Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Discovery of Novel Cytochrome bc1 Complex Inhibitor Based on Natural Product Neopeltolide

Author(s): Tao Chen, Rui Zhang, Yu-Xia Wang, Meng-Qi Gao, Qiong Chen*, Xiao-Lei Zhu* and Guang-Fu Yang

Volume 19, Issue 4, 2022

Published on: 06 October, 2021

Page: [263 - 268] Pages: 6

DOI: 10.2174/1570180818666211006142034

Price: $65

Abstract

Background: Natural products (NPs) are important sources for the design of new drugs and agrochemicals. Neopeltolide, a marine NP, has been identified as a potent Qo-site inhibitor of cytochrome bc1 complex.

Methods: In this study, a series of neopeltolide derivatives was designed and synthesized by the simplification of its 14-membered macrolactone ring with a diphenyl ether fragment. The enzymatic inhibition bioassays and mycelium growth inhibition experiments against a range of fungi were performed to determine their fungicidal activities.

Results: The derivatives have potent activity against the porcine bc1 complex. Compound 8q showed the best activity with an IC50 value of 24.41 nM, which was 8-fold more effective than that of positive control azoxystrobin. Compound 8a exhibited a 100% inhibitory rate against Zymoseptoria tritici and Alternaria solani at a 20 mg/L dose.

Conclusion: Computational results indicated that compounds with suitable physicochemical properties, as well as those forming a hydrogen bond with His161, would have good fungicidal activity. These data could be useful for the design of bc1 complex inhibitors in the future.

Keywords: Neopeltolide, bc1 complex, natural product, inhibitor, fungicidal activity, molecular docking.

Next »
Graphical Abstract

[1]
Wang, S.; Dong, G.; Sheng, C. Structural simplification of natural products. Chem. Rev., 2019, 119(6), 4180-4220.
[http://dx.doi.org/10.1021/acs.chemrev.8b00504] [PMID: 30730700]
[2]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[3]
Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat. Prod., 2012, 75(6), 1231-1242.
[http://dx.doi.org/10.1021/np300024u] [PMID: 22616957]
[4]
Wolf, N.M.; Lee, H.; Zagal, D.; Nam, J.W.; Oh, D.C.; Lee, H.; Suh, J.W.; Pauli, G.F.; Cho, S.; Abad-Zapatero, C. Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. Acta Crystallogr. D Struct. Biol., 2020, 76(Pt 5), 458-471.
[http://dx.doi.org/10.1107/S2059798320004027] [PMID: 32355042]
[5]
Fage, C.D.; Lathouwers, T.; Vanmeert, M.; Gao, L.J.; Vrancken, K.; Lammens, E.M.; Weir, A.N.M.; Degroote, R.; Cuppens, H.; Kosol, S.; Simpson, T.J.; Crump, M.P.; Willis, C.L.; Herdewijn, P.; Lescrinier, E.; Lavigne, R.; Anné, J.; Masschelein, J. The Kalimantacin polyketide antibiotics inhibit fatty acid biosynthesis in staphylococcus aureus by targeting the enoyl-acyl carrier protein binding site of FabI. Angew. Chem. Int. Ed. Engl., 2020, 59(26), 10549-10556.
[http://dx.doi.org/10.1002/anie.201915407] [PMID: 32208550]
[6]
Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The strobilurin fungicides. Pest Manag. Sci., 2002, 58(7), 649-662.
[http://dx.doi.org/10.1002/ps.520] [PMID: 12146165]
[7]
Sauter, H.; Steglich, W.; Anke, T. Strobilurins: Evolution of a new class of active substances. Angew. Chem. Int. Ed. Engl., 1999, 38(10), 1328-1349.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1328:AID-ANIE1328>3.0.CO;2-1] [PMID: 29711574]
[8]
Wright, A.E.; Botelho, J.C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P.J.; Pitts, T.P.; Pomponi, S.A.; Reed, J.K. Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. J. Nat. Prod., 2007, 70(3), 412-416.
[http://dx.doi.org/10.1021/np060597h] [PMID: 17309301]
[9]
Hao, G.F.; Wang, F.; Li, H.; Zhu, X.L.; Yang, W.C.; Huang, L.S.; Wu, J.W.; Berry, E.A.; Yang, G.F. Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex. J. Am. Chem. Soc., 2012, 134(27), 11168-11176.
[http://dx.doi.org/10.1021/ja3001908] [PMID: 22690928]
[10]
Hao, G.F.; Jiang, W.; Ye, Y.N.; Wu, F.X.; Zhu, X.L.; Guo, F.B.; Yang, G.F. ACFIS: A web server for fragment-based drug discovery. Nucleic Acids Res., 2016, 44(W1), W550.-6
[http://dx.doi.org/10.1093/nar/gkw393] [PMID: 27150808]
[11]
Yang, J.F.; Wang, F.; Jiang, W.; Zhou, G.Y.; Li, C.Z.; Zhu, X.L.; Hao, G.F.; Yang, G.F. PADFrag: A database built for the exploration of bioactive fragment space for drug discovery. J. Chem. Inf. Model., 2018, 58(9), 1725-1730.
[http://dx.doi.org/10.1021/acs.jcim.8b00285] [PMID: 30134653]
[12]
Wu, F.X.; Wang, F.; Yang, J.F.; Jiang, W.; Wang, M.Y.; Jia, C.Y.; Hao, G.F.; Yang, G.F. AIMMS suite: A web server dedicated for prediction of drug resistance on protein mutation. Brief. Bioinform., 2018, 21, 318-328.
[http://dx.doi.org/10.1093/bib/bby113] [PMID: 30496338]
[13]
Wang, F.; Yang, J.F.; Wang, M.Y.; Jia, C.Y.; Shi, X.X.; Hao, G.F.; Yang, G.F. Graph attention convolutional neural network accurately predicts chemical poisoning of honey bees. Sci. Bull. (Beijing), 2020, 65, 1184-1191.
[http://dx.doi.org/10.1016/j.scib.2020.04.006]
[14]
Zhu, X.L.; Zhang, R.; Wu, Q.Y.; Song, Y.J.; Wang, Y.X.; Yang, J.F.; Yang, G.F. Natural product neopeltolide as a cytochrome bc1 complex inhibitor: mechanism of action and structural modification. J. Agric. Food Chem., 2019, 67(10), 2774-2781.
[http://dx.doi.org/10.1021/acs.jafc.8b06195] [PMID: 30794394]
[15]
Xiong, M.Q.; Chen, T.; Wang, Y.X.; Zhu, X.L.; Yang, G.F. Design and synthesis of potent inhibitors of bc1 complex based on natural product neopeltolide. Bioorg. Med. Chem. Lett., 2020, 30(16), 127324.
[http://dx.doi.org/10.1016/j.bmcl.2020.127324] [PMID: 32631529]
[16]
Kini, S.G.; Rathi, E.; Kumar, A.; Bhat, V. Potentials of diphenyl ether scaffold as a therapeutic agent: A review. Mini Rev. Med. Chem., 2019, 19(17), 1392-1406.
[http://dx.doi.org/10.2174/1389557519666190312150132] [PMID: 30864517]
[17]
Xiong, L.; Li, H.; Jiang, L.N.; Ge, J.M.; Yang, W.C.; Zhu, X.L.; Yang, G.F. Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors. J. Agric. Food Chem., 2017, 65(5), 1021-1029.
[http://dx.doi.org/10.1021/acs.jafc.6b05134] [PMID: 28110534]
[18]
Zhao, L.X.; Jiang, M.J.; Hu, J.J.; Zou, Y.L.; Cheng, Y.; Ren, T.; Gao, S.; Fu, Y.; Ye, F. Design, synthesis, and herbicidal activity of novel diphenyl ether derivatives containing fast degrading tetrahydrophthalimide. J. Agric. Food Chem., 2020, 68(12), 3729-3741.
[http://dx.doi.org/10.1021/acs.jafc.0c00947] [PMID: 32125836]
[19]
Bedos-Belval, F.; Rouch, A.; Vanucci-Bacqué, C.; Baltas, M. Diaryl ether derivatives as anticancer agents - a review. MedChemComm, 2012, 3, 1356-1372.
[http://dx.doi.org/10.1039/c2md20199b]
[20]
Bonafoux, D.; Nanthakumar, S.; Bandarage, U.K.; Memmott, C.; Lowe, D.; Aronov, A.M.; Bhisetti, G.R.; Bonanno, K.C.; Coll, J.; Leeman, J.; Lepre, C.A.; Lu, F.; Perola, E.; Rijnbrand, R.; Taylor, W.P.; Wilson, D.; Zhou, Y.; Zwahlen, J.; Ter Haar, E. Fragment-Based Discovery of Dual JC Virus and BK Virus Helicase Inhibitors. J. Med. Chem., 2016, 59(15), 7138-7151.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00486] [PMID: 27385654]
[21]
Atobe, M.; Nagami, T.; Muramatsu, S.; Ohno, T.; Kitagawa, M.; Suzuki, H.; Ishiguro, M.; Watanabe, A.; Kawanishi, M. Discovery of novel transient receptor potential vanilloid 4 (TRPV4) agonists as regulators of chondrogenic differentiation: Identification of quinazolin-4(3H)-ones and in vivo studies on a surgically induced rat model of osteoarthritis. J. Med. Chem., 2019, 62(3), 1468-1483.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01615] [PMID: 30629441]
[22]
Tang, X.; Xie, M.; Sun, Y.X.; Liu, J.H.; Zhong, Z.C.; Wang, Y.L. Synthesis and antibacterial activity of brominated 2‘(4’)-nitro-3-hydroxy diphenyl ethers. Chin. Chem. Lett., 2009, 20, 435-438.
[http://dx.doi.org/10.1016/j.cclet.2008.12.027]
[23]
Chen, T.; Xiong, H.; Yang, J.F.; Zhu, X.L.; Qu, R.Y.; Yang, G.F. Diaryl ether: A privileged scaffold for drug and agrochemical discovery. J. Agric. Food Chem., 2020, 68(37), 9839-9877.
[http://dx.doi.org/10.1021/acs.jafc.0c03369] [PMID: 32786826]
[24]
Cheng, H.; Shen, Y.Q.; Pan, X.Y.; Hou, Y.P.; Wu, Q.Y.; Yang, G.F. Discovery of 1,2,4-triazole-1,3-disulfonamides as dual inhibitors of mitochondrial complex II and complex III. New J. Chem., 2015, 39, 7281-7292.
[http://dx.doi.org/10.1039/C5NJ00215J]
[25]
Zhu, X.; Zhang, M.; Liu, J.; Ge, J.; Yang, G. Ametoctradin is a potent Qo site inhibitor of the mitochondrial respiration complex III. J. Agric. Food Chem., 2015, 63(13), 3377-3386.
[http://dx.doi.org/10.1021/acs.jafc.5b00228] [PMID: 25784492]
[26]
Crowley, P.J.; Berry, E.A.; Cromartie, T.; Daldal, F.; Godfrey, C.R.A.; Lee, D.W.; Phillips, J.E.; Taylor, A.; Viner, R. The role of molecular modeling in the design of analogues of the fungicidal natural products crocacins A and D. Bioorg. Med. Chem., 2008, 16(24), 10345-10355.
[http://dx.doi.org/10.1016/j.bmc.2008.10.030] [PMID: 18996700]
[27]
Tetko, I.V.; Tanchuk, V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1136-1145.
[http://dx.doi.org/10.1021/ci025515j] [PMID: 12377001]

© 2024 Bentham Science Publishers | Privacy Policy