Abstract
Background: The unique ability of carbon to form a wide variety of allotropic modifications has ushered in a new era in material science. Tuning the properties of these materials by functionalization is a must-have tool for their design customized for a specific practical use. The exponentially growing computational power available to researchers allows for the prediction and thorough understanding of the underlying physicochemical processes responsible for the practical properties of pristine and modified carbons using the methods of quantum chemistry.
Methods: This review focuses on the computational assessment of the influence of functionalization on the properties of carbons and enabling desired practical properties of the new materials. The first section of each part of this review focuses on graphene with nearly planar units built from sp2- carbons. The second section discusses patterns of sp2-carbons rolled up into curved 3D structures in a variety of ways (fullerenes). The overview of other types of carbonaceous materials, including those with a high abundance of sp3-carbons, including nanodiamonds, can be found in the third section of each manuscript’s part.
Conclusion: The computational methods are especially critical for predicting electronic properties of materials such as the bandgap, conductivity, optical and photoelectronic properties, solubility, adsorptivity, the potential for catalysis, sensing, imaging, and biomedical applications. We expect that introduction of defects to carbonaceous materials as a type of their functionalization will be a point of growth in this area of computational research.
Keywords: Computation, functionalization, carbonaceous materials, graphene, nanomaterial, allotropic modifications.
Graphical Abstract
[http://dx.doi.org/10.1021/nn1029789] [PMID: 21090813]
[http://dx.doi.org/10.1016/j.jechem.2017.08.015]
[http://dx.doi.org/10.1002/adma.201800716] [PMID: 30680813]
[http://dx.doi.org/10.1002/inf2.12039]
[http://dx.doi.org/10.3390/mi8050163]
[http://dx.doi.org/10.1098/rsos.170772] [PMID: 29515821]
[http://dx.doi.org/10.1103/PhysRevLett.77.3865] [PMID: 10062328]
[http://dx.doi.org/10.1103/PhysRevB.54.11169] [PMID: 9984901]
[http://dx.doi.org/10.1016/j.comptc.2016.04.017]
[http://dx.doi.org/10.1063/1.3567489] [PMID: 21428670]
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5<453:AID-QUA9>3.0.CO;2-V]
[http://dx.doi.org/10.1063/1.3653739]
[http://dx.doi.org/10.1016/j.apsusc.2014.05.071]
[http://dx.doi.org/10.1088/0953-8984/21/39/395502]
[http://dx.doi.org/10.1063/1.4736568] [PMID: 22894366]
[http://dx.doi.org/10.1016/j.comptc.2018.05.006]
[http://dx.doi.org/10.1016/j.electacta.2017.07.186]
[http://dx.doi.org/10.1016/j.susc.2015.10.036]
[http://dx.doi.org/10.1016/j.apsusc.2017.07.293]
[http://dx.doi.org/10.1021/jp110067w]
[http://dx.doi.org/10.1016/j.apsusc.2014.08.141]
[http://dx.doi.org/10.1016/j.apsusc.2013.11.140]
[http://dx.doi.org/10.1016/j.electacta.2010.09.016]
[http://dx.doi.org/10.1016/j.susc.2017.10.001]
[http://dx.doi.org/10.1103/PhysRevB.72.184109]
[http://dx.doi.org/10.3762/bjnano.5.12] [PMID: 24605278]
[http://dx.doi.org/10.1103/PhysRevB.71.035109]
[http://dx.doi.org/10.1016/j.electacta.2018.07.168]
[http://dx.doi.org/10.1016/j.susc.2017.01.004]
[http://dx.doi.org/10.1007/s10876-013-0563-6]
[http://dx.doi.org/10.1016/j.jpcs.2013.05.030]
[http://dx.doi.org/10.2478/s11696-013-0448-z]
[http://dx.doi.org/10.1016/j.apsusc.2012.05.134]
[http://dx.doi.org/10.1039/c2ra01143c]
[http://dx.doi.org/10.1002/cjoc.201180449]
[http://dx.doi.org/10.1088/0953-8984/18/22/017]
[http://dx.doi.org/10.1016/j.spmi.2013.04.014]
[http://dx.doi.org/10.1016/j.physb.2011.09.006]
[http://dx.doi.org/10.1007/s00894-012-1569-y] [PMID: 22936348]
[http://dx.doi.org/10.1007/s40097-019-0296-7]
[http://dx.doi.org/10.1088/0957-4484/22/6/065706] [PMID: 21212485]
[http://dx.doi.org/10.1021/jp409236t]
[http://dx.doi.org/10.1016/j.cplett.2018.02.015]
[http://dx.doi.org/10.1021/nn100883p] [PMID: 20503982]
[http://dx.doi.org/10.1039/b922081j] [PMID: 20177643]
[http://dx.doi.org/10.1039/C0JM02422H]
[http://dx.doi.org/10.1002/chem.200901761] [PMID: 19876972]
[http://dx.doi.org/10.1021/jp908887n]
[http://dx.doi.org/10.1002/inf2.12025]
[http://dx.doi.org/10.1021/jp051022g] [PMID: 16852723]
[http://dx.doi.org/10.1016/j.cplett.2007.08.098]
[http://dx.doi.org/10.1016/j.physe.2013.10.013]
[http://dx.doi.org/10.1016/j.comptc.2016.11.007]
[http://dx.doi.org/10.1021/jp046274g]
[http://dx.doi.org/10.1021/jp8030607]
[http://dx.doi.org/10.1039/C5TC01407G]
[http://dx.doi.org/10.1016/j.molstruc.2020.127943]
[http://dx.doi.org/10.1016/j.cplett.2014.02.042]
[http://dx.doi.org/10.1002/inf2.12045]
[http://dx.doi.org/10.1021/ja002023j]
[http://dx.doi.org/10.1021/ja993024i]
[http://dx.doi.org/10.1143/JJAP.38.L1496]
[http://dx.doi.org/10.1002/cphc.201800822] [PMID: 30252194]
[http://dx.doi.org/10.1021/acsomega.7b01767] [PMID: 31457943]
[http://dx.doi.org/10.1007/s00894-011-1242-x] [PMID: 21965032]
[http://dx.doi.org/10.1039/C8SC03737J] [PMID: 30746106]
[http://dx.doi.org/10.1063/1.3203257]