Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Mini-Review Article

LED Light Sources in Organic Synthesis: An Entry to a Novel Approach

Author(s): Aparna Das*

Volume 19, Issue 4, 2022

Published on: 21 December, 2021

Page: [283 - 292] Pages: 10

DOI: 10.2174/1570178618666210916164132

Price: $65

Abstract

In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally friendly, and sustainable technology. Compared to other light sources in photochemical reaction, LEDs have advantages in terms of efficiency, power, compatibility, and environmentally friendly nature. This review highlights the most recent advances in LED-induced photochemical reactions. The effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization, and sensitization is discussed in detail. No other reviews have been published on the importance of white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this review is highly significant and timely.

Keywords: Photochemical reaction, LEDs, organic compounds, catalysis, photocatalysis, organic synthesis.

Graphical Abstract

[1]
Das, A.; Banik, B.K. Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Advances in Green Chemistry; Banik, B.K., Ed.; Elsevier, 2020, pp. 549-574.
[http://dx.doi.org/10.1016/B978-0-12-817592-7.00015-0]
[2]
Das, A.; Yadav, R.; Banik, B.K. Encyclopedia; MDPI. 2020. Available from: https://encyclopedia.pub/2300
[3]
Das, A.; Yadav, R.; Banik, B.K. Encyclopedia; MDPI, 2020. Available from: https://encyclopedia.pub/2341
[4]
Das, A.; Yadav, R.; Banik, B.K. Curr. Organocatal., 2020, 7(3), 212-241.
[http://dx.doi.org/10.2174/2213337207999200726231300]
[5]
Das, A.; Banik, B.K. Encyclopedia; MDPI, 2020. Available from: https://encyclopedia.pub/1604
[6]
Das, A.; Banik, B.K. Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Elsevier, 2020, pp. 921-964.
[http://dx.doi.org/10.1016/B978-0-12-817592-7.00021-6]
[7]
Das, A.; Banik, B.K. J. Indian Chem. Soc., 2020, 97(9b), 1567-1571.
[8]
Das, A.; Banik, B.K. Microwaves in Chemistry Applications, Available from: https://www.elsevier.com/books/microwaves-in-chemistry-applications/banik/978-0-12-822895-1
[9]
Das, A.; Abdulrahim Alqashqari, A.; Banik, B.K. J. Indian Chem. Soc., 2020, 97(9b), 1563-1566.
[10]
Das, A.; Bose, A.K.; Banik, B.K. J. Indian Chem. Soc., 2020, 97(6), 917-925.
[11]
Das, A.; Banik, B. J. Indian Chem. Soc., 2020, 97(6), 911-915.
[12]
Das, A.; Banik, B.K. Encyclopedia; MDPI, 2020. Available from: https://encyclopedia.pub/1575
[13]
Das, A.; Banik, B.K. Encyclopedia; MDPI, 2020. Available from: https://encyclopedia.pub/1552
[14]
Prasad Hari, D.; Hering, T.; Koenig, B. Angew. Chem. Int. Ed., 2014, 53(3), 725-728.
[http://dx.doi.org/10.1002/anie.201307051]
[15]
Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem., 2013, 11(15), 2387-2403.
[http://dx.doi.org/10.1039/c3ob40137e] [PMID: 23426621]
[16]
Xuan, J.; Lu, L-Q.; Chen, J-R.; Xiao, W-J. Eur. J. Org. Chem., 2013, 2013(30), 6755-6770.
[http://dx.doi.org/10.1002/ejoc.201300596]
[17]
Tucker, J.W.; Stephenson, C.R. Shining light on photoredox catalysis: theory and synthetic applications. J. Org. Chem., 2012, 77(4), 1617-1622.
[http://dx.doi.org/10.1021/jo202538x] [PMID: 22283525]
[18]
Hari, D.P.; König, B. Angew. Chem., 2013, 125(18), 4832-4842.
[http://dx.doi.org/10.1002/ange.201210276]
[19]
Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-Carbon Bond Forming Reactions via Photogenerated Intermediates. Chem. Rev., 2016, 116(17), 9850-9913.
[http://dx.doi.org/10.1021/acs.chemrev.5b00662] [PMID: 27070820]
[20]
Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev., 2016, 45(11), 3026-3038.
[http://dx.doi.org/10.1039/C5CS00659G] [PMID: 27094803]
[21]
Yoon, T.P. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis. Acc. Chem. Res., 2016, 49(10), 2307-2315.
[http://dx.doi.org/10.1021/acs.accounts.6b00280] [PMID: 27505691]
[22]
Narayanam, J.M.; Stephenson, C.R. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341]
[23]
Chen, J-R.; Hu, X-Q.; Lu, L-Q.; Xiao, W-J. Visible light photoredox-controlled reactions of N-radicals and radical ions. Chem. Soc. Rev., 2016, 45(8), 2044-2056.
[http://dx.doi.org/10.1039/C5CS00655D] [PMID: 26839142]
[24]
Shaw, M.H.; Twilton, J.; MacMillan, D.W. Photoredox Catalysis in Organic Chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
[25]
Fabry, D.C.; Rueping, M. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants. Acc. Chem. Res., 2016, 49(9), 1969-1979.
[http://dx.doi.org/10.1021/acs.accounts.6b00275] [PMID: 27556812]
[26]
Iriondo-Alberdi, J.; Greaney, M.F. Eur. J. Org. Chem., 2007, 2007(29), 4801-4815.
[http://dx.doi.org/10.1002/ejoc.200700239]
[27]
Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev., 2008, 108(3), 1052-1103.
[http://dx.doi.org/10.1021/cr0680336] [PMID: 18302419]
[28]
Bach, T.; Hehn, J.P. Photochemical reactions as key steps in natural product synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1000-1045.
[http://dx.doi.org/10.1002/anie.201002845] [PMID: 21246702]
[29]
Nagib, D.A.; MacMillan, D.W. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature, 2011, 480(7376), 224-228.
[http://dx.doi.org/10.1038/nature10647] [PMID: 22158245]
[30]
DiRocco, D.A.; Rovis, T. Catalytic asymmetric α-acylation of tertiary amines mediated by a dual catalysis mode: N-heterocyclic carbene and photoredox catalysis. J. Am. Chem. Soc., 2012, 134(19), 8094-8097.
[http://dx.doi.org/10.1021/ja3030164] [PMID: 22548244]
[31]
Kalyani, D.; McMurtrey, K.B.; Neufeldt, S.R.; Sanford, M.S. Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J. Am. Chem. Soc., 2011, 133(46), 18566-18569.
[http://dx.doi.org/10.1021/ja208068w] [PMID: 22047138]
[32]
Maity, S.; Zhu, M.; Shinabery, R.S.; Zheng, N. Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(1), 222-226.
[http://dx.doi.org/10.1002/anie.201106162] [PMID: 22109785]
[33]
Liu, Q.; Wu, L-Z. Natl. Sci. Rev., 2017, 4(3), 359-380.
[http://dx.doi.org/10.1093/nsr/nwx039]
[34]
Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem. Int. Ed. Engl., 2018, 57(32), 10034-10072.
[http://dx.doi.org/10.1002/anie.201709766] [PMID: 29457971]
[35]
Brimioulle, R.; Lenhart, D.; Maturi, M.M.; Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 3872-3890.
[http://dx.doi.org/10.1002/anie.201411409] [PMID: 25728854]
[36]
Wang, Y.; Wang, N.; Zhao, J.; Sun, M.; You, H.; Fang, F.; Liu, Z-Q. ACS Catal., 2020, 10(12), 6603-6612.
[http://dx.doi.org/10.1021/acscatal.0c01495]
[37]
Lu, Z.; Yoon, T.P. Angew. Chem., 2012, 124(41), 10475-10478.
[http://dx.doi.org/10.1002/ange.201204835]
[38]
Zou, Y-Q.; Duan, S-W.; Meng, X-G.; Hu, X-Q.; Gao, S.; Chen, J-R.; Xiao, W-J. Tetrahedron, 2012, 68(34), 6914-6919.
[http://dx.doi.org/10.1016/j.tet.2012.06.011]
[39]
Zhao, J.; Brosmer, J.L.; Tang, Q.; Yang, Z.; Houk, K.N.; Diaconescu, P.L.; Kwon, O. Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. J. Am. Chem. Soc., 2017, 139(29), 9807-9810.
[http://dx.doi.org/10.1021/jacs.7b05277] [PMID: 28683547]
[40]
Kawasaki, T.; Higuchi, K. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2005, 22(6), 761-793.
[http://dx.doi.org/10.1039/b502162f] [PMID: 16311634]
[41]
Zhao, G.; Roudaut, C.; Gandon, V.; Alami, M.; Provot, O. Green Chem., 2019, 21(15), 4204-4210.
[http://dx.doi.org/10.1039/C9GC01880H]
[42]
Bandini, M.; Eichholzer, A. Catalytic functionalization of indoles in a new dimension. Angew. Chem. Int. Ed. Engl., 2009, 48(51), 9608-9644.
[http://dx.doi.org/10.1002/anie.200901843] [PMID: 19946913]
[43]
Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev., 2010, 110(8), 4489-4497.
[http://dx.doi.org/10.1021/cr900211p] [PMID: 20380420]
[44]
Zhuo, C-X.; Wu, Q-F.; Zhao, Q.; Xu, Q-L.; You, S-L. Enantioselective functionalization of indoles and pyrroles via an in situ-formed spiro intermediate. J. Am. Chem. Soc., 2013, 135(22), 8169-8172.
[http://dx.doi.org/10.1021/ja403535a] [PMID: 23672506]
[45]
Angerer, E.V.; Knebel, N.; Kager, M.; Ganss, B. J. Med. Chem., 1990, 33(9), 2635-2640.
[http://dx.doi.org/10.1021/jm00171a045] [PMID: 2391702]
[46]
Chu, L.; Hutchins, J.E.; Weber, A.E.; Lo, J-L.; Yang, Y-T.; Cheng, K.; Smith, R.G.; Fisher, M.H.; Wyvratt, M.J.; Goulet, M.T. Initial structure-activity relationship of a novel class of nonpeptidyl GnRH receptor antagonists: 2-arylindoles. Bioorg. Med. Chem. Lett., 2001, 11(4), 509-513.
[http://dx.doi.org/10.1016/S0960-894X(00)00707-1] [PMID: 11229759]
[47]
Ambrus, J.I.; Kelso, M.J.; Bremner, J.B.; Ball, A.R.; Casadei, G.; Lewis, K. Structure-activity relationships of 2-aryl-1H-indole inhibitors of the NorA efflux pump in Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2008, 18(15), 4294-4297.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.093] [PMID: 18632270]
[48]
Nakhi, A.; Prasad, B.; Reddy, U.; Rao, R.M.; Sandra, S.; Kapavarapu, R.; Rambabu, D.; Krishna, G.R.; Reddy, C.M.; Ravada, K. MedChemComm, 2011, 2(10), 1006-1010.
[http://dx.doi.org/10.1039/c1md00148e]
[49]
Willoughby, C.A.; Hutchins, S.M.; Rosauer, K.G.; Dhar, M.J.; Chapman, K.T.; Chicchi, G.G.; Sadowski, S.; Weinberg, D.H.; Patel, S.; Malkowitz, L.; Di Salvo, J.; Pacholok, S.G.; Cheng, K. Combinatorial synthesis of 3-(amidoalkyl) and 3-(aminoalkyl)-2-arylindole derivatives: discovery of potent ligands for a variety of G-protein coupled receptors. Bioorg. Med. Chem. Lett., 2002, 12(1), 93-96.
[http://dx.doi.org/10.1016/S0960-894X(01)00665-5] [PMID: 11738581]
[50]
Maity, S.; Zheng, N. A visible-light-mediated oxidative C-N bond formation/aromatization cascade: photocatalytic preparation of N-arylindoles. Angew. Chem. Int. Ed. Engl., 2012, 51(38), 9562-9566.
[http://dx.doi.org/10.1002/anie.201205137] [PMID: 22915489]
[51]
Xia, X.; Xuan, J.; Wang, Q.; Lu, L.; Chen, J.; Xiao, W. Adv. Synth. Catal., 2014, 356(13), 2807-2812.
[http://dx.doi.org/10.1002/adsc.201400527]
[52]
Zhu, S.; Pathigoolla, A.; Lowe, G.; Walsh, D.A.; Cooper, M.; Lewis, W.; Lam, H.W. Chem. Weinh. Bergstr. Ger., 2017, 23(69), 17598.
[53]
Rostoll-Berenguer, J.; Blay, G.; Pedro, J.R.; Vila, C. Catalysts, 2018, 8(12), 653.
[http://dx.doi.org/10.3390/catal8120653]
[54]
Rogers, D.A.; Brown, R.G.; Brandeburg, Z.C.; Ko, E.Y.; Hopkins, M.D.; LeBlanc, G.; Lamar, A.A. Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using N-Bromosuccinimide. ACS Omega, 2018, 3(10), 12868-12877.
[http://dx.doi.org/10.1021/acsomega.8b02320] [PMID: 31458011]
[55]
Liu, Q.; Zhu, F.P.; Jin, X.L.; Wang, X.J.; Chen, H.; Wu, L.Z. Visible-Light-Driven Intermolecular [2+2] Cycloadditions between Coumarin-3-Carboxylates and Acrylamide Analogs. Chemistry, 2015, 21(29), 10326-10329.
[http://dx.doi.org/10.1002/chem.201501176] [PMID: 26096526]
[56]
Wang, C.; Lu, Z. Intermolecular [2 + 2] Cycloaddition of 1,4-Dihydropyridines with Olefins via Energy Transfer. Org. Lett., 2017, 19(21), 5888-5891.
[http://dx.doi.org/10.1021/acs.orglett.7b02881] [PMID: 29048912]
[57]
Huang, X.; Quinn, T.R.; Harms, K.; Webster, R.D.; Zhang, L.; Wiest, O.; Meggers, E. Direct Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions. J. Am. Chem. Soc., 2017, 139(27), 9120-9123.
[http://dx.doi.org/10.1021/jacs.7b04363] [PMID: 28644024]
[58]
Skubi, K.L.; Kidd, J.B.; Jung, H.; Guzei, I.A.; Baik, M-H.; Yoon, T.P. Enantioselective Excited-State Photoreactions Controlled by a Chiral Hydrogen-Bonding Iridium Sensitizer. J. Am. Chem. Soc., 2017, 139(47), 17186-17192.
[http://dx.doi.org/10.1021/jacs.7b10586] [PMID: 29087702]
[59]
Xuan, J.; Xia, X.D.; Zeng, T.T.; Feng, Z.J.; Chen, J.R.; Lu, L.Q.; Xiao, W.J. Visible-light-induced formal [3+2] cycloaddition for pyrrole synthesis under metal-free conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(22), 5653-5656.
[http://dx.doi.org/10.1002/anie.201400602] [PMID: 24729379]
[60]
Farney, E.P.; Yoon, T.P. Visible-light sensitization of vinyl azides by transition-metal photocatalysis. Angew. Chem. Int. Ed. Engl., 2014, 53(3), 793-797.
[http://dx.doi.org/10.1002/anie.201308820] [PMID: 24281908]
[61]
Brachet, E.; Ghosh, T.; Ghosh, I.; König, B. Visible light C-H amidation of heteroarenes with benzoyl azides. Chem. Sci. (Camb.), 2015, 6(2), 987-992.
[http://dx.doi.org/10.1039/C4SC02365J] [PMID: 29560185]
[62]
Scholz, S.O.; Farney, E.P.; Kim, S.; Bates, D.M.; Yoon, T.P. Angew. Chem., 2016, 128(6), 2279-2282.
[http://dx.doi.org/10.1002/ange.201510868]
[63]
Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal., 2016, 6(10), 6853-6860.
[http://dx.doi.org/10.1021/acscatal.6b01969]
[64]
Yoo, W-J.; Tsukamoto, T.; Kobayashi, S. Visible Light-Mediated Ullmann-Type C-N Coupling Reactions of Carbazole Derivatives and Aryl Iodides. Org. Lett., 2015, 17(14), 3640-3642.
[http://dx.doi.org/10.1021/acs.orglett.5b01645] [PMID: 26151428]
[65]
Münster, N.; Parker, N.A.; van Dijk, L.; Paton, R.S.; Smith, M.D. Visible Light Photocatalysis of 6π Heterocyclization. Angew. Chem. Int. Ed. Engl., 2017, 56(32), 9468-9472.
[http://dx.doi.org/10.1002/anie.201705333] [PMID: 28640479]
[66]
Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D.P.; Rueping, M. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions. J. Am. Chem. Soc., 2013, 135(5), 1823-1829.
[http://dx.doi.org/10.1021/ja309580a] [PMID: 23330701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy