Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Imprinted Electrochemical Sensor of Tyrosine Based on Chitosan/β- Cyclodextrin/Multi-walled Carbon Nanotubes Composite Film

Author(s): Xiaopeng Bai, Ying Wu, Lili Deng, Li Gong, Tianchi Xu, Wenbo Song and Xun Feng*

Volume 18, Issue 4, 2022

Page: [495 - 503] Pages: 9

DOI: 10.2174/1573411017666211005092049

Price: $65

Abstract

As a vital amino acid in the human body, tyrosine is indispensable in various biological processes, and therefore its accurate and simple determination is of crucial importance. In this work, a facile approach was developed to construct a molecularly imprinted sensor for tyrosine via co-electrodeposition of chitosan, β-cyclodextrin and tyrosine on the surface of indium tin oxide that was pre-coated with multi-walled carbon nanotubes (MWNTs).

Methods: Benefitting from the excellent film-forming ability and the rich functional groups to form a hydrogen bond with target molecules, chitosan was utilized to form a recognition matrix. MWNTs and β-cyclodextrin were then introduced to enhance the selectivity and sensitivity to tyrosine, due to the subtle electronic, catalytic properties and possible π-π interaction of MWNTs with tyrosine, as well as recognition ability of β-cyclodextrin. The morphology of the imprinted films was characterized by a scanning electron microscope. The electrochemistry and tyrosine sensing performance were investigated in detail by cyclic voltammetry and chronoamperometry.

Results: Amperometry results showed that the imprinted sensor exhibited a linear range of 1.0×10−6 to 1.0×10−4 M and 1.0×10−4 to 1.0×10−3 M for tyrosine determination, with a detection limit of 6.0 × 10−7 M (S/N=3). Moreover, a satisfactory recovery in the range of 99.0% to 105.1% was obtained with the application of the imprinted sensor in artificial urine samples analysis.

Conclusion: The imprinted electrode is reusable with satisfactory reproducibility and stability in tyrosine determination.

Keywords: Molecularly imprinted polymer, tyrosine, chitosan, multi-walled carbon nanotubes, β-cyclodextrin, electrochemistry.

« Previous
Graphical Abstract

[1]
Atta, N.F.; Galal, A.; Gohary, A.R. Crown ether modified poly (hydroquinone)/carbon nanotubes based electrochemical sensor for simultaneous determination of levodopa, uric acid, tyrosine and ascorbic acid in biological fluids. J. Electroanal. Chem., 2020, 863114032
[http://dx.doi.org/10.1016/j.jelechem.2020.114032]
[2]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a grapheme and ferrocene modified carbon paste electrode. Mikrochim. Acta, 2017, 184, 3281-3289.
[http://dx.doi.org/10.1007/s00604-017-2291-3]
[3]
Fan, Y.; Liu, J.H.; Lu, H.T.; Zhang, Q. Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Mikrochim. Acta, 2011, 173, 241-247.
[http://dx.doi.org/10.1007/s00604-011-0556-9]
[4]
Zhao, Q.; Yang, J.; Zhang, J.; Wu, D.; Tao, Y.; Kong, Y. Single-template molecularly imprinted chiral sensor for simultaneous recognition of alanine and tyrosine enantiomers. Anal. Chem., 2019, 91(19), 12546-12552.
[http://dx.doi.org/10.1021/acs.analchem.9b03426] [PMID: 31476861]
[5]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kakarla, R.R.; Shukla, S.S.; Aminabhavi, T.M. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta, 2019, 1051, 58-72.
[http://dx.doi.org/10.1016/j.aca.2018.11.041] [PMID: 30661620]
[6]
Shettia, N.P.; Malodea, S.J.; Nayaka, D.S.; Bagihallia, G.B.; Kalanurb, S.S.; Malladic, R.S.; Reddyd, Ch.V.; Aminabhavie, T.M.; Reddyf, K.R. Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci., 2019, 496143656
[http://dx.doi.org/10.1016/j.apsusc.2019.143656]
[7]
Shikandar, D.B.; Shetti, N.P.; Kulkarni, R.M.; Kulkarni, S.D. Silver-doped titania modified carbon electrode for electrochemical studies of furantril. ECS J. Solid State Sc., 2018, 7(7), 3215-3220.
[http://dx.doi.org/10.1149/2.0321807jss]
[8]
Zou, H.; Lu, X.; Kong, F.; Wang, Z.; Li, H.; Fang, H.; Wang, W. A voltammetric sensor based on reduced grapheneoxide-hemin-Ag nanocomposites for sensitivedetermination of tyrosine. RSC Advances, 2020, 10, 28026-28031.
[http://dx.doi.org/10.1039/D0RA04976J]
[9]
Zhu, Q.; Liu, C.; Zhou, L.; Wu, L.; Bian, K.; Zeng, J.; Wang, J.; Feng, Z.; Yin, Y.; Cao, Z. Highly sensitive determination of L-tyrosine in pig serum based on ultrathin CuS nanosheets composite electrode. Biosens. Bioelectron., 2019, 140111356
[http://dx.doi.org/10.1016/j.bios.2019.111356] [PMID: 31163395]
[10]
Alam, M.M.; Uddin, M.T.; Asiri, A.M.; Rahman, M.M.; Islam, M.A. Detection of L-Tyrosine by electrochemical method based on binary mixed CdO/SnO2 nanoparticles. Measurement, 2020, 163107990
[http://dx.doi.org/10.1016/j.measurement.2020.107990]
[11]
Li, Q.; Shen, F.; Zhang, X.; Hu, Y.; Zhang, Q.; Xu, L.; Ren, X. One-pot synthesis of phenylphosphonic acid imprinted polymers for tyrosine phosphopeptides recognition in aqueous phase. Anal. Chim. Acta, 2013, 795, 82-87.
[http://dx.doi.org/10.1016/j.aca.2013.07.040] [PMID: 23998541]
[12]
Sun, C.M.; Zhang, C.F.; Li, C.X.; Kuang, Y.Z.; Qu, R.J.; Ji, C.N.; Zhang, Y. Syntheses of polyamine-bridged polysilsesquioxanes hybrid materials combining sol-gel processing and molecular imprinting applied to selective adsorption for copper. Mater. Chem. Phys., 2015, 153, 307-315.
[http://dx.doi.org/10.1016/j.matchemphys.2015.01.018]
[13]
Lasagabáster-Latorre, A.; Cela-Pérez, M.C.; Fernández-Fernández, S.; López-Vilariño, J.M.; González-Rodríguez, M.V.; Abad, M.J.; Barral-Losada, L.F. Insight into BPA-4-vinylpyridine interactions in molecularly imprinted polymers using complementary spectroscopy techniques. Mater. Chem. Phys., 2013, 141, 461-476.
[http://dx.doi.org/10.1016/j.matchemphys.2013.05.045]
[14]
Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev., 2011, 40(5), 2922-2942.
[http://dx.doi.org/10.1039/c0cs00084a] [PMID: 21359355]
[15]
Li, H.; Liu, R.; Zhao, R.X.; Zheng, Y.F.; Chen, W.X.; Xu, Z.D. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Cryst. Growth Des., 2006, 6, 2795-2798.
[http://dx.doi.org/10.1021/cg060403w]
[16]
Alizadeh, T.; Zare, M.; Ganjali, M.R.; Norouzi, P.; Tavana, B. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens. Bioelectron., 2010, 25(5), 1166-1172.
[http://dx.doi.org/10.1016/j.bios.2009.10.003] [PMID: 19892541]
[17]
Liu, B.; Tang, D.; Zhang, B.; Que, X.; Yang, H.; Chen, G. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosens. Bioelectron., 2013, 41, 551-556.
[http://dx.doi.org/10.1016/j.bios.2012.09.021] [PMID: 23058661]
[18]
Liang, H.J.; Ling, T.R.; Rick, J.F.; Chou, T.C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognized and l-tyrosine. Anal. Chim. Acta, 2005, 542, 83-89.
[http://dx.doi.org/10.1016/j.aca.2005.02.007]
[19]
Saumya, V.; Prathish, K.P.; Rao, T.P. In situ copper oxide modified molecularly imprinted polypyrrole film based voltammetric sensor for selective recognition of tyrosine. Talanta, 2011, 85(2), 1056-1062.
[http://dx.doi.org/10.1016/j.talanta.2011.05.025] [PMID: 21726738]
[20]
Chen, Y.P.; Liu, B.; Lian, H.T.; Sun, X.Y. Preparation and application of urea electrochemical sensor based on chitosan molecularly imprinted films. Electroanal., 2011, 23, 1454-1461.
[http://dx.doi.org/10.1002/elan.201000693]
[21]
Zhang, Z.; Yang, X.; Zhang, H.; Zhang, M.; Luo, L.; Hu, Y.; Yao, S. Novel molecularly imprinted polymers based on multi-walled carbon nanotubes with binary functional monomer for the solid-phase extraction of erythromycin from chicken muscle. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(19), 1617-1624.
[http://dx.doi.org/10.1016/j.jchromb.2011.03.054] [PMID: 21498135]
[22]
Lian, W.; Huang, J.; Yu, J.; Zhang, X.; Lin, Q.; He, X.; Liu, S. A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control, 2012, 26, 620-627.
[http://dx.doi.org/10.1016/j.foodcont.2012.02.023]
[23]
Lian, H.T.; Liu, B.; Chen, Y.P.; Sun, X.Y. A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots. Anal. Biochem., 2012, 426(1), 40-46.
[http://dx.doi.org/10.1016/j.ab.2012.03.024] [PMID: 22484037]
[24]
Liu, B.; Lian, H.; Yin, J.; Sun, X. Dopamine molecularly imprinted electrochemical sensor based on graphene-chitosan composite. Electrochim. Acta, 2012, 75, 108-114.
[http://dx.doi.org/10.1016/j.electacta.2012.04.081]
[25]
Ziyatdinova, G.; Morozov, M.; Budnikov, H. MWNT-modified electrodes for voltammetric determination of lipophilic vitamins. J. Solid State Electrochem., 2012, 16, 2441-2447.
[http://dx.doi.org/10.1007/s10008-011-1581-7]
[26]
Tsierkezos, N.G.; Ritter, U. Oxidation of dopamine on multi-walled carbon nanotubes. J. Solid State Electrochem., 2012, 16, 2217-2226.
[http://dx.doi.org/10.1007/s10008-012-1647-1]
[27]
Saumya, V.; Prathish, K.P.; Dhanya, S.; Rao, T.P. Mechanistic aspects of tyrosine sensing on an in situ copper oxide modified molecularly imprinted polypyrrole coated glassy carbon electrode. J. Electroanal. Chem. (Lausanne), 2011, 663, 53-58.
[http://dx.doi.org/10.1016/j.jelechem.2011.08.022]
[28]
Zou, H.; Lu, X.; Kong, F.; Wang, Z.; Li, H.; Fang, H.; Wang, W. A voltammetric sensor based on reduced grapheneoxide-hemin-Ag nanocomposites for sensitive determination of tyrosine. RSC Advances, 2020, 10, 28026-28031.
[http://dx.doi.org/10.1039/D0RA04976J]
[29]
Habibi, E.; Heidari, H. Renewable surface carbon-composite electrode bulk modified with GQD-RuCl3 nano-composite for high sensitive detection of L-tyrosine. Electroanal., 2016, 28, 2559-2564.
[http://dx.doi.org/10.1002/elan.201600010]
[30]
Movlaee, K.; Beitollahi, H.; Reza, M.; Norouzi, P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Mikrochim. Acta, 2017, 184, 3281-3289.
[http://dx.doi.org/10.1007/s00604-017-2291-3]
[31]
Wei, Z.; Yang, Y.; Xiao, X.; Zhang, W.; Wang, J. Fabrication of conducting polymer/noble metal nanocomposite modified electrodes for glucose, ascorbic acid and tyrosine detection and its application to identify the marked ages of rice wines. Sens. Actuators B Chem., 2018, 255, 895-906.
[http://dx.doi.org/10.1016/j.snb.2017.08.155]
[32]
Tian, F.; Li, H.; Li, M.; Li, C.; Lei, Y.; Yang, B. A tantalum electrode coated with graphene nanowalls for simultaneous voltammetric determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide. Mikrochim. Acta, 2017, 184, 1611-1619.
[http://dx.doi.org/10.1007/s00604-017-2154-y]
[33]
Madrakian, T.; Haghshenas, E.; Hami, A.A. Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sens. Actuators B Chem.,, 2014, 193, 451-460.
[http://dx.doi.org/10.1016/j.snb.2013.11.117]
[34]
Li, Z.; Gao, D.; Wu, Z.; Zhao, S. Simultaneous electrochemical detection of levodapa, paracetamol and L-tyrosine based on multiwalled carbon nanotubes. RSC Advances, 2020, 10, 14218-14244.,
[http://dx.doi.org/10.1039/D0RA00290A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy