Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Natural Products and Their Promise Against COVID 19: Review

Author(s): Fatma Abo-Elghiet , Hanan M. Alharbi and Abeer Temraz*

Volume 18, Issue 2, 2022

Published on: 07 January, 2022

Page: [103 - 119] Pages: 17

DOI: 10.2174/1573401317666210922162617

Price: $65

Abstract

Background: Since the beginning of medical history, plants have been exemplary sources of a variety of pharmacological compounds that are still used in modern medication. Respiratory infections are a serious and persistent global health problem, most acute and chronic respiratory infections are caused by viruses, whose ability to mutate rapidly may result in epidemics and pandemics, as seen recently with MERS-COV (2012) and SARS-COV-2 (2019), the latter causing coronavirus disease 2019 (COVID-19).

Methods: This study aims to highlight the tremendous benefits of plants that have been widely used as dietary supplements or traditional treatment for various respiratory infections, with a focus on the most effective constituents and studies that revealed their activities against COVID-19.

Results: Several traditional plants and their phytoconstituents have shown activity against respiratory viruses, including SARS-COV-2. The presented plants are Nigella sativa, Punica granatum, Panax ginseng, Withania somnifera, Glycyrrhiza glabra, Curcuma longa, Zingiber officinale, Camellia sinensis, Echinacea purpurea, Strobilanthes cusia, Stephania tetrandra, and genus Sambucus.

Conclusion: The data discussed in this review can encourage carrying out in-vivo studies that may help in the discovery of herbal leads that can be feasibly used to alleviate, prevent or treat COVID-19 infection.

Keywords: COVID-19, SARS-CoV-2, coronavirus, antiviral herbal medicine, respiratory tract viruses, medicinal plants.

Next »
Graphical Abstract

[1]
Wang H, Zheng Y, Deng J, et al. Prevalence of respiratory viruses among children hospitalized from respiratory infections in Shenzhen, China. Virol J 2016; 13: 39.
[http://dx.doi.org/10.1186/s12985-016-0493-7] [PMID: 26952107]
[2]
Hodinka RL. Diagnostic microbiol immunocompromised host. Respiratory RNA viruses. 2016; pp. 233-71.
[3]
Pattemore PK, Jennings LC. Epidemiology of respiratory infections Pediatr Respir Med. Elsevier Inc. 2008; pp. 435-52.
[http://dx.doi.org/10.1016/B978-032304048-8.50035-9]
[4]
Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010; 23(1): 74-98.
[http://dx.doi.org/10.1128/CMR.00032-09] [PMID: 20065326]
[5]
Farrag MA, Hamed ME, Amer HM, Almajhdi FN. Epidemiology of respiratory viruses in Saudi Arabia: toward a complete picture. Arch Virol 2019; 164(8): 1981-96.
[http://dx.doi.org/10.1007/s00705-019-04300-2] [PMID: 31139937]
[6]
Bosch AA, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013; 9(1): e1003057.
[http://dx.doi.org/10.1371/journal.ppat.1003057] [PMID: 23326226]
[7]
Grubaugh ND, Ladner JT, Lemey P, et al. Tracking virus outbreaks in the twenty-first century. Nat Microbiol 2019; 4(1): 10-9.
[http://dx.doi.org/10.1038/s41564-018-0296-2] [PMID: 30546099]
[8]
Luo GG, Gao SJ. Global health concerns stirred by emerging viral infections. J Med Virol 2020; 92(4): 399-400.
[http://dx.doi.org/10.1002/jmv.25683] [PMID: 31967329]
[9]
Babar M, Najam-us-Sahar SZ, Ashraf M, Kazi AG. Antiviral drug therapy-exploiting medicinal plants. J Antivir Antiretrovir 2013; 5: 28-36.
[http://dx.doi.org/10.4172/jaa.1000060]
[10]
Kong JM, Goh NK, Chia LS, Chia TF. Recent advances in traditional plant drugs and orchids. Acta Pharmacol Sin 2003; 24(1): 7-21.
[PMID: 12511224]
[11]
Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020; 288(2): 192-206.
[http://dx.doi.org/10.1111/joim.13091] [PMID: 32348588]
[12]
Ahmad A, Husain A, Mujeeb M, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 2013; 3(5): 337-52.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[13]
Al-Attass SA, Zahran FM, Turkistany SA. Nigella sativa and its active constituent thymoquinone in oral health. Saudi Med J 2016; 37(3): 235-44.
[http://dx.doi.org/10.15537/smj.2016.3.13006] [PMID: 26905343]
[14]
Al-Jassir MS. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem 1992; 45: 239-42.
[http://dx.doi.org/10.1016/0308-8146(92)90153-S]
[15]
Pradeep SR, Srinivasan K. Synergy among dietary spices in exerting antidiabetic influences Bioact Food as Diet Interv Diabetes. Elsevier 2019; pp. 407-24.
[http://dx.doi.org/10.1016/B978-0-12-813822-9.00028-X]
[16]
Amin B, Hosseinzadeh H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Med 2016; 82(1-2): 8-16.
[http://dx.doi.org/10.1055/s-0035-1557838] [PMID: 26366755]
[17]
Kulyar MF e Li R A, Waqas M, Mehmood K, Li K, Li J. Potential influence of Nagella sativa (Black cumin) in reinforcing immune system: A hope to decelerate the COVID-19 pandemic. Phytomedicine 2020; 153277.
[http://dx.doi.org/10.1016/j.phymed.2020.153277]
[18]
Maideen NMP. Prophetic medicine-Nigella sativa (Black cumin seeds) - Potential herb for COVID-19? J Pharmacopuncture 2020; 23(2): 62-70.
[http://dx.doi.org/10.3831/KPI.2020.23.010] [PMID: 32685234]
[19]
Tariq M. Nigella sativa seeds: folklore treatment in modern day medicine. Saudi J Gastroenterol 2008; 14(3): 105-6.
[http://dx.doi.org/10.4103/1319-3767.41725] [PMID: 19568515]
[20]
Vaz NP, De Oliveira DR, Abouelella GA, Khater HF. The black seed, Nigella sativa (Ranunculaceae), for prevention and treatment of hypertension. Hypertens Ser “Recent Prog Med Plants. 2018; 48.
[21]
Liu T, Zhang J, Yang Y, et al. The potential role of IL-6 in monitoring coronavirus disease SSRN Electron J 2019.
[http://dx.doi.org/10.2139/ssrn.3548761]
[22]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[23]
Shaterzadeh-Yazdi H, Noorbakhsh M-F, Samarghandian S, Farkhondeh T. An overview on renoprotective effects of thymoquinone. Kidney Dis 2018; 4(2): 74-82.
[http://dx.doi.org/10.1159/000486829] [PMID: 29998122]
[24]
Srinivasan K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceutical effects. Food Qual Saf 2018; 2: 1-16.
[http://dx.doi.org/10.1093/fqsafe/fyx031]
[25]
Ahmad A, Alkharfy KM, Jan BL, et al. Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis. Exp Lung Res 2020; 46(3-4): 53-63.
[http://dx.doi.org/10.1080/01902148.2020.1726529] [PMID: 32053036]
[26]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[27]
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53: 13-24.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[28]
Shaikh YI, Shaikh VS, Ahmed K, Nazeruddin GM, Pathan HM. The revelation of various compounds found in Nigella sativa L. (black cumin) and their possibility to inhibit COVID-19 infection based on the molecular docking and physical properties. Eng Sci 2020.
[http://dx.doi.org/10.30919/es8d1127]
[29]
Ahmad A, Rehman MU, Ahmad P, Alkharfy KM. Covid-19 and thymoquinone: Connecting the dots. Phyther Res 2020.
[http://dx.doi.org/10.1002/ptr.6793]
[30]
Omar S, Bouziane I, Bouslama Z, Djemel A. In-silico identification of potent inhibitors of COVID-19 main protease (Mpro) and angiotensin converting enzyme 2 (ACE2) from natural products: Quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against. ChemRxiv 2020; Available from: https://chemrxiv.org/engage/chemrxiv/article-details/60c74a53469df45440f43d21
[http://dx.doi.org/10.26434/chemrxiv.12181404]
[31]
Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn 2020; 39(9): 3194-203.
[PMID: 32340551]
[32]
Faiza M, Abdullah T, Wang PY. Dithymoquinone as a novel inhibitor for 3-carboxy-4-5-propyl-2-furanpropanoic acid ( CMPF ) to prevent renal failure. 2017; Available from: https://arxiv.org/abs/1709.03813
[33]
Bouchentouf S, Missoum N. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel Coronasvirus (COVID-19): Molecular docking study. ChemRxiv 2020; Available from: https://chemrxiv.org/engage/chemrxiv/article-details/60c7495c469df4070af43bbf
[34]
Koshak DAE, Koshak PEA. Nigella sativa L as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Curr Ther Res Clin Exp 2020; 93: 100602.
[http://dx.doi.org/10.1016/j.curtheres.2020.100602] [PMID: 32863400]
[35]
Baliga MS, Shivashankara AR, Shetty CB, Thilakchand KR, Periera N, Palatty PL. Antidiabetic effects of Punica granatum L (Pomegranate): A review. In: Bioactive Food as Dietary Interventions for Diabetes. USA: Elsevier Inc. 2013; pp. 355-69.
[http://dx.doi.org/10.1016/B978-0-12-397153-1.00038-X]
[36]
Braga LC, Shupp JW, Cummings C, et al. Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxin production. J Ethnopharmacol 2005; 96(1-2): 335-9.
[http://dx.doi.org/10.1016/j.jep.2004.08.034] [PMID: 15588686]
[37]
Erkan M, Dogan A. Pomegranate/Roma—Punica granatum.Exotic Fruits. USA: Elsevier 2018; pp. 355-61.
[http://dx.doi.org/10.1016/B978-0-12-803138-4.00049-6]
[38]
Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 2001; 74(2): 113-23.
[http://dx.doi.org/10.1016/S0378-8741(00)00335-4] [PMID: 11167029]
[39]
Al-Zoreky NS. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int J Food Microbiol 2009; 134(3): 244-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.002] [PMID: 19632734]
[40]
Wang R, Ding Y, Liu R, Xiang L, Du L. Pomegranate: constituents, bioactivities and pharmacokinetics. Fruit. Veg Cereal Sci Biotechnol 2010; 4: 77-87.
[41]
Wang RF, Xie WD, Zhang Z, et al. Bioactive compounds from the seeds of Punica granatum (pomegranate). J Nat Prod 2004; 67(12): 2096-8.
[http://dx.doi.org/10.1021/np0498051] [PMID: 15620261]
[42]
Wang R, Wei Wang, Wang L, Liu R, Yi Ding, Du L. Constituents of the flowers of Punica granatum. Fitoterapia 2006; 77(7-8): 534-7.
[http://dx.doi.org/10.1016/j.fitote.2006.06.011] [PMID: 16887296]
[43]
Hai L. Progress in studies on chemical constituents and pharmacological effect of Punicaceae. Chin Tradit Herbal Drugs 2002; 33: 765-9.
[44]
Wu Y, Zhu CP, Zhang Y, Li Y, Sun JR. Immunomodulatory and antioxidant effects of pomegranate peel polysaccharides on immunosuppressed mice. Int J Biol Macromol 2019; 137: 504-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.139] [PMID: 31229542]
[45]
Gracious Ross R, Selvasubramanian S, Jayasundar S. Immunomodulatory activity of Punica granatum in rabbits-a preliminary study. J Ethnopharmacol 2001; 78(1): 85-7.
[http://dx.doi.org/10.1016/S0378-8741(01)00287-2] [PMID: 11585693]
[46]
Yamasaki M, Kitagawa T, Koyanagi N, et al. Dietary effect of pomegranate seed oil on immune function and lipid metabolism in mice. Nutrition 2006; 22(1): 54-9.
[http://dx.doi.org/10.1016/j.nut.2005.03.009] [PMID: 16226015]
[47]
Haidari M, Ali M, Ward Casscells S III, Madjid M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine 2009; 16(12): 1127-36.
[http://dx.doi.org/10.1016/j.phymed.2009.06.002] [PMID: 19586764]
[48]
Sundararajan A, Ganapathy R, Huan L, et al. Influenza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antiviral Res 2010; 88(1): 1-9.
[http://dx.doi.org/10.1016/j.antiviral.2010.06.014] [PMID: 20637243]
[49]
Moradi MT, Karimi A, Shahrani M, Hashemi L, Ghaffari-Goosheh MS. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum l.) peel extract and fractions. Avicenna J Med Biotechnol 2019; 11(4): 285-91.
[PMID: 31908736]
[50]
Moradi M-T, Karimi A, Rafieian-Kopaei M, Rabiei-Faradonbeh M, Momtaz H. Pomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study. Avicenna J Phytomed 2020; 10(2): 143-51.
[http://dx.doi.org/10.22038/ajp.2019.13855] [PMID: 32257886]
[51]
Vardhan S, Sahoo SK. Searching inhibitors for three important proteins of COVID-19 through molecular docking studies. ArXiv Prepr 2020; ArXiv200408095.
[52]
Ahmad V. A molecular docking study against COVID-19 protease with a pomegranate phyto-constituents “urolithin” and other repurposing drugs: From a supplement to ailment. J Pharm Res Int 2020; 32: 51-62.
[http://dx.doi.org/10.9734/jpri/2020/v32i1130545]
[53]
Cerdá B, Periago P, Espín JC, Tomás-Barberán FA. Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds. J Agric Food Chem 2005; 53(14): 5571-6.
[http://dx.doi.org/10.1021/jf050384i] [PMID: 15998116]
[54]
Seeram NP, Henning SM, Zhang Y, Suchard M, Li Z, Heber D. Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr 2006; 136(10): 2481-5.
[http://dx.doi.org/10.1093/jn/136.10.2481] [PMID: 16988113]
[55]
Subbaiyan A, Ravichandran K, Singh SV, et al. In silico molecular docking analysis targeting SARS-CoV-2 spike protein and selected herbal constituents. J Pure Appl Microbiol 2020; 14: 989-98.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.37]
[56]
Kumar A, Choudhir G, Shukla SK, et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn 2020; 0: 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1772112] [PMID: 32448034]
[57]
Sampangi-Ramaiah MH, Vishwakarma R, Shaanker RU. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci 2020; 118: 1087-92.
[http://dx.doi.org/10.18520/cs/v118/i7/1087-1092]
[58]
Mishra JN, Verma NK. An overview on Panax ginseng. Int J Pharma Chem Res 2017; 3: 516-22.
[59]
Ru W, Wang D, Xu Y, et al. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 2015; 9(1): 23-32.
[http://dx.doi.org/10.5582/ddt.2015.01004] [PMID: 25788049]
[60]
Xu W, Choi H-K, Huang L. State of Panax ginseng research: A global analysis. Molecules 2017; 22(9): 1518.
[http://dx.doi.org/10.3390/molecules22091518] [PMID: 28892002]
[61]
Kang S, Min H. Ginseng, the “immunity boost”: The effects of Panax ginseng on immune system. J Ginseng Res 2012; 36(4): 354-68.
[http://dx.doi.org/10.5142/jgr.2012.36.4.354] [PMID: 23717137]
[62]
Koh E, Jang O-H, Hwang K-H, An Y-N, Moon B. Effects of steaming and air-drying on ginsenoside composition of Korean ginseng (Panax ginseng C A Meyer). J Food Process Preserv 2015; 39: 207-13.
[http://dx.doi.org/10.1111/jfpp.12412]
[63]
Iqbal H, Rhee DK. Ginseng alleviates microbial infections of the respiratory tract: a review. J Ginseng Res 2020; 44(2): 194-204.
[http://dx.doi.org/10.1016/j.jgr.2019.12.001] [PMID: 32148400]
[64]
Song X, Chen J, Sakwiwatkul K, Li R, Hu S. Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re. Int Immunopharmacol 2010; 10(3): 351-6.
[http://dx.doi.org/10.1016/j.intimp.2009.12.009] [PMID: 20034596]
[65]
Dong W, Farooqui A, Leon AJ, Kelvin DJ. Inhibition of influenza A virus infection by ginsenosides. PLoS One 2017; 12(2): e0171936.
[http://dx.doi.org/10.1371/journal.pone.0171936] [PMID: 28187149]
[66]
Wang Y, Jung YJ, Kim KH, et al. Antiviral activity of fermented ginseng extracts against a broad range of influenza viruses. Viruses 2018; 10(9): 1-17.
[http://dx.doi.org/10.3390/v10090471] [PMID: 30200514]
[67]
Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018; 42(3): 255-63.
[http://dx.doi.org/10.1016/j.jgr.2017.04.011] [PMID: 29983606]
[68]
Yin SY, Kim HJ, Kim HJ. A comparative study of the effects of whole red ginseng extract and polysaccharide and saponin fractions on influenza A (H1N1) virus infection. Biol Pharm Bull 2013; 36(6): 1002-7.
[http://dx.doi.org/10.1248/bpb.b13-00123] [PMID: 23727921]
[69]
Chan LY, Kwok HH, Chan RW, et al. Dual functions of ginsenosides in protecting human endothelial cells against influenza H9N2-induced inflammation and apoptosis. J Ethnopharmacol 2011; 137(3): 1542-6.
[http://dx.doi.org/10.1016/j.jep.2011.08.022] [PMID: 21872652]
[70]
Xu ML, Kim HJ, Choi YR, Kim HJ. Intake of korean red ginseng extract and saponin enhances the protection conferred by vaccination with inactivated influenza a virus. J Ginseng Res 2012; 36(4): 396-402.
[http://dx.doi.org/10.5142/jgr.2012.36.4.396] [PMID: 23717142]
[71]
Park EH, Yum J, Ku KB, et al. Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J Ginseng Res 2014; 38(1): 40-6.
[http://dx.doi.org/10.1016/j.jgr.2013.11.012] [PMID: 24558309]
[72]
Quan FS, Compans RW, Cho YK, Kang SM. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 2007; 25(2): 272-82.
[http://dx.doi.org/10.1016/j.vaccine.2006.07.041] [PMID: 16945454]
[73]
Lee JS, Cho MK, Hwang HS, et al. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J Interferon Cytokine Res 2014; 34(11): 902-14.
[http://dx.doi.org/10.1089/jir.2013.0093] [PMID: 25051168]
[74]
Lee JS, Lee YN, Lee YT, et al. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015; 7(2): 1021-36.
[http://dx.doi.org/10.3390/nu7021021] [PMID: 25658239]
[75]
Song JH, Choi HJ, Song HH, et al. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3. J Ginseng Res 2014; 38(3): 173-9.
[http://dx.doi.org/10.1016/j.jgr.2014.04.003] [PMID: 25378991]
[76]
Xian Y, Zhang J, Bian Z, et al. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sin B 2020; 10(7): 1163-74.
[http://dx.doi.org/10.1016/j.apsb.2020.06.002] [PMID: 32834947]
[77]
AbrahamDogo G, Uchechukwu O, Umar U, Madaki AJ, Aguiyi JC. Molecular docking analyses of phytochemicals obtained from African antiviral herbal plants exhibit inhibitory activity against therapeutic targets of SARS-CoV-2. 2020; Available from: https://www.researchsquare.com/article/rs-28666/v1
[78]
Akbar S. Withania somnifera (L.) Dunal (Solanaceae).Handbook of 200 Medicinal Plants. NY: Springer 2020; pp. 1933-50.
[79]
Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W, Withaferin A. From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020; 173: 113602.
[http://dx.doi.org/10.1016/j.bcp.2019.08.004] [PMID: 31404528]
[80]
Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 2011; 8(5)(Suppl.): 208-13.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[81]
Alam MK, Hoq MO, Uddin MS. Therapeutic use of Withania somnifera. Asian J Med Biol Res 2016; 2: 148-55.
[http://dx.doi.org/10.3329/ajmbr.v2i2.29004]
[82]
Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 2009; 14(7): 2373-93.
[http://dx.doi.org/10.3390/molecules14072373] [PMID: 19633611]
[83]
Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X. Promising anti-influenza properties of active constituent of Withania somnifera Ayurvedic herb in targeting neuraminidase of H1N1 influenza: Computational study. Cell Biochem Biophys 2015; 72(3): 727-39.
[http://dx.doi.org/10.1007/s12013-015-0524-9] [PMID: 25627548]
[84]
Chikhale RV, Gurav SS, Patil RB, et al. SARS-CoV-2 host entry and replication inhibitors from Indian ginseng: An in-silico approach. J Biomol Struct Dyn 2020; 0: 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1778539] [PMID: 32568012]
[85]
Sudeep HV, Gouthamchandra K, Shyamprasad K. Molecular docking analysis of Withaferin A from Withania somnifera with the glucose regulated protein 78 (GRP78) receptor and the SARS-CoV-2 main protease. Bioinformation 2020; 16(5): 411-7.
[http://dx.doi.org/10.6026/97320630016411] [PMID: 32831523]
[86]
Kumar V, Dhanjal JK, Bhargava P, et al. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn 2020; E-Pub ahead of Print.
[http://dx.doi.org/10.1080/07391102.2020.1775704] [PMID: 32469279]
[87]
Tripathi MK, Singh P, Sharma S, Singh TP, Ethayathulla AS, Kaur P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J Biomol Struct Dyn 2020; E-Pub ahead of Print
[http://dx.doi.org/10.1080/07391102.2020.1790425] [PMID: 32643552]
[88]
Batiha GE, Beshbishy AM, El-Mleeh A, Abdel-Daim MM, Devkota HP. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10(3): 10.
[http://dx.doi.org/10.3390/biom10030352] [PMID: 32106571]
[89]
Russo M, Serra D, Suraci F, Di Sanzo R, Fuda S, Postorino S. The potential of e-nose aroma profiling for identifying the geographical origin of licorice (Glycyrrhiza glabra L.) roots. Food Chem 2014; 165: 467-74.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.142] [PMID: 25038700]
[90]
Asl NN, Hosseinzadeh H. Review of antiviral effects of Glycyrrhiza glabra L. and its active component, glycyrrhizin. J Med Plant 2007; 6: 1-12.
[91]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[92]
Wolkerstorfer A, Kurz H, Bachhofner N, Szolar OHJ. Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Res 2009; 83(2): 171-8.
[http://dx.doi.org/10.1016/j.antiviral.2009.04.012] [PMID: 19416738]
[93]
Feng Yeh C, Wang KC, Chiang LC, Shieh DE, Yen MH, San Chang J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 2013; 148(2): 466-73.
[http://dx.doi.org/10.1016/j.jep.2013.04.040] [PMID: 23643542]
[94]
Contreras-Puentes N, Alviz-Amador A. Virtual screening of natural metabolites and antiviral drugs with potential inhibitory activity against 3CL-PRO and PL-PRO. Biomed Pharmacol J 2020; 13: 933-41.
[http://dx.doi.org/10.13005/bpj/1962]
[95]
Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences. Nat Prod Bioprospect 2020; 10(5): 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[96]
Labban L. Medicinal and pharmacological properties of turmeric (Curcuma longa): A review. Int J Pharm Biomed Res 2014; 5: 17-23.
[97]
Verma RK, Kumari P, Maurya RK, Kumar V, Verma RB, Singh RK. Medicinal properties of turmeric (Curcuma longa L.): A review. IJCS 2018; 6: 1354-7.
[98]
Purohit RN, Bhatt M, Purohit K, Acharya J, Kumar R, Garg R. Clinical and radiological evaluation of turmeric powder as a pulpotomy medicament in primary teeth: An in vivo study. Int J Clin Pediatr Dent 2017; 10(1): 37-40.
[http://dx.doi.org/10.5005/jp-journals-10005-1404] [PMID: 28377653]
[99]
Chen DY, Shien JH, Tiley L, et al. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem 2010; 119: 1346-51.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[100]
Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol 2018; 45(1): 84-93.
[http://dx.doi.org/10.1111/1440-1681.12848] [PMID: 28853207]
[101]
Conti P, Ronconi R, Caraffa A. Induction of pro-inflammatory cytokines (IL-1 and IL-1) and lung inflammation by COVID-19: anti-inflammatory strategies. J Biol Regul Homeostas Agents 2020; 34
[102]
Chen I-Y, Moriyama M, Chang M-F, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019; 10: 50.
[http://dx.doi.org/10.3389/fmicb.2019.00050] [PMID: 30761102]
[103]
Ding S, Xu S, Ma Y, Liu G, Jang H, Fang J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules 2019; 9(12): 9.
[http://dx.doi.org/10.3390/biom9120850] [PMID: 31835423]
[104]
Tőzsér J, Benkő S. Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1β production. Mediators Inflamm 2016; 2016: 5460302.
[105]
Yin H, Guo Q, Li X, et al. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome‏. J Immunol 2018; 200(8): 2835-46.
[http://dx.doi.org/10.4049/jimmunol.1701495] [PMID: 29549176]
[106]
Zhao J, Wang J, Zhou M, Li M, Li M, Tan H. Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int Immunopharmacol 2019; 69: 213-6.
[http://dx.doi.org/10.1016/j.intimp.2019.01.046] [PMID: 30738291]
[107]
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprint 2020; 2020030226.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[108]
Akbar S. Zingiber officinale Rosc. (Zingiberaceae). In: Handbook of 200 Medicinal Plants. NY: Springer 2020; pp. 1957-97.
[109]
Mao QQ, Xu XY, Cao SY, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Foods 2019; 8(6): 1-21.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[110]
Moazeni M, Khademolhoseini AA. Ovicidal effect of the methanolic extract of ginger (Zingiber officinale) on Fasciola hepatica eggs: an in vitro study. J Parasit Dis 2016; 40(3): 662-6.
[http://dx.doi.org/10.1007/s12639-014-0554-z] [PMID: 27605763]
[111]
Liu Y, Liu J, Zhang Y. Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed Res Int 2019; 2019: 5370823.
[http://dx.doi.org/10.1155/2019/5370823] [PMID: 31930125]
[112]
Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand Sect B Soil Plant Sci 2019; 69: 546-56.
[113]
Denyer CV, Jackson P, Loakes DM, Ellis MR, Young DA. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). J Nat Prod 1994; 57(5): 658-62.
[http://dx.doi.org/10.1021/np50107a017] [PMID: 8064299]
[114]
Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 2013; 145(1): 146-51.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[115]
Rajagopal K, Byran G, Jupudi S, Vadivelan R. Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. Int J Health Allied Sci 2020; 9: 43-50.
[http://dx.doi.org/10.4103/ijhas.IJHAS]
[116]
Kodagoda KH, Wickramasinghe I. Health benefits of green and black tea: A review. Int J Adv Eng Res Sci 2017; 4: 107-12.
[http://dx.doi.org/10.22161/ijaers.4.7.16]
[117]
Vishnoi H, Bodla RB, Kant R. Green tea (Camellia sinensis) and its antioxidant property: A review. Int J Pharm Sci Res 2018; 9: 1723-36.
[118]
Gebrewold AZ. Review on integrated nutrient management of tea (Camellia sinensis L.). Cogent Food Agric 2018; 4.
[119]
Sinija VR, Mishra HN. Green tea: Health benefits. J Nutr Environ Med 2008; 17: 232-42.
[http://dx.doi.org/10.1080/13590840802518785]
[120]
Xu J, Xu Z, Zheng W. A review of the antiviral role of green tea catechins. Molecules 2017; 22(8): 22.
[http://dx.doi.org/10.3390/molecules22081337] [PMID: 28805687]
[121]
Zhuang J, Dai X, Zhu M, et al. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chem 2020; 305: 125507.
[http://dx.doi.org/10.1016/j.foodchem.2019.125507] [PMID: 31622805]
[122]
Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res 2005; 68(2): 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[123]
Lee HE, Yang G, Park YB, et al. Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. ‏. Molecules 2019; 24(11): 2138.
[http://dx.doi.org/10.3390/molecules24112138] [PMID: 31174271]
[124]
Billah MM, Hosen MB, Khan F, Niaz K. Echinacea. In: Nonvitamin and nonmineral nutritional supplements. USA: Elsevier 2019; pp. 205-10.
[http://dx.doi.org/10.1016/B978-0-12-812491-8.00029-1]
[125]
Hussin HF. Comparison of 1H-NMR fingerprints of Echinacea purpurea extracts with stimulation of myelopoiesis in rat to identify active constituents. University of Louisiana at Monroe 2016.
[126]
Manayi A, Vazirian M, Saeidnia S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn Rev 2015; 9(17): 63-72.
[http://dx.doi.org/10.4103/0973-7847.156353] [PMID: 26009695]
[127]
Sharma M, Anderson SA, Schoop R, Hudson JB. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Res 2009; 83(2): 165-70.
[http://dx.doi.org/10.1016/j.antiviral.2009.04.009] [PMID: 19409931]
[128]
Hudson JB. The phytomedicine Echinacea purpurea contains light dependent and light independent antiviral activities. J Innov Pharm Biol Sci 2017; 4: 109-13.
[129]
Hudson J, Vimalanathan S. Echinacea-A source of potent antivirals for respiratory virus infections. Pharmaceuticals 2011; 4: 1019-31.
[http://dx.doi.org/10.3390/ph4071019]
[130]
Signer J, Jonsdottir HR, Albrich W, et al. In vitro antiviral activity of Echinaforce®, an Echinacea purpurea preparation, against common cold coronavirus 229E and highly pathogenic MERS-CoV and SARS-CoV. Preprint 2020; 1-18.
[http://dx.doi.org/10.21203/rs.2.24724/v1]
[131]
Lin W, Huang W, Ning S, Wang X, Ye Q, Wei D. De novo characterization of the Baphicacanthus cusia (Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. PLoS One 2018; 13(7): e0199788.
[http://dx.doi.org/10.1371/journal.pone.0199788] [PMID: 29975733]
[132]
Qin M-Z, Liu Y, Wu W, Oberhänsli T, Wang-Müller Q. The chemical components and pharmacological functions of Strobilanthes Cusia (Nees) Kuntze. Herb Med 2020; 6: 1-5.
[http://dx.doi.org/10.36648/2472-0151.6.1.100047]
[133]
Gu W, Zhang Y, Hao X-J, et al. Indole alkaloid glycosides from the aerial parts of Strobilanthes cusia. J Nat Prod 2014; 77(12): 2590-4.
[http://dx.doi.org/10.1021/np5003274] [PMID: 25427242]
[134]
Tsai YC, Lee CL, Yen HR, et al. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules 2020; 10(3): 1-18.
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[135]
Zhou B, Yang Z, Feng Q, et al. Aurantiamide acetate from Baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. J Ethnopharmacol 2017; 199: 60-7.
[http://dx.doi.org/10.1016/j.jep.2017.01.038] [PMID: 28119097]
[136]
Mak N-K, Leung C-Y, Wei X-Y, et al. Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial epithelial cells. Biochem Pharmacol 2004; 67(1): 167-74.
[http://dx.doi.org/10.1016/j.bcp.2003.08.020] [PMID: 14667939]
[137]
Mani JS, Johnson JB, Steel JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res 2020; 284: 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[138]
Lin C-W, Tsai F-J, Tsai C-H, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[139]
Jiang Y, Liu M, Liu H, Liu S. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochem Rev 2020; 1-41.
[PMID: 32336965]
[140]
Zhang Y, Qi D, Gao Y, et al. History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review. J Ethnopharmacol 2020; 260: 112995.
[http://dx.doi.org/10.1016/j.jep.2020.112995] [PMID: 32497674]
[141]
Song LR. Hong, Ding XL, Zai Y Modern dictionary on traditional Chinese medicine. Beijing: People’s Med Publication House 2001; pp. 1254-5.
[142]
Kim DE, Min JS, Jang MS, et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of mrc-5 human lung cells. Biomolecules 2019; 9(11): 1-16.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[143]
Parvez MS, Azim KF, Imran AS, et al. Virtual screening of plant metabolites against main protease, RNA-dependent RNA polymerase and spike protein of SARS-CoV-2: Therapeutics option of COVID-19. 2020; Available from: https://arxiv.org/abs/2005.11254
[144]
Weng JR, Lin CS, Lai HC, et al. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res 2019; 273: 197767.
[http://dx.doi.org/10.1016/j.virusres.2019.197767] [PMID: 31560964]
[145]
Hsu H-C, Chang C-N, Chang Y-L, Tong T-S, Chen Y-C. Ethanol extract of Sambucus formosana stimulates HUVEC proliferation and tube formation through MEK1/2, ERK1/2 pathway‏. Nat Prod Chem Res 2014.
[146]
Milena V, Tatjana M, Gökhan Z, et al. Advantages of contemporary extraction techniques for the extraction of bioactive constituents from black elderberry (Sambucus nigra L.) flowers. Ind Crops Prod 2019; 136: 93-101.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.058]
[147]
Olejnik A, Olkowicz M, Kowalska K, et al. Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chem 2016; 197(Pt A): 648-57.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.017] [PMID: 26616999]
[148]
Porter RS, Bode RF. A review of the antiviral properties of black elder (Sambucus nigra L.) products‏. Phytother Res 2017; 31(4): 533-54.
[http://dx.doi.org/10.1002/ptr.5782] [PMID: 28198157]
[149]
Fal AM, Conrad F, Schönknecht K, Sievers H, Pawińska A. ‏Antiviral activity of the “Virus Blocking Factor” (VBF) derived i.a. from Pelargonium extract and Sambucus juice against different human-pathogenic cold viruses in vitro‏. Wiad Lek (Warsaw. Pol 1960; 2016(69): 499-511.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy