J.A.; Barquero, A.A. Sterol analogues with diamide side chains interfere with the intracellular localization of viral glycoproteins. Biochem. Biophys. Res. Commun., 2012, 427(1), 107-112.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.019] [PMID: 22982541]
[77]
Dávola, M.E.; Mazaira, G.I.; Galigniana, M.D.; Alché, L.E.; Ramírez, J.A.; Barquero, A.A. Synthetic pregnenolone derivatives as antiviral agents against acyclovir-resistant isolates of Herpes Simplex Virus Type 1. Antiviral Res., 2015, 122, 55-63.
[http://dx.doi.org/10.1016/j.antiviral.2015.08.002] [PMID: 26259812]
[78]
Gupta, N.; Bhojani, G.; Tak, R.; Jakhar, A.; Khan, N.H.; Chatterjee, S.; Kureshy, R.I. Highly Diastereoselective Syntheses of Spiro-Oxindole Dihydrofuran Derivatives in Aqueous Media and Their Antibacterial Activity. ChemistrySelect, 2017, 2(33), 10902-10907.
[http://dx.doi.org/10.1002/slct.201702314]
[79]
Tangella, Y.; Manasa, K.L.; Laxma Nayak, V.; Sathish, M.; Sridhar, B.; Alarifi, A.; Nagesh, N.; Kamal, A. An efficient one-pot approach for the regio- and diastereoselective synthesis of trans-dihydrofuran derivatives: cytotoxicity and DNA-binding studies. Org. Biomol. Chem., 2017, 15(32), 6837-6853.
[http://dx.doi.org/10.1039/C7OB01456B] [PMID: 28782777]
[80]
Mortensen, D.S.; Rodriguez, A.L.; Carlson, K.E.; Sun, J.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Synthesis and biological evaluation of a novel series of furans: ligands selective for estrogen receptor α. J. Med. Chem., 2001, 44(23), 3838-3848.
[http://dx.doi.org/10.1021/jm010211u] [PMID: 11689070]
[81]
Tangeti, V.S. K., R.V.; Prasad, G.V.S.; Satyanarayana, K.V.V.V Synthesis of C3-dihydrofuran substituted coumarins via multicomponent approach. Synth. Commun., 2016, 46(7), 613-619.
[http://dx.doi.org/10.1080/00397911.2016.1159696]
[82]
Scala, A.; Cordaro, M.; Risitano, F.; Colao, I.; Venuti, A.; Sciortino, M.T.; Primerano, P.; Grassi, G. Diastereoselective multicomponent synthesis and anti-HSV-1 evaluation of dihydrofuran-fused derivatives. Mol. Divers., 2012, 16(2), 325-333.
[http://dx.doi.org/10.1007/s11030-012-9367-0] [PMID: 22528269]
[83]
Pinto, A.M.V.; Leite, J.P.G.; Neves, A.P.; da Silva, G.B.; Vargas, M.D.; Paixão, I.C.N.P. Synthetic aminomethylnaphthoquinones inhibit the in vitro replication of bovine herpesvirus 5. Arch. Virol., 2014, 159(7), 1827-1833.
[http://dx.doi.org/10.1007/s00705-014-1989-3] [PMID: 24493066]
[84]
Roizman, B. Herpes Simplex Viruses and Their Replication. Virology, 1996, 2231-2295.
[85]
Pires de Mello, C.P.; Sardoux, N.S.; Terra, L.; Amorim, L.C.; Vargas, M.D.; da Silva, G.B.; Castro, H.C.; Giongo, V.A.; Madeira, L.F.; Paixão, I.C.N.P. Aminomethylnaphthoquinones and HSV-1: in vitro and in silico evaluations of potential antivirals. Antivir. Ther., 2016, 21(6), 507-515.
[http://dx.doi.org/10.3851/IMP3039] [PMID: 26913545]
[86]
Wagner, E.K.; Martinez, J. Hewlett, Basic Virology; Blackwell: Oxford, 1999.
[87]
Patton, J.T. Segmented Double-Stranded RNA Viruses: Structure and Molecular Biology; Horizon Scientific Press, 2008.
[88]
Znabet, A.; Polak, M.M.; Janssen, E.; de Kanter, F.J.J.; Turner, N.J.; Orru, R.V.A.; Ruijter, E. A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem. Commun. (Camb.), 2010, 46(42), 7918-7920.
[http://dx.doi.org/10.1039/c0cc02823a] [PMID: 20856952]
[89]
Nigro, P.; Pompilio, G.; Capogrossi, M.C.; Cyclophilin, A. Cyclophilin A: a key player for human disease. Cell Death Dis., 2013, 4(10), e888-e888.
[http://dx.doi.org/10.1038/cddis.2013.410] [PMID: 24176846]
[90]
Watashi, K.; Hijikata, M.; Hosaka, M.; Yamaji, M.; Shimotohno, K.; Cyclosporin, A. Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology, 2003, 38(5), 1282-1288.
[http://dx.doi.org/10.1053/jhep.2003.50449] [PMID: 14578868]
[91]
Yang, S. K R, J.; Lim, S.; Choi, T.G.; Kim, J.H.; Akter, S.; Jang, M.; Ahn, H.J.; Kim, H.Y.; Windisch, M.P.; Khadka, D.B.; Zhao, C.; Jin, Y.; Kang, I.; Ha, J.; Oh, B.C.; Kim, M.; Kim, S.S.; Cho, W.J. Structure-Based Discovery of Novel Cyclophilin A Inhibitors for the Treatment of Hepatitis C Virus Infections. J. Med. Chem., 2015, 58(24), 9546-9561.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01064] [PMID: 26613291]
[92]
Han, J.; Lee, H.W.; Jin, Y.; Khadka, D.B.; Yang, S.; Li, X.; Kim, M.; Cho, W-J. Molecular design, synthesis, and biological evaluation of bisamide derivatives as cyclophilin A inhibitors for HCV treatment. Eur. J. Med. Chem., 2020, 188112031
[http://dx.doi.org/10.1016/j.ejmech.2019.112031] [PMID: 31923861]
[93]
Manvar, P.; Shaikh, F.; Kakadiya, R.; Mehariya, K.; Khunt, R.; Pandey, B.; Shah, A. Synthesis of Novel Imidazo [1, 2-a] Pyridine-4-Hydroxy-2H-Coumarins by Groebke-Blackburn-Bienaymé Multicomponent Reaction as Potential NS5B Inhibitors. Tetrahedron, 2016, 72(10), 1293-1300.
[http://dx.doi.org/10.1016/j.tet.2016.01.023]
[94]
Sroor, F.M.; Khatab, T.K.; Basyouni, W.M.; El-Bayouki, K.A.M. Synthesis and Molecular Docking Studies of Some New Thiosemicarbazone Derivatives as HCV Polymeraseinhibitors. Synth. Commun., 2019, 49(11), 1444-1456.
[http://dx.doi.org/10.1080/00397911.2019.1605443]
[95]
Chapman, T.M.; Davies, I.G.; Gu, B.; Block, T.M.; Scopes, D.I.C.; Hay, P.A.; Courtney, S.M.; McNeill, L.A.; Schofield, C.J.; Davis, B.G. Glyco- and peptidomimetics from three-component Joullié-Ugi coupling show selective antiviral activity. J. Am. Chem. Soc., 2005, 127(2), 506-507.
[http://dx.doi.org/10.1021/ja043924l] [PMID: 15643858]
[96]
Bowers, M.M.; Carroll, P.; Joullié, M.M. Model studies directed toward the total synthesis of 14-membered cyclopeptide alkaloids: Synthesis of prolyl peptides via a four-component condensation. J. Chem. Soc., Perkin Trans. 1, 1989, (5), 857-865.
[http://dx.doi.org/10.1039/P19890000857]
[97]
Holmes, K.V.; Lai, M.M.C. Coronaviridae: The Viruses and Their Replication. Fields Virol., 1996, 1, 1075-1093.
[98]
Bradburne, A.F.; Bynoe, M.L.; Tyrrell, D.A. Effects of a “new” human respiratory virus in volunteers. BMJ, 1967, 3(5568), 767-769.
[http://dx.doi.org/10.1136/bmj.3.5568.767] [PMID: 6043624]
[99]
van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.M.; Wolthers, K.C.; Wertheim-van Dillen, P.M.E.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med., 2004, 10(4), 368-373.
[http://dx.doi.org/10.1038/nm1024] [PMID: 15034574]
[100]
Woo, P.C.Y.; Lau, S.K.P.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.K.; Poon, L.L.; Wong, S.S.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, 79(2), 884-895.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]
[101]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[102]
Chan, J.F.W.; Lau, S.K.P.; To, K.K.W.; Cheng, V.C.C.; Woo, P.C.Y.; Yuen, K-Y. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev., 2015, 28(2), 465-522.
[http://dx.doi.org/10.1128/CMR.00102-14] [PMID: 25810418]
[103]
Tyrrell, D.A.J.; Bynoe, M.L. Cultivation of a novel type of common-cold virus in organ cultures. BMJ, 1965, 1(5448), 1467-1470.
[http://dx.doi.org/10.1136/bmj.1.5448.1467] [PMID: 14288084]
[104]
Peiris, J.S.M.; Guan, Y.; Yuen, K.Y. Severe acute respiratory syndrome. Nat. Med., 2004, 10(12)(Suppl.), S88-S97.
[http://dx.doi.org/10.1038/nm1143] [PMID: 15577937]
[105]
Hajjar, S.A.; Memish, Z.A.; McIntosh, K. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): a perpetual challenge. Ann. Saudi Med., 2013, 33(5), 427-436.
[http://dx.doi.org/10.5144/0256-4947.2013.427] [PMID: 24188935]
[106]
de Groot, R.J.; Baker, S.C.; Baric, R.S.; Brown, C.S.; Drosten, C.; Enjuanes, L.; Fouchier, R.A.M.; Galiano, M.; Gorbalenya, A.E.; Memish, Z.A.; Perlman, S.; Poon, L.L.; Snijder, E.J.; Stephens, G.M.; Woo, P.C.; Zaki, A.M.; Zambon, M.; Ziebuhr, J. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol., 2013, 87(14), 7790-7792.
[http://dx.doi.org/10.1128/JVI.01244-13] [PMID: 23678167]
[107]
Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223), 470-473.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[108]
Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K-Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[109]
Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[110]
Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA, 2006, 103(15), 5717-5722.
[http://dx.doi.org/10.1073/pnas.0510851103] [PMID: 16581910]
[111]
Chen, S.; Chen, L.; Tan, J.; Chen, J.; Du, L.; Sun, T.; Shen, J.; Chen, K.; Jiang, H.; Shen, X. Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations. J. Biol. Chem., 2005, 280(1), 164-173.
[http://dx.doi.org/10.1074/jbc.M408211200] [PMID: 15507456]
[112]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S-H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[113]
Karypidou, K.; Ribone, S.R.; Quevedo, M.A.; Persoons, L.; Pannecouque, C.; Helsen, C.; Claessens, F.; Dehaen, W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg. Med. Chem. Lett., 2018, 28(21), 3472-3476.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.019] [PMID: 30286952]
[114]
Thomas, J.; Jana, S.; John, J.; Liekens, S.; Dehaen, W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem. Commun. (Camb.), 2016, 52(14), 2885-2888.
[http://dx.doi.org/10.1039/C5CC08347H] [PMID: 26744743]
[115]
Jacobs, J.; Grum-Tokars, V.; Zhou, Y.; Turlington, M.; Saldanha, S.A.; Chase, P.; Eggler, A.; Dawson, E.S.; Baez-Santos, Y.M.; Tomar, S.; Mielech, A.M.; Baker, S.C.; Lindsley, C.W.; Hodder, P.; Mesecar, A.; Stauffer, S.R. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem., 2013, 56(2), 534-546.
[http://dx.doi.org/10.1021/jm301580n] [PMID: 23231439]
[116]
Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[117]
Manta, S.; Tzioumaki, N.; Kollatos, N.; Andrea, P.; Margaritouli, M.; Panagiotopoulou, A.; Papanastasiou, I.; Mitsos, C.; Tsotinis, A.; Schols, D. Polyfunctionalized Pyrrole Derivatives: Easy Three-Component Microwave-Assisted Synthesis, Cytostatic and Antiviral Evaluation. Curr. Microw. Chem., 2018, 5(1), 23-31.
[http://dx.doi.org/10.2174/2213335605666180221155915]
[118]
Kim, C.U.; Lew, W.; Williams, M.A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M.S.; Mendel, D.B.; Tai, C.Y.; Laver, W.G.; Stevens, R.C. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc., 1997, 119(4), 681-690.
[http://dx.doi.org/10.1021/ja963036t] [PMID: 16526129]
[119]
Ishikawa, H.; Suzuki, T.; Hayashi, Y. High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three “one-pot” operations. Angew. Chem. Int. Ed. Engl., 2009, 48(7), 1304-1307.https://doi.org/https://doi.org/10.1002/anie.200804883
[http://dx.doi.org/10.1002/anie.200804883] [PMID: 19123206]
[120]
Zippilli, C.; Botta, L.; Bizzarri, B.M.; Nencioni, L.; De Angelis, M.; Protto, V.; Giorgi, G.; Baratto, M.C.; Pogni, R.; Saladino, R. Laccase-Catalyzed 1,4-Dioxane-Mediated Synthesis of Belladine N-Oxides with Anti-Influenza A Virus Activity. Int. J. Mol. Sci., 2021, 22(3), 1337.
[http://dx.doi.org/10.3390/ijms22031337] [PMID: 33572794]
[121]
Bizzarri, B.M.; Botta, L.; Capecchi, E.; Celestino, I.; Checconi, P.; Palamara, A.T.; Nencioni, L.; Saladino, R. Regioselective IBX-Mediated Synthesis of Coumarin Derivatives with Antioxidant and Anti-influenza Activities. J. Nat. Prod., 2017, 80(12), 3247-3254.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00665] [PMID: 29236486]
[122]
Botta, G.; Bizzarri, B.M.; Garozzo, A.; Timpanaro, R.; Bisignano, B.; Amatore, D.; Palamara, A.T.; Nencioni, L.; Saladino, R. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses. Bioorg. Med. Chem., 2015, 23(17), 5345-5351.
[http://dx.doi.org/10.1016/j.bmc.2015.07.061] [PMID: 26260341]
[123]
Bizzarri, B.M.; Fanelli, A.; Piccinino, D.; De Angelis, M.; Dolfa, C.; Palamara, A.T.; Nencioni, L.; Zippilli, C.; Crucianelli, M.; Saladino, R. Synthesis of stilbene and chalcone inhibitors of influenza a virus by Sba-15 supported hoveyda-grubbs metathesis. Catalysts, 2019, 9(12)
[http://dx.doi.org/10.3390/catal9120983]
[124]
Zeng, L-Y.; Liu, T.; Yang, J.; Yang, Y.; Cai, C.; Liu, S. “On-Water” Facile Synthesis of Novel Pyrazolo[3,4-b]pyridinones Possessing Anti-influenza Virus Activity. ACS Comb. Sci., 2017, 19(7), 437-446.
[http://dx.doi.org/10.1021/acscombsci.7b00016] [PMID: 28581706]
[125]
Zhang, J.; Hu, Y.; Foley, C.; Wang, Y.; Musharrafieh, R.; Xu, S.; Zhang, Y.; Ma, C.; Hulme, C.; Wang, J. Exploring ugi-azide four-component reaction products for broad-spectrum influenza antivirals with a high genetic barrier to drug resistance. Sci. Rep., 2018, 8(1), 4653.
[http://dx.doi.org/10.1038/s41598-018-22875-9] [PMID: 29545578]
[126]
Gewald, K. Zur Reaktion von α-Oxo-Mercaptanen Mit Nitrilen. Angew. Chem., 1961.
[http://dx.doi.org/10.1002/ange.19610730307]
[127]
Gewald, K.; Schinke, E.; Bottcher, H. 2-amino-thiophene aus methylenaktiven nitrilen, carbonylverbindungen und schwefel. Chem. Ber., 1966, 99, 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[128]
Mugnaini, C.; Pedani, V.; Giunta, D.; Sechi, B.; Solinas, M.; Casti, A.; Castelli, M.P.; Giorgi, G.; Corelli, F. Synthesis, structural properties, and pharmacological evaluation of 2-(acylamino) thiophene-3-carboxamides and analogues thereof. RSC Advances, 2014, 4(4), 1782-1793.
[http://dx.doi.org/10.1039/C3RA45546G]
[129]
Romagnoli, R.; Baraldi, P.G.; Lopez-Cara, C.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Balzarini, J.; Nussbaumer, P.; Bassetto, M.; Brancale, A.; Fu, X.H. Yang-Gao; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorg. Med. Chem., 2014, 22(18), 5097-5109.
[http://dx.doi.org/10.1016/j.bmc.2013.12.030] [PMID: 24398384]
[130]
Ye, D.; Zhang, Y.; Wang, F.; Zheng, M.; Zhang, X.; Luo, X.; Shen, X.; Jiang, H.; Liu, H. Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity. Bioorg. Med. Chem., 2010, 18(5), 1773-1782.
[http://dx.doi.org/10.1016/j.bmc.2010.01.055] [PMID: 20153651]
[131]
Sun, Y.; Fan, J.; Zhu, Z.; Guo, X.; Zhou, T.; Duan, W.; Shen, X. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer’s disease model mice. Eur. J. Pharmacol., 2015, 762, 202-213.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.050] [PMID: 26026644]
[132]
Rashad, A.E.; Shamroukh, A.H.; Abdel-Megeid, R.E.; Mostafa, A.; el-Shesheny, R.; Kandeil, A.; Ali, M.A.; Banert, K. Synthesis and screening of some novel fused thiophene and thienopyrimidine derivatives for anti-avian influenza virus (H5N1) activity. Eur. J. Med. Chem., 2010, 45(11), 5251-5257.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.044] [PMID: 20828882]
[133]
Massari, S.; Nannetti, G.; Goracci, L.; Sancineto, L.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Facchini, M.; Palù, G.; Cruciani, G.; Loregian, A.; Tabarrini, O. Structural investigation of cycloheptathiophene-3-carboxamide derivatives targeting influenza virus polymerase assembly. J. Med. Chem., 2013, 56(24), 10118-10131.
[http://dx.doi.org/10.1021/jm401560v] [PMID: 24313730]
[134]
Lepri, S.; Nannetti, G.; Muratore, G.; Cruciani, G.; Ruzziconi, R.; Mercorelli, B.; Palù, G.; Loregian, A.; Goracci, L. Optimization of small-molecule inhibitors of influenza virus polymerase: from thiophene-3-carboxamide to polyamido scaffolds. J. Med. Chem., 2014, 57(10), 4337-4350.
[http://dx.doi.org/10.1021/jm500300r] [PMID: 24785979]
[135]
Simmons, C.P.; Farrar, J.J.; Nguyen, V.; Wills, B. Dengue. N. Engl. J. Med., 2012, 366(15), 1423-1432.
[http://dx.doi.org/10.1056/NEJMra1110265] [PMID: 22494122]
[136]
Monath, T.P.; Heinz, X. In: Flaviviruses in Fields Virology; Raven, 1996.
[137]
Organization, W.H.; Research, S.P. for; Diseases, T. in T.; Diseases, W. H. O. D. of C. of N. T.; Epidemic, W. H. O.; Alert, P.Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization , 2009.
[138]
Guzmán, M.G.; Kourí, G. Dengue: an update. Lancet Infect. Dis., 2002, 2(1), 33-42.
[http://dx.doi.org/10.1016/S1473-3099(01)00171-2] [PMID: 11892494]
[139]
Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res., 2002, 33(4), 330-342.
[http://dx.doi.org/10.1016/S0188-4409(02)00378-8] [PMID: 12234522]
[140]
Organization, W. H. .Global Strategy for Dengue Prevention and Control 2012-2020. 2012.
[141]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[142]
Normile, D. Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts; American Association for the Advancement of Science, 2013.
[http://dx.doi.org/10.1126/science.342.6157.415]
[143]
Kuno, G.; Chang, G-J.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol., 1998, 72(1), 73-83.
[http://dx.doi.org/10.1128/JVI.72.1.73-83.1998] [PMID: 9420202]
[144]
Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725.
[http://dx.doi.org/10.1016/S0092-8674(02)00660-8] [PMID: 11893341]
[145]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[146]
Chambers, T.J.; Nestorowicz, A.; Amberg, S.M.; Rice, C.M. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J. Virol., 1993, 67(11), 6797-6807.
[http://dx.doi.org/10.1128/jvi.67.11.6797-6807.1993] [PMID: 8411382]
[147]
Falgout, B.; Pethel, M.; Zhang, Y-M.; Lai, C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol., 1991, 65(5), 2467-2475.
[http://dx.doi.org/10.1128/jvi.65.5.2467-2475.1991] [PMID: 2016768]
[148]
Leyssen, P.; Balzarini, J.; De Clercq, E.; Neyts, J. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. J. Virol., 2005, 79(3), 1943-1947.
[http://dx.doi.org/10.1128/JVI.79.3.1943-1947.2005] [PMID: 15650220]
[149]
Klema, V.J.; Ye, M.; Hindupur, A.; Teramoto, T.; Gottipati, K.; Padmanabhan, R.; Choi, K.H. Dengue virus nonstructural protein 5 (NS5) assembles into a dimer with a unique methyltransferase and polymerase interface. PLoS Pathog., 2016, 12(2)e1005451
[http://dx.doi.org/10.1371/journal.ppat.1005451] [PMID: 26895240]
[150]
McBride, W.J.; Mullner, H.; LaBrooy, J.T.; Wronski, I. The 1993 dengue 2 epidemic in North Queensland: a serosurvey and comparison of hemagglutination inhibition with an ELISA. Am. J. Trop. Med. Hyg., 1998, 59(3), 457-461.
[http://dx.doi.org/10.4269/ajtmh.1998.59.457] [PMID: 9749644]
[151]
Fink, K.; Shi, P-Y. Live attenuated vaccine: the first clinically approved dengue vaccine? Expert Rev. Vaccines, 2014, 13(2), 185-188.
[http://dx.doi.org/10.1586/14760584.2014.870888] [PMID: 24350687]
[152]
Stevens, A.J.; Gahan, M.E.; Mahalingam, S.; Keller, P.A. The medicinal chemistry of dengue fever. J. Med. Chem., 2009, 52(24), 7911-7926.
[http://dx.doi.org/10.1021/jm900652e] [PMID: 19739651]
[153]
De Clercq, E. Strategies for the treatment of dengue virus infections: a narrative account. Future Med. Chem., 2010, 2(4), 601-608.
[http://dx.doi.org/10.4155/fmc.10.15] [PMID: 21426010]
[154]
Nitsche, C.; Holloway, S.; Schirmeister, T.; Klein, C.D. Biochemistry and medicinal chemistry of the dengue virus protease. Chem. Rev., 2014, 114(22), 11348-11381.
[http://dx.doi.org/10.1021/cr500233q] [PMID: 25268322]
[155]
Beesetti, H.; Khanna, N.; Swaminathan, S. Drugs for dengue: a patent review (2010-2014). Expert Opin. Ther. Pat., 2014, 24(11), 1171-1184.
[http://dx.doi.org/10.1517/13543776.2014.967212] [PMID: 25283170]
[156]
Zou, B.; Chan, W.L.; Ding, M.; Leong, S.Y.; Nilar, S.; Seah, P.G.; Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A.; Susila, A.; Dong, H.; Wang, Q.Y.; Xu, H.Y.; Chan, K.; Wan, K.F.; Gu, F.; Diagana, T.T.; Wagner, T.; Dix, I.; Shi, P.Y.; Smith, P.W. Lead optimization of spiropyrazolopyridones: a new and potent class of dengue virus inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 344-348.
[http://dx.doi.org/10.1021/ml500521r] [PMID: 25878766]
[157]
Lichitsky, B.V.; Komogortsev, A.N.; Dudinov, A.A.; Krayushkin, M.M. Three-Component Condensation of 5-Aminopyrazole Derivatives with Isatins and Meldrum’s Acid. Synthesis of 1, 7-Dihydrospiro [Pyrazolo [3, 4-b]-Pyridine-4, 3¢-Indole]-2¢, 6 (1¢ H, 5H)-. Diones. Russ. Chem. Bull., 2009, 58(7), 1504-1508.
[http://dx.doi.org/10.1007/s11172-009-0202-4]
[158]
Zou, B.; Chen, C.; Leong, S.Y.; Ding, M.; Smith, P.W. An Efficient Synthesis of 4, 6-Dihydrospiro [Azepino [4, 3, 2-Cd] Indole-3, 3¢-Indoline]-2¢, 5 (1H)-Diones via Multi-Component Reaction. Tetrahedron, 2014, 70(3), 578-582.
[http://dx.doi.org/10.1016/j.tet.2013.12.010]
[159]
Yeung, B.K.S.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro β-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53(14), 5155-5164.
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778]
[160]
Xie, X.; Wang, Q-Y.; Xu, H.Y.; Qing, M.; Kramer, L.; Yuan, Z.; Shi, P-Y. Inhibition of dengue virus by targeting viral NS4B protein. J. Virol., 2011, 85(21), 11183-11195.
[http://dx.doi.org/10.1128/JVI.05468-11] [PMID: 21865382]
[161]
van Cleef, K.W.R.; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.F.; Davidson, A.D.; Jacobs, M.; Neyts, J.; van Kuppeveld, F.J.M.; van Rij, R.P. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Res., 2013, 99(2), 165-171.
[http://dx.doi.org/10.1016/j.antiviral.2013.05.011] [PMID: 23735301]
[162]
Wan, Y.; Wu, S.; Zheng, S.; Liang, E.; Liu, S.; Yao, X.; Zhu, Q. A series of octahydroquinazoline-5-ones as novel inhibitors against dengue virus. Eur. J. Med. Chem., 2020, 200112318
[http://dx.doi.org/10.1016/j.ejmech.2020.112318] [PMID: 32470709]
[163]
Yao, X.; Ling, Y.; Guo, S.; Wu, W.; He, S.; Zhang, Q.; Zou, M.; Nandakumar, K.S.; Chen, X.; Liu, S. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine, 2018, 42, 258-267.
[http://dx.doi.org/10.1016/j.phymed.2018.03.018] [PMID: 29655694]
[164]
Yao, X.; Guo, S.; Wu, W.; Wang, J.; Wu, S.; He, S.; Wan, Y.; Nandakumar, K.S.; Chen, X.; Sun, N.; Zhu, Q.; Liu, S. Q63, a novel DENV2 RdRp non-nucleoside inhibitor, inhibited DENV2 replication and infection. J. Pharmacol. Sci., 2018, 138(4), 247-256.
[http://dx.doi.org/10.1016/j.jphs.2018.06.012] [PMID: 30518482]
[165]
Cannalire, R.; Tarantino, D.; Piorkowski, G.; Carletti, T.; Massari, S.; Felicetti, T.; Barreca, M.L.; Sabatini, S.; Tabarrini, O.; Marcello, A.; Milani, M.; Cecchetti, V.; Mastrangelo, E.; Manfroni, G.; Querat, G. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Res., 2019, 167, 6-12.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.004] [PMID: 30849420]
[166]
Tay, M.Y.F.; Saw, W.G.; Zhao, Y.; Chan, K.W.K.; Singh, D.; Chong, Y.; Forwood, J.K.; Ooi, E.E.; Grüber, G.; Lescar, J.; Luo, D.; Vasudevan, S.G. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J. Biol. Chem., 2015, 290(4), 2379-2394.
[http://dx.doi.org/10.1074/jbc.M114.607341] [PMID: 25488659]
[167]
Felicetti, T.; Burali, M.S.; Gwee, C.P.; Ki Chan, K.W.; Alonso, S.; Massari, S.; Sabatini, S.; Tabarrini, O.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. Eur. J. Med. Chem., 2021, 210112992
[http://dx.doi.org/10.1016/j.ejmech.2020.112992] [PMID: 33208235]
[168]
Cannalire, R.; Ki Chan, K.W.; Burali, M.S.; Gwee, C.P.; Wang, S.; Astolfi, A.; Massari, S.; Sabatini, S.; Tabarrini, O.; Mastrangelo, E.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Pyridobenzothiazolones exert potent anti-dengue activity by hampering multiple functions of NS5 polymerase. ACS Med. Chem. Lett., 2020, 11(5), 773-782.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00619] [PMID: 32435384]
[169]
Vishvakarma, V.K.; Singh, P.; Kumar, V.; Kumari, K.; Patel, R.; Chandra, R. Pyrrolothiazolones as potential inhibitors for the NsP2B‐nsP3 protease of dengue virus and their mechanism of synthesis. ChemistrySelect, 2019, 4(32), 9410-9419.
[http://dx.doi.org/10.1002/slct.201901119]
[170]
Mishra, R.; Jana, A.; Panday, A.K.; Choudhury, L.H. Synthesis of spirooxindoles fused with pyrazolo-tetrahydropyri-dinone and coumarin-dihydropyridine-pyrazole tetracycles by reaction medium dependent isatin-based multicomponent reactions. New J. Chem., 2019, 43(7), 2920-2932.
[http://dx.doi.org/10.1039/C8NJ05465G]
[171]
Fan, Z.; Yang, Z.; Zhang, H.; Mi, N.; Wang, H.; Cai, F.; Zuo, X.; Zheng, Q.; Song, H. Synthesis, crystal structure, and biological activity of 4-methyl-1,2,3-thiadiazole-containing 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. J. Agric. Food Chem., 2010, 58(5), 2630-2636.
[http://dx.doi.org/10.1021/jf9029628] [PMID: 20014761]
[172]
Bloom, J.D.; Dushin, R.G.; Curran, K.J.; Donahue, F.; Norton, E.B.; Terefenko, E.; Jones, T.R.; Ross, A.A.; Feld, B.; Lang, S.A.; DiGrandi, M.J. Thiourea inhibitors of herpes viruses. Part 2: N-Benzyl-N'-arylthiourea inhibitors of CMV. Bioorg. Med. Chem. Lett., 2004, 14(13), 3401-3406.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.093] [PMID: 15177441]
[173]
Bloom, J.D.; DiGrandi, M.J.; Dushin, R.G.; Curran, K.J.; Ross, A.A.; Norton, E.B.; Terefenko, E.; Jones, T.R.; Feld, B.; Lang, S.A. Thiourea inhibitors of herpes viruses. Part 1: bis-(aryl)thiourea inhibitors of CMV. Bioorg. Med. Chem. Lett., 2003, 13(17), 2929-2932.
[http://dx.doi.org/10.1016/S0960-894X(03)00586-9] [PMID: 14611860]
[174]
Xie, D.; Zhang, A.; Liu, D.; Yin, L.; Wan, J.; Zeng, S.; Hu, D. Synthesis and antiviral activity of novel a-aminophosphonates containing 6-fluorobenzothiazole moiety. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(9), 1061-1067.
[http://dx.doi.org/10.1080/10426507.2017.1323895]
[175]
Kafarski, P.; Górniak, M.G.; Andrasiak, I. Kabachnik-Fields reaction under green conditions—a critical over-view. Curr. Green Chem., 2015, 5, 218-222.
[http://dx.doi.org/10.2174/2213346102666150109203606]
[176]
Keglevich, G.; Bálint, E. The Kabachnik-Fields reaction: mechanism and synthetic use. Molecules, 2012, 17(11), 12821-12835.
[http://dx.doi.org/10.3390/molecules171112821] [PMID: 23117425]
[177]
Rao, A.J.; Rao, P.V.; Rao, V.K.; Mohan, C.; Raju, C.N.; Reddy, C.S. Microwave assisted one-pot synthesis of novel α-aminophosphonates and heir biological activity. Bull. Korean Chem. Soc., 2010, 31(7), 1863-1868.
[http://dx.doi.org/10.5012/bkcs.2010.31.7.1863]
[178]
Ryu, W-S. Chapter 17 - Retroviruses. In: Molecular Virology of Human Pathogenic Viruses; Ryu, W-S., Ed.; Academic Press: Boston, 2017, pp. 227-246.
[http://dx.doi.org/10.1016/B978-0-12-800838-6.00017-5]
[179]
Karn, J. Retroviruses. In: Brenner’s Encyclopedia of Genetics, 2nd ed; Maloy, S.; Hughes, K., Eds.; Academic Press: San Diego, , 2013; pp. 211-215.
[http://dx.doi.org/10.1016/B978-0-12-374984-0.01323-1]
[180]
Weiss, R. A. How does HIV cause AIDS?Science (80-), 1993, 260(5112), 1273-1279
[181]
Douek, D.C.; Roederer, M.; Koup, R.A. Emerging concepts in the immunopathogenesis of AIDS. Annu. Rev. Med., 2009, 60, 471-484.
[http://dx.doi.org/10.1146/annurev.med.60.041807.123549] [PMID: 18947296]
[182]
Powell, M.K.; Benková, K.; Selinger, P.; Dogoši, M.; Kinkorová Luňáčková, I.; Koutníková, H.; Laštíková, J.; Roubíčková, A.; Špůrková, Z.; Laclová, L.; Eis, V.; Šach, J.; Heneberg, P. Opportunistic infections in HIV-infected patients differ strongly in frequencies and spectra between patients with low CD4+ cell counts examined postmortem and compensated patients examined antemortem irrespective of the HAART era. PLoS One, 2016, 11(9)e0162704
[http://dx.doi.org/10.1371/journal.pone.0162704] [PMID: 27611681]
[183]
Organization, W.H. Guidelines: Updated Recommendations on HIV Prevention; Infant Diagnosis, Antiretroviral Initiation and Monitoring, 2021.
[184]
Antonelli, G.; Turriziani, O. Antiviral therapy: old and current issues. Int. J. Antimicrob. Agents, 2012, 40(2), 95-102.https://doi.org/https://doi.org/10.1016/j.ijantimicag.2012.04.005
[http://dx.doi.org/10.1016/j.ijantimicag.2012.04.005] [PMID: 22727532]
[185]
Leonard, J.T.; Roy, K. The HIV entry inhibitors revisited. Curr. Med. Chem., 2006, 13(8), 911-934.
[http://dx.doi.org/10.2174/092986706776361030] [PMID: 16611075]
[186]
Nishizawa, R.; Nishiyama, T.; Hisaichi, K.; Matsunaga, N.; Minamoto, C.; Habashita, H.; Takaoka, Y.; Toda, M.; Shibayama, S.; Tada, H.; Sagawa, K.; Fukushima, D.; Maeda, K.; Mitsuya, H. Spirodiketopiperazine-based CCR5 antagonists: Lead optimization from biologically active metabolite. Bioorg. Med. Chem. Lett., 2007, 17(3), 727-731.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.084] [PMID: 17118654]
[187]
Tiberi, M.; Tintori, C.; Ceresola, E.R.; Fazi, R.; Zamperini, C.; Calandro, P.; Franchi, L.; Selvaraj, M.; Botta, L.; Sampaolo, M.; Saita, D.; Ferrarese, R.; Clementi, M.; Canducci, F.; Botta, M. 2-Aminothiazolones as anti-HIV agents that act as gp120-CD4 inhibitors. Antimicrob. Agents Chemother., 2014, 58(6), 3043-3052.
[http://dx.doi.org/10.1128/AAC.02739-13] [PMID: 24614386]
[188]
Rinaldi, M.; Tintori, C.; Franchi, L.; Vignaroli, G.; Innitzer, A.; Massa, S.; Esté, J.A.; Gonzalo, E.; Christ, F.; Debyser, Z.; Botta, M. A versatile and practical synthesis toward the development of novel HIV-1 integrase inhibitors. ChemMedChem, 2011, 6(2), 343-352.
[http://dx.doi.org/10.1002/cmdc.201000510] [PMID: 21246739]
[189]
Siddiqui, I.R.; Siddique, S.A.; Srivastava, V.; Singh, P.K.; Singh, J. A novel anthranilic acid based multi-component strategy for expeditious synthesis of 4(3H)-quinazolinone N-nucleosides. ARKIVOC, 2008, 2008(12), 277-285.
[http://dx.doi.org/10.3998/ark.5550190.0009.c30]
[190]
Tintori, C.; Brai, A.; Dasso Lang, M.C.; Deodato, D.; Greco, A.M.; Bizzarri, B.M.; Cascone, L.; Casian, A.; Zamperini, C.; Dreassi, E.; Crespan, E.; Maga, G.; Vanham, G.; Ceresola, E.; Canducci, F.; Ariën, K.K.; Botta, M. Development and in vitro evaluation of a microbicide gel formulation for a novel non-nucleoside reverse transcriptase inhibitor belonging to the n-dihydroalkyloxybenzyloxo-pyrimidines (N-DABOs) family. J. Med. Chem., 2016, 59(6), 2747-2759.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01979] [PMID: 26898379]
[191]
Elleder, D.; Baiga, T.J.; Russell, R.L.; Naughton, J.A.; Hughes, S.H.; Noel, J.P.; Young, J.A.T. Identification of a 3-aminoimidazo[1,2-a]pyridine inhibitor of HIV-1 reverse transcriptase. Virol. J., 2012, 9(1), 305.
[http://dx.doi.org/10.1186/1743-422X-9-305] [PMID: 23231773]
[192]
Elleder, D.; Young, A.T. J.; Baiga J., T.; Noel P., J. Non Nucleoside Reverse Transcriptase Inhibitors Presentation. WO 2009/061856 Al, 2008.
[193]
Bode, M.L.; Gravestock, D.; Moleele, S.S.; van der Westhuyzen, C.W.; Pelly, S.C.; Steenkamp, P.A.; Hoppe, H.C.; Khan, T.; Nkabinde, L.A. Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem., 2011, 19(14), 4227-4237.
[http://dx.doi.org/10.1016/j.bmc.2011.05.062] [PMID: 21700466]
[194]
Yehia, N.A.M.; Antuch, W.; Beck, B.; Hess, S.; Schauer-Vukasinović, V.; Almstetter, M.; Furer, P.; Herdtweck, E.; Dömling, A. Novel nonpeptidic inhibitors of HIV-1 protease obtained via a new multicomponent chemistry strategy. Bioorg. Med. Chem. Lett., 2004, 14(12), 3121-3125.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.026] [PMID: 15149657]
[195]
Lv, Z.; Chu, Y.; Wang, Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl.), 2015, 7, 95-104.
[PMID: 25897264]
[196]
Sari, O.; Roy, V.; Métifiot, M.; Marchand, C.; Pommier, Y.; Bourg, S.; Bonnet, P.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of dihydropyrimidine α,γ-diketobutanoic acid derivatives targeting HIV integrase. Eur. J. Med. Chem., 2015, 104, 127-138.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.015] [PMID: 26451771]
[197]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[198]
Kolontsova, A.N.; Ivantsova, M.N.; Tokareva, M.I.; Mironov, M.A. Reaction of isocyanides with thiophenols and gem-diactivated olefins: a one-pot synthesis of substituted 2-aminopyrroles. Mol. Divers., 2010, 14(3), 543-550.
[http://dx.doi.org/10.1007/s11030-010-9233-x] [PMID: 20213288]
[199]
Bennett, S.M.; Nguyen-Ba, N.; Ogilvie, K.K. Synthesis and antiviral activity of some acyclic and C-acyclic pyrrolo[2,3-d]pyrimidine nucleoside analogues. J. Med. Chem., 1990, 33(8), 2162-2173.
[http://dx.doi.org/10.1021/jm00170a019] [PMID: 2165163]
[200]
Bergstrom, F.W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev., 1944, 35(2), 77-277.
[http://dx.doi.org/10.1021/cr60111a001]
[201]
Ali, O.M.; Amer, H.H.; Abdel-Rahman, A.A-H. Synthesis of N4-β-D-glycoside cytosines and sugar N4-acetylcytosin-1-ylmethylhydrazones as antiviral agents. J. Chem. Res., 2007, 2007, 281-283.
[http://dx.doi.org/10.3184/030823407X215889]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy