Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Combining Evolution and Cancer Therapy: A Review of the Mathematical Approach

Author(s): Sruthi Suresh, Srikanth Raghavendran* and Stalin Selvaraj*

Volume 18, Issue 1, 2022

Published on: 09 December, 2021

Page: [7 - 13] Pages: 7

DOI: 10.2174/1573394717666210922151146

Price: $65

Abstract

Conventional cancer therapy kills tumors by applying the maximum tolerable dose of therapy. However, it leads to the development of tumoral heterogeneity and resistance, hence leading to therapy failure and progression. It is necessary to design therapies keeping in mind the evolutionary dynamics of tumors to minimize resistance and delay progression. Mathematical models are of great importance in oncology as they assist in the recreation of the tumor microenvironment, predict the outcomes of treatment strategies and elucidate fundamentals of tumor growth and resistance development. The body of literature covering models which incorporate evolutionary dynamics is vast. This paper provides an overview of existing models of “evolutionary therapy”, including ordinary differential equations, fitness, and probability functions.

Keywords: Mathematical models, cancer treatment, evolution, resistance development, cencer therapy, tumor size.

Graphical Abstract

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006; 6(12): 924-35.
[http://dx.doi.org/10.1038/nrc2013] [PMID: 17109012]
[3]
Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature 2013; 501(7467): 355-64.
[http://dx.doi.org/10.1038/nature12627] [PMID: 24048068]
[4]
Gatenby R, Brown J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb Perspect Med 2018; 8(3): a033415.
[http://dx.doi.org/10.1101/cshperspect.a033415] [PMID: 28710258]
[5]
Altrock PM, Liu LL, Michor F. The mathematics of cancer: integrating quantitative models. Nat Rev Cancer 2015; 15(12): 730-45.
[http://dx.doi.org/10.1038/nrc4029] [PMID: 26597528]
[6]
Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer 2012; 12(7): 487-93.
[http://dx.doi.org/10.1038/nrc3298] [PMID: 22695393]
[7]
Frank SA, Rosner MR. Nonheritable cellular variability accelerates the evolutionary processes of cancer. PLoS Biol 2012; 10(4): e1001296.
[http://dx.doi.org/10.1371/journal.pbio.1001296] [PMID: 22509130]
[8]
Enriquez-Navas PM, Wojtkowiak JW, Gatenby RA. Application of evolutionary principles to cancer therapy. Cancer Res 2015; 75(22): 4675-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1337] [PMID: 26527288]
[9]
Gatenby RA, Silva AS, Gillies RJ, Frieden BR. Adaptive therapy. Cancer Res 2009; 69(11): 4894-903.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3658] [PMID: 19487300]
[10]
Swanton C. Cancer evolution: the final frontier of precision medicine? Ann Oncol 2014; 25(3): 549-51.
[http://dx.doi.org/10.1093/annonc/mdu005] [PMID: 24567514]
[11]
Sanga S, Sinek JP, Frieboes HB, Ferrari M, Fruehauf JP, Cristini V. Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev Anticancer Ther 2006; 6(10): 1361-76.
[http://dx.doi.org/10.1586/14737140.6.10.1361] [PMID: 17069522]
[12]
Enderling H, Chaplain MA. Mathematical modeling of tumor growth and treatment. Curr Pharm Des 2014; 20(30): 4934-40.
[http://dx.doi.org/10.2174/1381612819666131125150434] [PMID: 24283955]
[13]
Bozic I, Reiter JG, Allen B, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. Elife 2013; 2: e00747-e.
[http://dx.doi.org/10.7554/eLife.00747]
[14]
Basanta D, Gatenby RA, Anderson ARA. Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol Pharm 2012; 9(4): 914-21.
[http://dx.doi.org/10.1021/mp200458e] [PMID: 22369188]
[15]
Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun 2017; 8(1): 1816.
[http://dx.doi.org/10.1038/s41467-017-01968-5] [PMID: 29180633]
[16]
Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 1999; 59(19): 4770-5.
[PMID: 10519381]
[17]
Komarova NL, Katouli AA, Wodarz D. Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia. PloS one 2009; 4: e4423-e.
[http://dx.doi.org/10.1371/journal.pone.0004423]
[18]
Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci USA 2005; 102(27): 9714-9.
[http://dx.doi.org/10.1073/pnas.0501870102] [PMID: 15980154]
[19]
Pepper JW, Scott Findlay C, Kassen R, Spencer SL, Maley CC. Cancer research meets evolutionary biology. Evol Appl 2009; 2(1): 62-70.
[http://dx.doi.org/10.1111/j.1752-4571.2008.00063.x] [PMID: 25567847]
[20]
Xie L, Bourne PE. Developing multi-target therapeutics to fine- tune the evolutionary dynamics of the cancer ecosystem. Front Pharmacol 2015; 6: 209.
[http://dx.doi.org/10.3389/fphar.2015.00209] [PMID: 26441664]
[21]
Maley CC, Reid BJ, Forrest S. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol Biomarkers Prev 2004; 13(8): 1375-84.
[PMID: 15298961]
[22]
Bellomo N, Angelis E, Preziosi L. Review Article Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy*. J Theor Med 2003; 5.
[23]
Rockne RC, Hawkins-Daarud A, Swanson KR, et al. The 2019 mathematical oncology roadmap. Phys Biol 2019; 16(4): 041005.
[http://dx.doi.org/10.1088/1478-3975/ab1a09] [PMID: 30991381]
[24]
Ben-David U, Beroukhim R, Golub TR. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer 2019; 19(2): 97-109.
[http://dx.doi.org/10.1038/s41568-018-0095-3] [PMID: 30578414]
[25]
Amend SR, de Groot AE, Torga G, et al. Ten unanswered questions in cancer: “If this is true, what does it imply”? Am J Clin Exp Urol 2018; 6(2): 26-31.
[PMID: 29666828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy