Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Antioxidant Enzymes and Weight Gain in Drug-naive First-episode Schizophrenia Patients Treated with Risperidone for 12 Weeks: A Prospective Longitudinal Study

Author(s): Haixia Liu, Rui Yu, Yanan Gao, Xirong Li, Xiaoni Guan, Kosten Thomas, Meihong Xiu* and Xiangyang Zhang*

Volume 20, Issue 9, 2022

Published on: 30 March, 2022

Page: [1774 - 1782] Pages: 9

DOI: 10.2174/1570159X19666210920090547

Price: $65

Abstract

Background: Oxidative stress plays an important role in weight gain induced by antipsychotics in schizophrenia (SCZ). However, little is known about how antioxidant enzymes are involved in weight gain caused by risperidone monotherapy in antipsychotics-naïve first-episode (ANFE) patients with SCZ. Therefore, the main purpose of this study was to investigate the effects of risperidone on several antioxidant enzymes in patients with ANFE SCZ and the relationship between weight gain and changes in antioxidant enzyme activities.

Objective: The activities of plasma superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as the levels of malondialdehyde (MDA) were measured in 225 ANFE patients and 125 healthy controls.

Methods: Patients were treated with risperidone monotherapy for 12 weeks. Clinical symptoms, antioxidant enzyme activities, and MDA levels were measured at baseline and during follow-up.

Results: Compared with healthy controls, the patients showed higher activities of SOD and CAT but lower MDA levels and GPx activity. At baseline, the CAT activity was associated with body weight or BMI. Further, based on a 7% weight increase from baseline to follow-up, we found 75 patients in the weight gain (WG) group and 150 patients in the non-WG group. Comparing SOD, CAT, GPx activities and MDA levels between the WG group and the non-WG group at baseline and during the 12-week follow-up, it was found that after treatment, the SOD activity in the WG group increased while the MDA level decreased in the non-WG group. Moreover, baseline SOD and GPx activities were predictors of weight gain at 12-week follow-up.

Conclusion: These results suggest that the antioxidant defense system may have predictive value for the weight gain of ANFE SCZ patients after risperidone treatment.

Keywords: Schizophrenia, antioxidant, oxidative stress, weight gain, risperidone, antioxidant enzyme activities.

Graphical Abstract

[1]
Barnett, R. Schizophrenia. Lancet, 2018, 391(10121), 648.
[http://dx.doi.org/10.1016/S0140-6736(18)30237-X] [PMID: 29617256]
[2]
Correll, C.U.; Kane, J.M.; Manu, P. Obesity and coronary risk in patients treated with second-generation antipsychotics. Eur. Arch. Psychiatry Clin. Neurosci., 2011, 261(6), 417-423.
[http://dx.doi.org/10.1007/s00406-010-0177-z] [PMID: 21153653]
[3]
De Hert, M.; Detraux, J.; van Winkel, R.; Yu, W.; Correll, C.U. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat. Rev. Endocrinol., 2011, 8(2), 114-126.
[http://dx.doi.org/10.1038/nrendo.2011.156] [PMID: 22009159]
[4]
Luo, C.; Liu, J.; Wang, X.; Mao, X.; Zhou, H.; Liu, Z. Pharmacogenetic correlates of antipsychotic-induced weight gain in the chinese population. Neurosci. Bull., 2019, 35(3), 561-580.
[http://dx.doi.org/10.1007/s12264-018-0323-6] [PMID: 30607769]
[5]
Lett, T.A.; Wallace, T.J.; Chowdhury, N.I.; Tiwari, A.K.; Kennedy, J.L.; Müller, D.J. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol. Psychiatry, 2012, 17(3), 242-266.
[http://dx.doi.org/10.1038/mp.2011.109] [PMID: 21894153]
[6]
López-Domènech, S.; Bañuls, C.; Díaz-Morales, N.; Escribano-López, I.; Morillas, C.; Veses, S.; Orden, S.; Álvarez, Á.; Víctor, V.M.; Hernández-Mijares, A.; Rocha, M. Obesity impairs leukocyte-endothelium cell interactions and oxidative stress in humans. Eur. J. Clin. Invest., 2018, 48(8), e12985.
[http://dx.doi.org/10.1111/eci.12985] [PMID: 29924382]
[7]
Lohr, J.B.; Browning, J.A. Free radical involvement in neuropsychiatric illnesses. Psychopharmacol. Bull., 1995, 31(1), 159-165.
[PMID: 7675980]
[8]
Lin, C.H.; Lane, H.Y. Early identification and intervention of schizophrenia: insight from hypotheses of glutamate dysfunction and oxidative stress. Front. Psychiatry, 2019, 10(93)
[9]
Yao, J.K.; Keshavan, M.S. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid. Redox Signal., 2011, 15(7), 2011-2035.
[http://dx.doi.org/10.1089/ars.2010.3603] [PMID: 21126177]
[10]
Yao, J.K.; Reddy, R.; McElhinny, L.G.; van Kammen, D.P. Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophr. Res., 1998, 32(1), 1-8.
[http://dx.doi.org/10.1016/S0920-9964(98)00030-9] [PMID: 9690328]
[11]
Flatow, J.; Buckley, P.; Miller, B.J. Meta-analysis of oxidative stress in schizophrenia. Biol. Psychiatry, 2013, 74(6), 400-409.
[http://dx.doi.org/10.1016/j.biopsych.2013.03.018] [PMID: 23683390]
[12]
Perry, J.J.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta, 2010, 1804(2), 245-262.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.004] [PMID: 19914407]
[13]
Andreazza, A.C.; Kauer-Sant’anna, M.; Frey, B.N.; Bond, D.J.; Kapczinski, F.; Young, L.T.; Yatham, L.N. Oxidative stress markers in bipolar disorder: a meta-analysis. J. Affect. Disord., 2008, 111(2-3), 135-144.
[http://dx.doi.org/10.1016/j.jad.2008.04.013] [PMID: 18539338]
[14]
Xiu, M.H.; Li, Z.; Chen, D.C.; Chen, S.; Curbo, M.E.; Wu, H.E.; Tong, Y.S.; Tan, S.P.; Zhang, X.Y. Interrelationships between BDNF, superoxide dismutase, and cognitive impairment in drug-naive first-episode patients with schizophrenia. Schizophr. Bull., 2020, 46(6), 1498-1510.
[http://dx.doi.org/10.1093/schbul/sbaa062] [PMID: 32390043]
[15]
Güneş, M.; Camkurt, M.A.; Bulut, M.; Demir, S.; İbiloğlu, A.O.; Kaya, M.C.; Atlı, A.; Kaplan, İ.; Sir, A. Evaluation of paraoxonase, arylesterase and malondialdehyde levels in schizophrenia patients taking typical, atypical and combined antipsychotic treatment. Clin. Psychopharmacol. Neurosci., 2016, 14(4), 345-350.
[http://dx.doi.org/10.9758/cpn.2016.14.4.345] [PMID: 27776386]
[16]
Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G.; Zuberek, M.; Grzelak, A.; Dietrich-Muszalska, A. Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr. Res., 2016, 176(2-3), 245-251.
[http://dx.doi.org/10.1016/j.schres.2016.07.010] [PMID: 27449251]
[17]
Zhang, X.Y.; Zhou, D.F.; Shen, Y.C.; Zhang, P.Y.; Zhang, W.F.; Liang, J.; Chen, D.C.; Xiu, M.H.; Kosten, T.A.; Kosten, T.R. Effects of risperidone and haloperidol on superoxide dismutase and nitric oxide in schizophrenia. Neuropharmacology, 2012, 62(5-6), 1928-1934.
[http://dx.doi.org/10.1016/j.neuropharm.2011.12.014] [PMID: 22227558]
[18]
Vincent, H.K.; Taylor, A.G. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes., 2006, 30(3), 400-418.
[http://dx.doi.org/10.1038/sj.ijo.0803177] [PMID: 16302012]
[19]
Das, P.; Biswas, S.; Mukherjee, S.; Bandyopadhyay, S.K. Association of oxidative stress and obesity with insulin resistance in type 2 diabetes mellitus. Mymensingh Med. J., 2016, 25(1), 148-152.
[PMID: 26931265]
[20]
Picu, A.; Petcu, L.; Ştefan, S.; Mitu, M.; Lixandru, D.; Ionescu-Tîrgovişte, C.; Pîrcălăbioru, G.G.; Ciulu-Costinescu, F.; Bubulica, M.V.; Chifiriuc, M.C. Markers of oxidative stress and antioxidant defense in romanian patients with type 2 diabetes mellitus and obesity. Molecules, 2017, 22(5), E714.
[http://dx.doi.org/10.3390/molecules22050714] [PMID: 28468307]
[21]
Zaki, M.E.; El-Bassyouni, H.; Kamal, S.; El-Gammal, M.; Youness, E. Association of serum paraoxonase enzyme activity and oxidative stress markers with dyslipidemia in obese adolescents. Indian J. Endocrinol. Metab., 2014, 18(3), 340-344.
[http://dx.doi.org/10.4103/2230-8210.131173] [PMID: 24944928]
[22]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[23]
Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Skoumas, I.; Papademetriou, L.; Economou, M.; Stefanadis, C. The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr. Metab. Cardiovasc. Dis., 2007, 17(8), 590-597.
[http://dx.doi.org/10.1016/j.numecd.2006.05.007] [PMID: 16901682]
[24]
An, H.; Du, X.; Huang, X.; Qi, L.; Jia, Q.; Yin, G.; Xiao, C.; Huang, X.F.; Ning, Y.; Cassidy, R.M.; Wang, L.; Soares, J.C.; Zhang, X.Y. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl. Psychiatry, 2018, 8(1), 258.
[http://dx.doi.org/10.1038/s41398-018-0303-7] [PMID: 30498208]
[25]
Sankhla, M.; Sharma, T.K.; Mathur, K.; Rathor, J.S.; Butolia, V.; Gadhok, A.K.; Vardey, S.K.; Sinha, M.; Kaushik, G.G. Relationship of oxidative stress with obesity and its role in obesity induced metabolic syndrome. Clin. Lab., 2012, 58(5-6), 385-392.
[PMID: 22783566]
[26]
Lee, E.E.; Eyler, L.T.; Wolkowitz, O.M.; Martin, A.S.; Reuter, C.; Kraemer, H.; Jeste, D.V. Elevated plasma F2-isoprostane levels in schizophrenia. Schizophr. Res., 2016, 176(2-3), 320-326.
[http://dx.doi.org/10.1016/j.schres.2016.06.011] [PMID: 27318521]
[27]
Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical antipsychotics and metabolic syndrome: From molecular mechanisms to clinical differences. Pharmaceuticals (Basel), 2021, 14(3), 238.
[http://dx.doi.org/10.3390/ph14030238] [PMID: 33800403]
[28]
Aringhieri, S.; Kolachalam, S.; Gerace, C.; Carli, M.; Verdesca, V.; Brunacci, M.G.; Rossi, C.; Ippolito, C.; Solini, A.; Corsini, G.U.; Scarselli, M. Clozapine as the most efficacious antipsychotic for activating ERK 1/2 kinases: Role of 5-HT2A receptor agonism. Eur. Neuropsychopharmacol., 2017, 27(4), 383-398.
[http://dx.doi.org/10.1016/j.euroneuro.2017.02.005] [PMID: 28283227]
[29]
Schotte, A.; Janssen, P.F.; Gommeren, W.; Luyten, W.H.; Van Gompel, P.; Lesage, A.S.; De Loore, K.; Leysen, J.E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology (Berl.), 1996, 124(1-2), 57-73.
[http://dx.doi.org/10.1007/BF02245606] [PMID: 8935801]
[30]
Hendouei, N.; Farnia, S.; Mohseni, F.; Salehi, A.; Bagheri, M.; Shadfar, F.; Barzegar, F.; Hoseini, S.D.; Charati, J.Y.; Shaki, F. Alterations in oxidative stress markers and its correlation with clinical findings in schizophrenic patients consuming perphenazine, clozapine and risperidone. Biomed. Pharmacother., 2018, 103, 965-972.
[http://dx.doi.org/10.1016/j.biopha.2018.04.109]
[31]
Tendilla-Beltrán, H.; Meneses-Prado, S.; Vázquez-Roque, R.A.; Tapia-Rodríguez, M.; Vázquez-Hernández, A.J.; Coatl-Cuaya, H.; Martín-Hernández, D.; MacDowell, K.S.; Garcés-Ramírez, L.; Leza, J.C.; Flores, G. Risperidone Ameliorates Prefrontal Cortex Neural Atrophy and Oxidative/Nitrosative Stress in Brain and Peripheral Blood of Rats with Neonatal Ventral Hippocampus Lesion. J. Neurosci., 2019, 39(43), 8584-8599.
[http://dx.doi.org/10.1523/JNEUROSCI.1249-19.2019] [PMID: 31519825]
[32]
Casquero-Veiga, M.; García-García, D.; MacDowell, K.S.; Pérez-Caballero, L.; Torres-Sánchez, S.; Fraguas, D.; Berrocoso, E.; Leza, J.C.; Arango, C.; Desco, M.; Soto-Montenegro, M.L. Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: A PET and MRI study in the maternal immune stimulation animal model. Eur. Neuropsychopharmacol., 2019, 29(7), 880-896.
[http://dx.doi.org/10.1016/j.euroneuro.2019.05.002] [PMID: 31229322]
[33]
Dietrich-Muszalska, A.; Kolińska-Łukaszuk, J. Comparative effects of aripiprazole and selected antipsychotic drugs on lipid peroxidation in plasma. Psychiatry Clin. Neurosci., 2018, 72(5), 329-336.
[http://dx.doi.org/10.1111/pcn.12631] [PMID: 29280533]
[34]
Lieberman, J.A.; Phillips, M.; Gu, H.; Stroup, S.; Zhang, P.; Kong, L.; Ji, Z.; Koch, G.; Hamer, R.M. Atypical and conventional antipsychotic drugs in treatment-naive first-episode schizophrenia: a 52-week randomized trial of clozapine vs chlorpromazine. Neuropsychopharmacology, 2003, 28(5), 995-1003.
[http://dx.doi.org/10.1038/sj.npp.1300157] [PMID: 12700715]
[35]
Phillips, M.R.; Zhang, J.; Shi, Q.; Song, Z.; Ding, Z.; Pang, S.; Li, X.; Zhang, Y.; Wang, Z. Prevalence, treatment, and associated disability of mental disorders in four provinces in China during 2001-05: an epidemiological survey. Lancet, 2009, 373(9680), 2041-2053.
[http://dx.doi.org/10.1016/S0140-6736(09)60660-7] [PMID: 19524780]
[36]
Lieberman, J.A.; Stroup, T.S.; McEvoy, J.P.; Swartz, M.S.; Rosenheck, R.A.; Perkins, D.O.; Keefe, R.S.; Davis, S.M.; Davis, C.E.; Lebowitz, B.D.; Severe, J.; Hsiao, J.K. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med., 2005, 353(12), 1209-1223.
[http://dx.doi.org/10.1056/NEJMoa051688] [PMID: 16172203]
[37]
Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull., 1987, 13(2), 261-276.
[http://dx.doi.org/10.1093/schbul/13.2.261] [PMID: 3616518]
[38]
Padurariu, M.; Ciobica, A.; Dobrin, I.; Stefanescu, C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci. Lett., 2010, 479(3), 317-320.
[http://dx.doi.org/10.1016/j.neulet.2010.05.088] [PMID: 20561936]
[39]
Wu, Z.; Zhang, X.Y.; Wang, H.; Tang, W.; Xia, Y.; Zhang, F.; Liu, J.; Fu, Y.; Hu, J.; Chen, Y.; Liu, L.; Chen, D.C.; Xiu, M.H.; Kosten, T.R.; He, J. Elevated plasma superoxide dismutase in first-episode and drug naive patients with schizophrenia: inverse association with positive symptoms. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 36(1), 34-38.
[http://dx.doi.org/10.1016/j.pnpbp.2011.08.018] [PMID: 21896300]
[40]
Yeung, E.Y.H.; Buhagiar, K. Correlation of age and metabolic adverse effects of antipsychotics. Clin. Drug Investig., 2018, 38(4), 381-384.
[http://dx.doi.org/10.1007/s40261-017-0607-z] [PMID: 29170983]
[41]
Maayan, L.; Correll, C.U. Management of antipsychotic-related weight gain. Expert Rev. Neurother., 2010, 10(7), 1175-1200.
[http://dx.doi.org/10.1586/ern.10.85] [PMID: 20586697]
[42]
Gentile, S. Contributing factors to weight gain during long-term treatment with second-generation antipsychotics. A systematic appraisal and clinical implications. Obes. Rev., 2009, 10(5), 527-542.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00589.x] [PMID: 19460111]
[43]
Gebhardt, S.; Haberhausen, M.; Heinzel-Gutenbrunner, M.; Gebhardt, N.; Remschmidt, H.; Krieg, J.C.; Hebebrand, J.; Theisen, F.M. Antipsychotic-induced body weight gain: predictors and a systematic categorization of the long-term weight course. J. Psychiatr. Res., 2009, 43(6), 620-626.
[http://dx.doi.org/10.1016/j.jpsychires.2008.11.001] [PMID: 19110264]
[44]
Ozata, M.; Mergen, M.; Oktenli, C.; Aydin, A.; Sanisoglu, S.Y.; Bolu, E.; Yilmaz, M.I.; Sayal, A.; Isimer, A.; Ozdemir, I.C. Increased oxidative stress and hypozincemia in male obesity. Clin. Biochem., 2002, 35(8), 627-631.
[http://dx.doi.org/10.1016/S0009-9120(02)00363-6] [PMID: 12498997]
[45]
Lohr, J.B.; Kuczenski, R.; Niculescu, A.B. Oxidative mechanisms and tardive dyskinesia. CNS Drugs, 2003, 17(1), 47-62.
[http://dx.doi.org/10.2165/00023210-200317010-00004] [PMID: 12467492]
[46]
Cadet, J.L.; Perumal, A.S. Chronic treatment with prolixin causes oxidative stress in rat brain. Biol. Psychiatry, 1990, 28(8), 738-740.
[http://dx.doi.org/10.1016/0006-3223(90)90461-A] [PMID: 2242392]
[47]
Chen, Y.Q.; Li, X.R.; Zhang, L.; Zhu, W.B.; Wu, Y.Q.; Guan, X.N.; Xiu, M.H.; Zhang, X.Y. Therapeutic response is associated with antipsychotic-induced weight gain in drug-naive first-episode patients with schizophrenia: An 8-week prospective study. J. Clin. Psychiatry, 2021, 82(3), 20m13469.
[http://dx.doi.org/10.4088/JCP.20m13469] [PMID: 34004092]
[48]
Stojković, T.; Radonjić, N.V.; Velimirović, M.; Jevtić, G.; Popović, V.; Doknić, M.; Petronijević, N.D. Risperidone reverses phencyclidine induced decrease in glutathione levels and alterations of antioxidant defense in rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(1), 192-199.
[http://dx.doi.org/10.1016/j.pnpbp.2012.06.013] [PMID: 22735395]
[49]
Zhang, X.Y.; Tan, Y.L.; Cao, L.Y.; Wu, G.Y.; Xu, Q.; Shen, Y.; Zhou, D.F. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res., 2006, 81(2-3), 291-300.
[http://dx.doi.org/10.1016/j.schres.2005.10.011] [PMID: 16309894]
[50]
Célia Moreira Borella, V.; Seeman, M.V.; Carneiro Cordeiro, R.; Vieira dos Santos, J.; Romário Matos de Souza, M.; Nunes de Sousa Fernandes, E.; Santos Monte, A.; Maria Mendes Vasconcelos, S.; Quinn, J.P.; de Lucena, D.F.; Carvalho, A.F.; Macêdo, D. Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine. Dev. Neurobiol., 2016, 76(5), 519-532.
[http://dx.doi.org/10.1002/dneu.22329] [PMID: 26215537]
[51]
Monte, A.S.; da Silva, F.E.R.; Lima, C.N.C.; Vasconcelos, G.S.; Gomes, N.S.; Miyajima, F.; Vasconcelos, S.M.M.; Gama, C.S.; Seeman, M.V.; de Lucena, D.F.; Macedo, D.S. Sex influences in the preventive effects of N-acetylcysteine in a two-hit animal model of schizophrenia. J. Psychopharmacol., 2020, 34(1), 125-136.
[http://dx.doi.org/10.1177/0269881119875979] [PMID: 31556775]
[52]
Monte, A.S.; Mello, B.S.F.; Borella, V.C.M.; da Silva Araujo, T.; da Silva, F.E.R.; Sousa, F.C.F.; de Oliveira, A.C.P.; Gama, C.S.; Seeman, M.V.; Vasconcelos, S.M.M.; Lucena, D.F.; Macêdo, D. Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: Study of sex differences and brain oxidative alterations. Behav. Brain Res., 2017, 331, 30-37.
[53]
Albrahim, T.; Alonazi, M.A. Lycopene corrects metabolic syndrome and liver injury induced by high fat diet in obese rats through antioxidant, anti-inflammatory, antifibrotic pathways. Biomed. Pharmacother., 2021, 141, 111831.
[54]
Maciejczyk, M.; Żebrowska, E.; Chabowski, A. Insulin Resistance and Oxidative Stress in the Brain: What’s New? Int. J. Mol. Sci., 2019, 20(4), E874.
[http://dx.doi.org/10.3390/ijms20040874] [PMID: 30781611]
[55]
Liao, J.; Zhang, Y.; Chen, X.; Zhang, J. The roles of peroxiredoxin 6 in brain diseases. Mol. Neurobiol., 2021, 58(9), 4348-4364.
[http://dx.doi.org/10.1007/s12035-021-02427-5] [PMID: 34013449]
[56]
Wu, J.Q.; Kosten, T.R.; Zhang, X.Y. Free radicals, antioxidant defense systems, and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 200-206.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.015]
[57]
Lohr, J.B. Oxygen radicals and neuropsychiatric illness. Some speculations. Arch. Gen. Psychiatry, 1991, 48(12), 1097-1106.
[http://dx.doi.org/10.1001/archpsyc.1991.01810360061009] [PMID: 1845228]
[58]
Abdul-Muneer, P.M.; Schuetz, H.; Wang, F.; Skotak, M.; Jones, J.; Gorantla, S.; Zimmerman, M.C.; Chandra, N.; Haorah, J. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic. Biol. Med., 2013, 60, 282-291.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy