Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Asymmetric C-H and N-H Functionalization of Indoles Involving Central Chirality via Chiral Phosphoric Acid Catalysis

Author(s): Alemayehu Gashaw, Dereje Kebebew Debeli* and Meseret Chemeda

Volume 19, Issue 5, 2022

Published on: 10 January, 2022

Page: [654 - 674] Pages: 21

DOI: 10.2174/1570193X18666211006162836

Price: $65

Abstract

The C-H and N-H functionalization of indoles is an interesting area of research that has a useful impact on organic synthesis due to the availability of chiral indole scaffolds in the discovery of drugs, synthetic bioactive compounds, and natural products. The Chiral Phosphoric Acid catalysts (CPAs) have proven to be a powerful and versatile class of enantioselective organocatalysts. Many asymmetric syntheses of organic compounds have been carried out with these catalysts in C-C and CN bond formation reactions, and great progress has been reported. By 2011, several reviews were published covering some important topics and recent achievements in this field. Therefore, in this review, the most recent advances, research breakthroughs with key examples involving mechanisms of CPA-catalyzed C-H and N-H functionalization of indoles to form central chirality via Friedel Crafts, Michael type, and rearrangement reactions were reviewed and reported.

Keywords: Enantioselectivity, chiral phosphoric acid, indole, N-H functionalization, C-H functionalization, friedel-crafts alkylation.

« Previous
Graphical Abstract

[1]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[2]
Agarwal, S.; Cammerer, S.; Filali, S.; Frohner, W.; Knoll, J.; Krahl, M.P.; Reddy, K.R.; Knolker, H-J. Novel routes to pyrroles, indoles and carbazoles-applications in natural product synthesis. Curr. Org. Chem., 2005, 9(15), 1601-1614.
[http://dx.doi.org/10.2174/138527205774370496]
[3]
O’Connor, S.E.; Maresh, J.J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep., 2006, 23(4), 532-547.
[http://dx.doi.org/10.1039/b512615k] [PMID: 16874388]
[4]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25.
[PMID: 28782480]
[5]
Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev., 2006, 106(7), 2875-2911.
[http://dx.doi.org/10.1021/cr0505270] [PMID: 16836303]
[6]
Norwood, V.M., IV; Huigens, R.W., III Harnessing the chemistry of the indole heterocycle to drive discoveries in biology and medicine. ChemBioChem, 2019, 20(18), 2273-2297.
[http://dx.doi.org/10.1002/cbic.201800768] [PMID: 30609199]
[7]
Scholz, U.; Winterfeldt, E. Biomimetic synthesis of alkaloids. Nat. Prod. Rep., 2000, 17(4), 349-366.
[http://dx.doi.org/10.1039/a902278c] [PMID: 11014337]
[8]
Zeng, M.; You, S-L. Asymmetric Friedel-Crafts alkylation of indoles: the control of enantio-and regioselectivity. Synlett, 2010, 2010(09), 1289-1301.
[http://dx.doi.org/10.1055/s-0029-1219929]
[9]
Li, H.; Belyk, K.M.; Yin, J.; Chen, Q.; Hyde, A.; Ji, Y.; Oliver, S.; Tudge, M.T.; Campeau, L-C.; Campos, K.R. Enantioselective synthesis of hemiaminals via Pd-catalyzed C-N coupling with chiral bisphosphine mono-oxides. J. Am. Chem. Soc., 2015, 137(43), 13728-13731.
[http://dx.doi.org/10.1021/jacs.5b05934] [PMID: 26414910]
[10]
Lu, H.; Zhu, G.; Tang, T.; Ma, Z.; Chen, Q.; Chen, Z. Anticancer molecule discovery via C2-substituent promoted oxidative coupling of indole and enolate. iScience, 2019, 22, 214-228.
[http://dx.doi.org/10.1016/j.isci.2019.11.021] [PMID: 31786518]
[11]
Bandini, M.; Eichholzer, A. Catalytic functionalization of indoles in a new dimension. Angew. Chem. Int. Ed. Engl., 2009, 48(51), 9608-9644.
[http://dx.doi.org/10.1002/anie.200901843] [PMID: 19946913]
[12]
Poulsen, T.B.; Jørgensen, K.A. Catalytic asymmetric Friedel-Crafts alkylation reactions--copper showed the way. Chem. Rev., 2008, 108(8), 2903-2915.
[http://dx.doi.org/10.1021/cr078372e] [PMID: 18500844]
[13]
Gathergood, N.; Zhuang, W.; Jørgensen, K.A. Catalytic enantioselective friedel− crafts reactions of aromatic compounds with glyoxylate: A simple procedure for the synthesis of optically active aromatic mandelic acid esters. J. Am. Chem. Soc., 2000, 122(50), 12517-12522.
[http://dx.doi.org/10.1021/ja002593j]
[14]
Shirakawa, S.; Berger, R.; Leighton, J.L. Enantioselective friedel-crafts alkylations with benzoylhydrazones promoted by a simple strained silacycle reagent. J. Am. Chem. Soc., 2005, 127(9), 2858-2859.
[http://dx.doi.org/10.1021/ja042522a] [PMID: 15740114]
[15]
Dalpozzo, R. Strategies for the asymmetric functionalization of indoles: an update. Chem. Soc. Rev., 2015, 44(3), 742-778.
[http://dx.doi.org/10.1039/C4CS00209A] [PMID: 25316161]
[16]
Kang, Q.; Zhao, Z-A.; You, S-L. Highly enantioselective Friedel-Crafts reaction of indoles with imines by a chiral phosphoric acid. J. Am. Chem. Soc., 2007, 129(6), 1484-1485.
[http://dx.doi.org/10.1021/ja067417a] [PMID: 17283980]
[17]
Jia, Y.X.; Zhong, J.; Zhu, S.F.; Zhang, C.M.; Zhou, Q.L. Chiral Brønsted acid catalyzed enantioselective Friedel-Crafts reaction of indoles and α-aryl enamides: construction of quaternary carbon atoms. Angew. Chem. Int. Ed., 2007, 46(29), 5565-5567.
[http://dx.doi.org/10.1002/anie.200701067] [PMID: 17583909]
[18]
Rueping, M.; Nachtsheim, B.J.; Moreth, S.A.; Bolte, M. Asymmetric Brønsted acid catalysis: enantioselective nucleophilic substitutions and 1,4-additions. Angew. Chem. Int. Ed. Engl., 2008, 47(3), 593-596.
[http://dx.doi.org/10.1002/anie.200703668] [PMID: 18095369]
[19]
Liu, R.R.; Ye, S.C.; Lu, C.J.; Zhuang, G.L.; Gao, J.R.; Jia, Y.X. Dual catalysis for the redox annulation of nitroalkynes with indoles: enantioselective construction of indolin-3-ones bearing quaternary stereocenters. Angew. Chem. Int. Ed. Engl., 2015, 54(38), 11205-11208.
[http://dx.doi.org/10.1002/anie.201504697] [PMID: 26245887]
[20]
Cheng, H.G.; Lu, L.Q.; Wang, T.; Yang, Q.Q.; Liu, X.P.; Li, Y.; Deng, Q.H.; Chen, J.R.; Xiao, W.J. Highly enantioselective Friedel-Crafts alkylation/N-hemiacetalization cascade reaction with indoles. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3250-3254.
[http://dx.doi.org/10.1002/anie.201209998] [PMID: 23401220]
[21]
Zhao, Y-L.; Wang, Y.; Cao, J.; Liang, Y-M.; Xu, P-F. Organocatalytic asymmetric Michael-Michael cascade for the construction of highly functionalized N-fused piperidinoindoline derivatives. Org. Lett., 2014, 16(9), 2438-2441.
[http://dx.doi.org/10.1021/ol5008185] [PMID: 24734923]
[22]
Bi, B.; Lou, Q-X.; Ding, Y-Y.; Chen, S-W.; Zhang, S-S.; Hu, W-H.; Zhao, J-L. Chiral phosphoric acid catalyzed highly enantioselective Friedel-Crafts alkylation reaction of C3-substituted indoles to β,γ-unsaturated α-ketimino esters. Org. Lett., 2015, 17(3), 540-543.
[http://dx.doi.org/10.1021/ol5035222] [PMID: 25594307]
[23]
Taylor, M.S.; Jacobsen, E.N. Highly enantioselective catalytic acyl-pictet-spengler reactions. J. Am. Chem. Soc., 2004, 126(34), 10558-10559.
[http://dx.doi.org/10.1021/ja046259p] [PMID: 15327311]
[24]
Mergott, D.J.; Zuend, S.J.; Jacobsen, E.N. Catalytic asymmetric total synthesis of (+)-yohimbine. Org. Lett., 2008, 10(5), 745-748.
[http://dx.doi.org/10.1021/ol702781q] [PMID: 18257582]
[25]
Sewgobind, N.V.; Wanner, M.J.; Ingemann, S.; de Gelder, R.; van Maarseveen, J.H.; Hiemstra, H. Enantioselective BINOL-phosphoric acid catalyzed Pictet-Spengler reactions of N-benzyltryptamine. J. Org. Chem., 2008, 73(16), 6405-6408.
[http://dx.doi.org/10.1021/jo8010478] [PMID: 18616320]
[26]
Lee, S.; MacMillan, D.W. Organocatalytic vinyl and Friedel-Crafts alkylations with trifluoroborate salts. J. Am. Chem. Soc., 2007, 129(50), 15438-15439.
[http://dx.doi.org/10.1021/ja0767480] [PMID: 18031044]
[27]
Bandini, M.; Eichholzer, A.; Tragni, M.; Umani-Ronchi, A. Enantioselective phase-transfer-catalyzed intramolecular aza-Michael reaction: effective route to pyrazino-indole compounds. Angew. Chem. Int. Ed. Engl., 2008, 47(17), 3238-3241.
[http://dx.doi.org/10.1002/anie.200705685] [PMID: 18348111]
[28]
Stanley, L.M.; Hartwig, J.F. Iridium-catalyzed regio- and enantioselective N-allylation of indoles. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7841-7844.
[http://dx.doi.org/10.1002/anie.200904338] [PMID: 19760689]
[29]
Trost, B.M.; Osipov, M.; Dong, G. Palladium-catalyzed dynamic kinetic asymmetric transformations of vinyl aziridines with nitrogen heterocycles: rapid access to biologically active pyrroles and indoles. J. Am. Chem. Soc., 2010, 132(44), 15800-15807.
[http://dx.doi.org/10.1021/ja1071509] [PMID: 20949972]
[30]
Xie, Y.; Zhao, Y.; Qian, B.; Yang, L.; Xia, C.; Huang, H. Enantioselective N-H functionalization of indoles with α,β-unsaturated γ-lactams catalyzed by chiral Brønsted acids. Angew. Chem. Int. Ed. Engl., 2011, 50(25), 5682-5686.
[http://dx.doi.org/10.1002/anie.201102046] [PMID: 21591044]
[31]
Sevov, C.S.; Zhou, J.S.; Hartwig, J.F. Iridium-catalyzed, intermolecular hydroamination of unactivated alkenes with indoles. J. Am. Chem. Soc., 2014, 136(8), 3200-3207.
[http://dx.doi.org/10.1021/ja412116d] [PMID: 24483848]
[32]
Trost, B.M.; Gnanamani, E.; Hung, C.J. Controlling regioselectivity in the enantioselective N-alkylation of indole analogues catalyzed by dinuclear zinc-prophenol. Angew. Chem. Int. Ed. Engl., 2017, 56(35), 10451-10456.
[http://dx.doi.org/10.1002/anie.201705315] [PMID: 28654735]
[33]
Cui, H.L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.C. Chemoselective asymmetric N-allylic alkylation of indoles with Morita-Baylis-Hillman carbonates. Angew. Chem. Int. Ed. Engl., 2009, 48(31), 5737-5740.
[http://dx.doi.org/10.1002/anie.200902093] [PMID: 19554585]
[34]
Wang, Y-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. Asymmetric Friedel-crafts reaction of indoles with imines by an organic catalyst. J. Am. Chem. Soc., 2006, 128(25), 8156-8157.
[http://dx.doi.org/10.1021/ja062700v] [PMID: 16787078]
[35]
Wang, P-S.; Chen, D-F.; Gong, L-Z. Recent progress in asymmetric relay catalysis of metal complex with chiral phosphoric acid.. In: Asymmetric Organocatalysis Combined with Metal Catalysis, 2020; pp. 185-205;
[36]
Tang, H-Y.; Zhang, Z-B. Chiral phosphoric acid catalyzed asymmetric friedel-crafts alkylation of indoles with nitroolefins. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(10), 2038-2046.
[http://dx.doi.org/10.1080/10426507.2010.536189]
[37]
Xia, Z-L.; Xu-Xu, Q-F.; Zheng, C.; You, S-L. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem. Soc. Rev., 2020, 49(1), 286-300.
[http://dx.doi.org/10.1039/C8CS00436F] [PMID: 31829319]
[38]
Connon, S.J. Chiral phosphoric acids: powerful organocatalysts for asymmetric addition reactions to imines. Angew. Chem. Int. Ed., 2006, 45(24), 3909-3912.
[http://dx.doi.org/10.1002/anie.200600529] [PMID: 16721892]
[39]
Terada, M. Enantioselective carbon-carbon bond forming reactions catalyzed by chiral phosphoric acid catalysts. Curr. Org. Chem., 2011, 15(13), 2227-2256.
[http://dx.doi.org/10.2174/138527211796150732]
[40]
Tran, V.T.; Nimmagadda, S.K.; Liu, M.; Engle, K.M. Recent applications of chiral phosphoric acids in palladium catalysis. Org. Biomol. Chem., 2020, 18(4), 618-637.
[http://dx.doi.org/10.1039/C9OB02205H] [PMID: 31907504]
[41]
Antenucci, A.; Dughera, S.; Renzi, P. Green chemistry meets asymmetric organocatalysis: a critical overview on catalysts synthesis. ChemSusChem, 2021, 14(14), 2785-2853.
[http://dx.doi.org/10.1002/cssc.202100573] [PMID: 33984187]
[42]
Terada, M. Chiral phosphoric acids as versatile catalysts for enantioselective carbon-carbon bond forming reactions. Bull. Chem. Soc. Jpn., 2010, 83(2), 101-119.
[http://dx.doi.org/10.1246/bcsj.20090268]
[43]
Wang, C-J.; Yang, Q-Q.; Wang, M-X.; Shang, Y-H.; Tong, X-Y.; Deng, Y-H.; Shao, Z. Catalytic asymmetric 1, 4-type Friedel-Crafts (hetero) arylations of 1-azadienes: the highly enantioselective syntheses of chiral hetero-triarylmethanes. Org. Chem. Front., 2020, 7(3), 609-616.
[http://dx.doi.org/10.1039/C9QO01391A]
[44]
Deka, B.; Deb, M.L.; Baruah, P.K. Recent advances on the C2-functionalization of indole via umpolung. Top. Curr. Chem. (Cham), 2020, 378(2), 22.
[http://dx.doi.org/10.1007/s41061-020-0287-7] [PMID: 32030596]
[45]
Allin, S.; Thomas, C.; Allard, J.; Doyle, K.; Elsegood, M. A highly selective synthesis of the indolo [2, 3-a quinolizine ring system and application to natural product synthesis. Eur. J. Org. Chem., 2005, 19, 4179-4186.
[http://dx.doi.org/10.1002/ejoc.200500412]
[46]
Schrader, T.O.; Johnson, B.R.; Lopez, L.; Kasem, M.; Gharbaoui, T.; Sengupta, D.; Buzard, D.; Basmadjian, C.; Jones, R.M. Complementary asymmetric routes to (R)-2-(7-hydroxy-2,3-dihydro-1H-pyrrolo[1,2-aindol-1-yl)acetate. Org. Lett., 2012, 14(24), 6306-6309.
[http://dx.doi.org/10.1021/ol303070k] [PMID: 23210718]
[47]
Race, N.J.; Yuan, Q.; Sigman, M.S. Enantioselective C2-alkylation of indoles via a redox-relay Heck reaction of 2-indole triflates. Chem. (Weinheim an der Bergstrasse, Germany), 2019, 25(2), 512.
[48]
Maity, P.; Pemberton, R.P.; Tantillo, D.J.; Tambar, U.K. Brønsted acid catalyzed enantioselective indole aza-Claisen rearrangement mediated by an arene CH-O interaction. J. Am. Chem. Soc., 2013, 135(44), 16380-16383.
[http://dx.doi.org/10.1021/ja4095473] [PMID: 24164401]
[49]
Yu, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Chiral phosphoric acid catalyzed asymmetric friedel-crafts alkylation of indole with 3‐hydroxyisoindolin‐1‐one: enantioselective synthesis of 3‐indolyl‐substituted isoindolin‐1‐ones. Eur. J. Org. Chem., 2011, 2011(5), 892-897.
[http://dx.doi.org/10.1002/ejoc.201001408]
[50]
Kano, T.; Takechi, R.; Kobayashi, R.; Maruoka, K. Chiral Brønsted acid-catalyzed enantioselective addition of indoles to ketimines. Org. Biomol. Chem., 2014, 12(5), 724-727.
[http://dx.doi.org/10.1039/C3OB42190B] [PMID: 24323293]
[51]
Bosch, J.; Bennasar, M-L. A general method for the synthesis of bridged indole alkaloids. Addition of carbon nucleophiles to N-alkylpyridinium salts. Synlett, 1995, 1995(06), 587-596.
[http://dx.doi.org/10.1055/s-1995-5007]
[52]
Somei, M.; Yamada, F. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2004, 21(2), 278-311.
[http://dx.doi.org/10.1039/b212257j] [PMID: 15042150]
[53]
Saha, S.; Alamsetti, S.K.; Schneider, C. Chiral Brønsted acid-catalyzed Friedel-Crafts alkylation of electron-rich arenes with in situ-generated ortho-quinone methides: highly enantioselective synthesis of diarylindolylmethanes and triarylmethanes. Chem. Commun. (Camb.), 2015, 51(8), 1461-1464.
[http://dx.doi.org/10.1039/C4CC08559K] [PMID: 25493449]
[54]
Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Novel bioactive isoquinoline alkaloids from Carduus crispus. Tetrahedron, 2002, 58(34), 6795-6798.
[http://dx.doi.org/10.1016/S0040-4020(02)00792-5]
[55]
Singh, H.; Singh, P.; Kumari, K.; Chandra, A.; Dass, S.K.; Chandra, R. A review on noscapine, and its impact on heme metabolism. Curr. Drug Metab., 2013, 14(3), 351-360.
[http://dx.doi.org/10.2174/1389200211314030010] [PMID: 22935070]
[56]
Zhang, M.; Sun, W.; Zhu, G.; Bao, G.; Zhang, B.; Hong, L.; Li, M.; Wang, R. Enantioselective dearomative arylation of Isoquinolines. ACS Catal., 2016, 6(8), 5290-5294.
[http://dx.doi.org/10.1021/acscatal.6b01693]
[57]
Metz, A.E.; Kozlowski, M.C. Recent advances in asymmetric catalytic methods for the formation of acyclic α, α-disubstituted α-amino acids. J. Org. Chem., 2015, 80(1), 1-7.
[http://dx.doi.org/10.1021/jo502408z] [PMID: 25496236]
[58]
Kedrowski, B.L.; Heathcock, C.H. Thiazoline ring formation from 2-methylcysteines and 2-helomethylalanines. Heterocycles, 2002, 58, 601-634.
[http://dx.doi.org/10.3987/COM-02-S(M)60]
[59]
Zhao, Y.; Wang, L.; Zhao, J. Chiral phosphoric acid catalyzed aza-Friedel-Crafts alkylation of indoles with cyclic aryl α-ketimino esters. Tetrahedron Lett., 2017, 58(3), 213-217.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.012]
[60]
Zhu, J.; Chen, H.; Guo, X.E.; Qiu, X-L.; Hu, C-M.; Chamberlin, A.R.; Lee, W-H. Synthesis, molecular modeling, and biological evaluation of novel RAD51 inhibitors. Eur. J. Med. Chem., 2015, 96, 196-208.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.021] [PMID: 25874343]
[61]
Glavač, D.; Zheng, C.; Dokli, I.; You, S-L.; Gredičak, M. Chiral brønsted acid catalyzed enantioselective aza-friedel-crafts reaction of cyclic α-diaryl N-Acyl imines with indoles. J. Org. Chem., 2017, 82(16), 8752-8760.
[http://dx.doi.org/10.1021/acs.joc.7b01420] [PMID: 28742360]
[62]
Lee, S.G.; Kim, S-G. An asymmetric Brønsted acid-catalyzed Friedel-Crafts reaction of indoles with cyclic N-sulfimines. RSC Advances, 2017, 7(54), 34283-34286.
[http://dx.doi.org/10.1039/C7RA06244C]
[63]
Xu, Y-Q.; Lu, J-M.; Li, N-J.; Yan, F.; Xia, X-W.; Xu, Q-F. Pseudo-living radical polymerization using triarylmethane as the thermal iniferter. Eur. Polym. J., 2008, 44(7), 2404-2411.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.05.007]
[64]
Katritzky, A.R.; Gupta, V.; Garot, C.; Stevens, C.V.; Gordeev, M.F. Benzotriazolylalkylation of aromatic compounds by 1-benzenesulphonylbenzotriazole and synthesis of triarylmethanes. Heterocycles (Sendai), 1994, 38(2), 345-356.
[http://dx.doi.org/10.3987/COM-93-6572]
[65]
Yue, C.; Na, F.; Fang, X.; Cao, Y.; Antilla, J.C. Chiral phosphoric acid catalyzed asymmetric synthesis of hetero-triarylmethanes from racemic indolyl alcohols. Angew. Chem. Int. Ed. Engl., 2018, 57(34), 11004-11008.
[http://dx.doi.org/10.1002/anie.201804330] [PMID: 29968269]
[66]
Kim, Y.; Lee, J.; Jung, J.; Kim, S-G. Chiral Brønsted acid-catalyzed Friedel-Crafts reaction of 3-indolylsulfamidates with indoles: Synthesis of enantioenriched bisindolylmethane sulfamates. Tetrahedron Lett., 2019, 60(25), 1625-1630.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.003]
[67]
Xie, H-P.; Wu, B.; Wang, X-W.; Zhou, Y-G. Chiral Brønsted acid-catalyzed conjugate addition of indoles to azadienes: Enantioselective synthesis of hetero-triarylmethanes. Chin. J. Catal., 2019, 40(10), 1566-1575.
[http://dx.doi.org/10.1016/S1872-2067(19)63396-6]
[68]
Hatano, M.; Toh, K.; Ishihara, K. Enantioselective aza-friedel-crafts reaction of indoles and pyrroles catalyzed by chiral C1-symmetric bis(phosphoric acid). Org. Lett., 2020, 22(24), 9614-9620.
[http://dx.doi.org/10.1021/acs.orglett.0c03662] [PMID: 33295179]
[69]
Palchaudhuri, R.; Nesterenko, V.; Hergenrother, P.J. The complex role of the triphenylmethyl motif in anticancer compounds. J. Am. Chem. Soc., 2008, 130(31), 10274-10281.
[http://dx.doi.org/10.1021/ja8020999] [PMID: 18611022]
[70]
Johnson, R.A. Arylmethylphosphonates and phosphonic acids useful as anti-inflammatory agents; Google Patents, 1997.
[71]
Yadav, A.; Kumar, D.; Mishra, M.K. Deeksha.; Tripathi, C.B. Catalytic Enantioselective Synthesis of Aryl-Methyl Organophos-phorus Compounds. J. Org. Chem., 2021, 86(2), 2000-2011.
[http://dx.doi.org/10.1021/acs.joc.0c02675] [PMID: 33406842]
[72]
Yang, G.; Lindovska, P.; Zhu, D.; Kim, J.; Wang, P.; Tang, R-Y.; Movassaghi, M.; Yu, J-Q. Pd(II)-catalyzed meta-C-H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc., 2014, 136(30), 10807-10813.
[http://dx.doi.org/10.1021/ja505737x] [PMID: 25007097]
[73]
Zhou, J.; Zhu, G-D.; Wang, L.; Tan, F-X.; Jiang, W.; Ma, Z-G.; Kang, J-C.; Hou, S-H.; Zhang, S-Y. Remote C6-enantioselective C-H functionalization of 2,3-disubstituted indoles through the dual H-bonds and π-π interaction strategy enabled by CPAs. Org. Lett., 2019, 21(21), 8662-8666.
[http://dx.doi.org/10.1021/acs.orglett.9b03276] [PMID: 31638819]
[74]
Wu, Q.; Li, G-L.; Yang, S.; Shi, X-Q.; Huang, T-Z.; Du, X-H.; Chen, Y. A chemo- and regioselective C6-functionalization of 2,3-disubstituted indoles: highly efficient synthesis of diarylindol-6-ylmethanes. Org. Biomol. Chem., 2019, 17(13), 3462-3470.
[http://dx.doi.org/10.1039/C9OB00283A] [PMID: 30888364]
[75]
Zhao, Y.; Cai, L.; Huang, T.; Meng, S.; Chan, A.S.; Zhao, J. Solvent‐mediated C3/C7 regioselective switch in chiral phosphoric acid‐catalyzed enantioselective friedel‐crafts alkylation of indoles with α‐ketiminoesters. Adv. Synth. Catal., 2020, 362(6), 1309-1316.
[http://dx.doi.org/10.1002/adsc.201901380]
[76]
Yang, X.; Luo, G.; Zhou, L.; Liu, B.; Zhang, X.; Gao, H.; Jin, Z.; Chi, Y.R. Enantioselective indole N-H functionalization enabled by addition of carbene catalyst to indole aldehyde at remote site. ACS Catal., 2019, 9(12), 10971-10976.
[http://dx.doi.org/10.1021/acscatal.9b03163]
[77]
Chen, M.; Sun, J. Catalytic asymmetric N-alkylation of indoles and carbazoles through 1,6-conjugate addition of aza-para-quinone methides. Angew. Chem. Int. Ed. Engl., 2017, 56(16), 4583-4587.
[http://dx.doi.org/10.1002/anie.201701947] [PMID: 28332764]
[78]
Cai, Y.; Gu, Q.; You, S-L. Chemoselective N-H functionalization of indole derivatives via the Reissert-type reaction catalyzed by a chiral phosphoric acid. Org. Biomol. Chem., 2018, 16(33), 6146-6154.
[http://dx.doi.org/10.1039/C8OB01863D] [PMID: 30101274]
[79]
Zhang, L.; Wu, B.; Chen, Z.; Hu, J.; Zeng, X.; Zhong, G. Chiral phosphoric acid catalyzed enantioselective N-alkylation of indoles with in situ generated cyclic N-acyl ketimines. Chem. Commun. (Camb.), 2018, 54(66), 9230-9233.
[http://dx.doi.org/10.1039/C8CC05073B] [PMID: 30065995]
[80]
Lewin, G.; Schaeffer, C.; Hocquemiller, R. Access to new cytotoxic bisindole alkaloids by a modified Borch reductive amination process. Heterocycles, 2000, 53(11), 2353-2356.
[http://dx.doi.org/10.3987/COM-00-9001]
[81]
Raoul, M.; Schaeffer, C.; Léonce, S.; Pierré, A.; Atassi, G.; Hocquemiller, R.; Lewin, G. Synthesis of a novel series of cytotoxic bisindole alkaloids. Bioorg. Med. Chem. Lett., 2001, 11(1), 79-81.
[http://dx.doi.org/10.1016/S0960-894X(00)00600-4] [PMID: 11140739]
[82]
Randriambola, L.; Quirion, J-C.; Kan-Fan, C.; Husson, H-P. Structure of goniomitine, a new type of indole alkaloid. Tetrahedron Lett., 1987, 28(19), 2123-2126.
[http://dx.doi.org/10.1016/S0040-4039(00)96059-3]
[83]
Wang, X-W.; Chen, M-W.; Wu, B.; Wang, B.; Zhou, Y-G. Chiral phosphoric acid-catalyzed synthesis of fluorinated 5,6- dihydroindolo[1,2- c].quinazolines with quaternary stereocenters. J. Org. Chem., 2019, 84(12), 8300-8308..
[http://dx.doi.org/10.1021/acs.joc.9b00985] [PMID: 31132277]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy