Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Microencapsulation of Cassia fistula Flower Extract with Chitosan and its Antibacterial Studies

Author(s): Vandana Singh Suryavanshi*, Tungabidya Maharana* and Pratik Kumar Jagtap

Volume 19, Issue 9, 2022

Published on: 11 January, 2022

Page: [980 - 990] Pages: 11

DOI: 10.2174/1567201818666211006102721

Price: $65

Abstract

Background: The plant used in the present study is Cassia fistula, which belongs to the family Leguminosae and has been used in traditional medicinal systems due to the presence of a copious amount of Phytochemicals with various properties.

Aims: This study is focused on the extraction of phytochemicals from the Cassia fistula flower and its subsequent encapsulation into chitosan matrix for applications in drug delivery. Chitosan is approved by FDA for its use in Pharmaceutical industries.

Methods: As described by several analytical techniques such as FT-IR, NMR, Thermal analysis, and SEM, the microsphere thus prepared by the current study is predicted to release the desired extract with medicinal properties in a controlled manner, allowing for more convenient and desired levels of drug administration. The swelling study and release study of the prepared microsphere have been carried out in physiological pH 2 and 7.4. NMR study has shown that sitosterol and friedelin have been encapsulated successfully into the chitosan matrix.

Results: The microspheres have shown up to 80% swelling in pH 2 upto 8 days, and 60% of the in- -vitro controlled drug release has also been found in pH 2 upto 2 days. The thermal studies using TGA and DSC supported the thermal stabilities of CS beads, CFFE and CFFE-CS beads, Also, it showed the dispersion of the CFFE in the cavities of the Chitosan matrix.

Conclusion: The Biomedical application of the synthesized CFFE-CS beads has also been reported on the basis of their antibacterial studies.

Keywords: Cassia fistula, chitosan, encapsulation, microspheres, drug release, antibacterial study.

« Previous
Graphical Abstract

[1]
Sahoo, S.; Sasmal, A.; Nanda, R.; Phani, A.R.; Nayak, P.L. Synthesis of chitosan–polycaprolactone blend for control delivery of ofloxacin drug. Carbohydr. Polym., 2010, 79(1), 106-113.
[http://dx.doi.org/10.1016/j.carbpol.2009.07.042]
[2]
Vivek, R.; Nipun Babu, V.; Thangam, R.; Subramanian, K.S.; Kannan, S. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf. B Biointerfaces, 2013, 111, 117-123.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.018] [PMID: 23787278]
[3]
Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J. Biomater. Sci. Polym. Ed., 2012, 23(11), 1381-1400.
[http://dx.doi.org/10.1163/092050611X581534] [PMID: 21722423]
[4]
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528.
[http://dx.doi.org/10.1039/C3PY01192E]
[5]
Alfatama, M.; Ahmad, K.; Mohamed, F. Microencapsulation of cassia alata: Ffabrication and characterization. Int. J. Pharm. Pharm. Sci., 2012, 4, 219-224.
[6]
Bahorun, T.; Neergheen, V.S.; Aruoma, O.I. Phytochemical constituents of Cassia fistula. Afr. J. Biotechnol., 2005, 4, 1530-1540.
[7]
Zhou, M.; Zhou, K.; Gao, X-M.; Jiang, Z-Y.; Lv, J-J.; Liu, Z-H.; Yang, G-Y.; Miao, M-M.; Che, C-T.; Hu, Q-F. Fistulains A and B, New Bischromones from the Bark of Cassia fistula, and Their Activities. Org. Lett., 2015, 17(11), 2638-2641.
[http://dx.doi.org/10.1021/acs.orglett.5b01007] [PMID: 25965347]
[8]
Venugopalan, P.; Revathy, K.T. Antioxidant activity of Cassia fistula flower extracts. J. Pharm. Appl. Chem., 2016, 2(2), 77-80.
[http://dx.doi.org/10.18576/jpac/020207]
[9]
Barnaby, A.G.; Reid, R.; Warren, D. Antioxidant Activity, Total Phenolics and Fatty Acid Profile of Delonix regia, Cassia fistula, Spathodea campanulata, Senna siamea and Tibouchina granulosa. J. Anal. Pharm. Res., 2016, 3, 00056.
[10]
Hatano, T.; Mizuta, S.; Ito, H.; Yoshida, T. C-Glycosidic flavonoids from Cassia occidentalis. Phytochemistry, 1999, 52(7), 1379-138.
[http://dx.doi.org/10.1016/S0031-9422(99)00437-9]
[11]
Rejinold, N.S.; Muthunarayanana, M.; Muthuchelianb, K.; Chennazhia, K.P.; Naira, S.V.; Jayakumar, R. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr. Polym., 2011, 84(1), 407-416.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.056]
[12]
Chopra, R.N.; Nayar, S.L.; Chpora, I.C. Glossary of Indian Medicinal Plants; National Institute of Science Communication and Information Resources: New Delhi, 2006, p. 54.
[13]
Antonisamy, P.; Agastian, P.; Kang, C.W.; Kim, N.S.; Kim, J.H. Anti-inflammatory activity of rhein isolated from the flowers of Cassia fistula L. and possible underlying mechanisms. Saudi J. Biol. Sci., 2019, 26(1), 96-104.
[http://dx.doi.org/10.1016/j.sjbs.2017.04.011] [PMID: 30622412]
[14]
Haider, W.; Sultana, B.; Mushtaq, M.; Bhatti, I.A. Multi-response optimization of enzyme-assisted maceration to enhance the yield and antioxidant activity of Cassia fistula pods extracts. J. Food Meas. Charact., 2018, 12(4), 2685-2694.
[http://dx.doi.org/10.1007/s11694-018-9886-1]
[15]
Huang, Y-C.; Kuo, T-H. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocoll., 2016, 53, 261-269.
[http://dx.doi.org/10.1016/j.foodhyd.2015.02.006]
[16]
Gayathri, G.; Nair, B.R.; Babu, V. Isolation and characterization of a triterpenoid from the leaves of azima tetracantha lam. Int. J. Pharm. Sci. Res., 2016, 7, 2090-2096.
[17]
Srinivasan, R.; Chandrasekar, M.J.N.; Nanjan, M.J. Phytochemical Investigations of Caesalpinia Digyna Root. E-J. Chem., 2011, 8(4), 1843-1847.
[http://dx.doi.org/10.1155/2011/630375]
[18]
Baskar, K.; Duraipandiyan, V.; Ignacimuthu, S. Bioefficacy of the triterpenoid friedelin against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Pest Manag. Sci., 2014, 12(12), 1877-1883.
[http://dx.doi.org/10.1002/ps.3742]
[19]
Mellado, M.; Madrid, A.; Peña-Cortés, H.; López, R.; Jara, C.; Espinoza, L. Antioxidant activity of Anthraquinones isolated from Leaves of Muehlenbeckia Hastulata (J.E. SM.) Johnst. (polygonaceae). J. Chil. Chem. Soc., 2013, 58(2), 1767-1770.
[http://dx.doi.org/10.4067/S0717-97072013000200028]
[20]
Angajala, G.; Subashini, R. Evaluation of larvicidal potential of β-sitosterol isolated from indigenous Aegle marmelos Correa crude leaf extracts against blood feeding parasites and its binding affinity studies towards sterol carrier protein. Biocatal. Agric. Biotechnol., 2018, 16, 586-593.
[http://dx.doi.org/10.1016/j.bcab.2018.10.005]
[21]
Sosińska, E.; Przybylski, R.; Hazendonk, P.; Zhao, Y.Y.; Curtis, J.M. Characterisation of non-polar dimers formed during thermo-oxidative degradation of β-sitosterol. Food Chem., 2013, 139(1-4), 464-474.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.053] [PMID: 23561132]
[22]
Rathee, P.; Rathee, D.; Rathee, D.; Rathee, S. In vitro cytotoxic activity of β-sitosterol triacontenate isolated from Capparis decidua (Forsk.) edgew. Asian Pac. J. Trop. Med., 2012, 5(3), 225-230.
[http://dx.doi.org/10.1016/S1995-7645(12)60029-7] [PMID: 22305789]
[23]
Monier, M.; Abdel-Latif, D.A.; Youssef, I. Preparation of ruthenium (III) ion-imprinted beads based on 2-pyridylthiourea modified chitosan. J. Colloid Interface Sci., 2018, 513, 266-278.
[http://dx.doi.org/10.1016/j.jcis.2017.11.004] [PMID: 29153721]
[24]
Bhakta, T.; Deb, P.K.; Bhaumik, K.N.; Saha, J. Pharmacognostic investigation, acute toxicity studies and isolation of steroidal compound from the leaves of Cassia fistula linn. Int. J. Pharm. Sci. Rev. Res., 2014, 25, 210-214.
[25]
Nonaka, G-I.; Sakai, R.; Nishioka, I. Hydrolysable tannins and proanthocyanidins from green tea. Phytochemistry, 1984, 23(8), 1753-1755.
[http://dx.doi.org/10.1016/S0031-9422(00)83484-6]
[26]
Mello, J.C.P.D.; Petereit, F.; Nahrstedt, A. A dimeric proanthocyanidin from Stryphnodendron adstringens. Phytochemistry, 1999, 51(8), 1105-1107.
[http://dx.doi.org/10.1016/S0031-9422(98)00715-8]
[27]
Mehta, J.P. Separation and characterization of anthraquinone derivatives from Cassia fistula using chromatographic and spectral techniques. Int. J. Chem. Sci. Res., 2012, 10, 306-316.
[28]
Osaki, N.; Koyano, T.; Kowithayakorn, T.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Sesquiterpenoids and plasmin-inhibitory flavonoids from Blumea balsamifera. J. Nat. Prod., 2005, 68(3), 447-449.
[http://dx.doi.org/10.1021/np049622e] [PMID: 15787457]
[29]
Pierre, L.L.; Moses, M.N. Isolation and characterisation of stigmasterol and B-sitosterol from odontonema strictum (Acanthaceae). J. Innov. Pharm. Biol. Sci., 2015, 2, 88-96.
[30]
Sousa, G.F.; Duarte, L.P.; Alcântara, A.F.C.; Silva, G.D.F.; Vieira-Filho, S.A.; Silva, R.R.; Oliveira, D.M.; Takahashi, J.A. New triterpenes from Maytenus robusta: Structural elucidation based on NMR experimental data and theoretical calculations. Molecules, 2012, 17(11), 13439-13456.
[http://dx.doi.org/10.3390/molecules171113439] [PMID: 23147402]
[31]
Rani, M.; Agarwal, A.; Maharana, T.; Negi, Y.S. A comparative study for interpenetrating polymeric network (IPN) of chitosan-amino acid beads for controlled drug release. African J. Pharm. Pharmacol., 2010, 4, 035-054.
[32]
Raj, B. S. Formulation and evaluation of chitosan prazosin beads by ionotropic gelation method. Int. J. Res. Pharm. Chem., 2012, 2, 2231-2781.
[33]
Harris, R.; Lecumberri, E.; Mateos-Aparicio, I.; Mengíbar, M.; Heras, A. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr. Polym., 2011, 84(2), 803-806.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.003]
[34]
Sauraj, .; Kumar, S.U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y.S. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym., 2018, 188, 252-259.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.006] [PMID: 29525163]
[35]
Sauraj, K.; Kumar, S.U.; Gopinath, P.; Negi, Y.S. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydr. Polym., 2017, 157, 1442-1450.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.096] [PMID: 27987854]
[36]
Dias, A.M.A.; Cortez, A.R.; Barsan, M.M.; Santos, J.B.; Brett, C.M.A.; Sousa, H.C.D. Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustain. Chem.& Eng., 2013, 1(11), 1480-1492.
[http://dx.doi.org/10.1021/sc4002577]
[37]
Wicek, A.E.; Gozdecka, A.; Jurak, M. Physicochemical characteristics of chitosan/TiO2 biomaterial part I. Stability and swelling properties. Ind. Eng. Chem. Res., 2018, 57(6), 1859-1870.
[http://dx.doi.org/10.1021/acs.iecr.7b04257]
[38]
Butler, M.F.; Clark, A.H.; Adams, S. Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin. Biomacromolecules, 2006, 7(11), 2961-2970.
[http://dx.doi.org/10.1021/bm060133y] [PMID: 17096520]
[39]
Qureshi, M.A.; Khatoon, F.; Rizvi, M.A.; Zafaryab, M. Ethyl acetate Salix alba leaves extract-loaded chitosan-based hydrogel film for wound dressing applications. J. Biomater. Sci. Polym. Ed., 2015, 26(18), 1452-1464.
[http://dx.doi.org/10.1080/09205063.2015.1100843] [PMID: 26525493]
[40]
Silva-Weiss, A.; Bifani, V.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C. Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll., 2013, 31(2), 458-466.
[http://dx.doi.org/10.1016/j.foodhyd.2012.11.028]
[41]
Acosta, N.; Sánchez, E.; Calderón, L.; Cordoba-Diaz, M.; Cordoba-Diaz, D.; Dom, S.; Heras, Á. Physical stability studies of semi-solid formulations from natural compounds loaded with chitosan microspheres. Mar. Drugs, 2015, 13(9), 5901-5919.
[http://dx.doi.org/10.3390/md13095901] [PMID: 26389926]
[42]
Zhang, H.; Huang, Q.; Huang, Z.; Liu, T.; Li, Y. Preparation and physicochemical properties of chitosan broadleaf holly leaf nanoparticles. Int J App Pharm., 2015, 479(1), 212-218.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.010] [PMID: 25528364]
[43]
Yousefi, I.; Pakravan, M.; Rahimi, H.; Bahador, A.; Farshadzadeh, Z.; Haririan, I. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater. Sci. Eng. C, 2017, 75, 433-444.
[http://dx.doi.org/10.1016/j.msec.2017.02.076] [PMID: 28415483]
[44]
Subramani, K.; Murugan, V.; Shanmugam, B.K.; Rangaraj, S.; Palanisamy, M.; Venkatachalam, R.; Suresh, V. An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem). J. Alloys Compd., 2017, 723, 698-707.
[http://dx.doi.org/10.1016/j.jallcom.2017.06.242]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy