Review Article

组蛋白去乙酰化酶及其抑制剂在结直肠癌治疗中的应用:当前的证据和未来的考虑

卷 29, 期 17, 2022

发表于: 10 January, 2022

页: [2979 - 2994] 页: 16

弟呕挨: 10.2174/0929867328666210915105929

价格: $65

摘要

结直肠癌(CRC)包括一组异质性胃肠道肿瘤。它是一种多因素疾病,其发病机制和病理生理学涉及许多不同的因素。CRC的发展不仅限于遗传变化,还涉及表观遗传和环境因素。在表观遗传因素中,组蛋白去乙酰化酶(HDAC)是一组调节基因表达的表观遗传酶,据报道在CRC中过度表达。HDACs及其抑制剂似乎在CRC的分子病理生理学中起重要作用。本综述的目的是确定HDAC抑制剂作为针对CRC的潜在抗癌药物的作用。

关键词: 组蛋白,脱乙酰酶,抑制剂,HDAC,HDACI,结直肠癌,靶向治疗,表观遗传学 。

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970-2014. JAMA, 2017, 318(6), 572-574.
[http://dx.doi.org/10.1001/jama.2017.7630] [PMID: 28787497]
[3]
Koh, K.S.; Telisinghe, P.U.; Bickle, I.; Abdullah, M.S.; Chong, C.F.; Chong, V.H. Characteristics of young colorectal cancer in Brunei Darussalam: An epidemiologic study of 29 years (1986-2014). Asian Pac. J. Cancer Prev., 2015, 16(8), 3279-3283.
[http://dx.doi.org/10.7314/APJCP.2015.16.8.3279] [PMID: 25921132]
[4]
Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS One, 2011, 6(6), e20456.
[http://dx.doi.org/10.1371/journal.pone.0020456] [PMID: 21674008]
[5]
Liang, P.S.; Chen, T.Y.; Giovannucci, E. Cigarette smoking and colorectal cancer incidence and mortality: Systematic review and meta-analysis. Int. J. Cancer, 2009, 124(10), 2406-2415.
[http://dx.doi.org/10.1002/ijc.24191] [PMID: 19142968]
[6]
Limsui, D.; Vierkant, R.A.; Tillmans, L.S.; Wang, A.H.; Weisenberger, D.J.; Laird, P.W.; Lynch, C.F.; Anderson, K.E.; French, A.J.; Haile, R.W.; Harnack, L.J.; Potter, J.D.; Slager, S.L.; Smyrk, T.C.; Thibodeau, S.N.; Cerhan, J.R.; Limburg, P.J. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J. Natl. Cancer Inst., 2010, 102(14), 1012-1022.
[http://dx.doi.org/10.1093/jnci/djq201] [PMID: 20587792]
[7]
Taylor, D.P.; Burt, R.W.; Williams, M.S.; Haug, P.J.; Cannon-Albright, L.A. Population-based family history-specific risks for colorectal cancer: A constellation approach. Gastroenterology, 2010, 138(3), 877-885.
[http://dx.doi.org/10.1053/j.gastro.2009.11.044] [PMID: 19932107]
[8]
Mao, Q.D.; Zhang, W.; Zhao, K.; Cao, B.; Yuan, H.; Wei, L.Z.; Song, M.Q.; Liu, X.S. MicroRNA-455 suppresses the oncogenic function of HDAC2 in human colorectal cancer. Braz. J. Med. Biol. Res., 2017, 50(6), e6103.
[http://dx.doi.org/10.1590/1414-431x20176103] [PMID: 28538837]
[9]
Zhao, Y.; Wang, X.; Wang, Y. Helicobacter pylori infection and colorectal carcinoma risk: A meta-analysis. J. Cancer Res. Ther., 2016, 12(Suppl.), 15-18.
[http://dx.doi.org/10.4103/0973-1482.191621] [PMID: 27721244]
[10]
Park, C.H.; Eun, C.S.; Han, D.S. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest. Res., 2018, 16(3), 338-345.
[http://dx.doi.org/10.5217/ir.2018.16.3.338] [PMID: 30090032]
[11]
Lao, V.V.; Grady, W.M. Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(12), 686-700.
[http://dx.doi.org/10.1038/nrgastro.2011.173] [PMID: 22009203]
[12]
Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8681-8686.
[http://dx.doi.org/10.1073/pnas.96.15.8681] [PMID: 10411935]
[13]
Mariadason, J.M. HDACs and HDAC inhibitors in colon cancer. Epigenetics, 2008, 3(1), 28-37.
[http://dx.doi.org/10.4161/epi.3.1.5736] [PMID: 18326939]
[14]
Garmpi, A.; Garmpis, N.; Damaskos, C.; Valsami, S.; Spartalis, E.; Lavaris, A.; Patelis, N.; Margonis, G.A.; Apostolou, K.G.; Spartalis, M.; Andreatos, N.; Diamantis, E.; Tsivelekas, K.; Moschos, M.M.; Nonni, A.; Tsourouflis, G.; Markatos, K.; Antoniou, E.A.; Kontzoglou, K.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors as a new anticancer option: How far can we go with expectations? delivery systems. J. BUON, 2018, 23(4), 846-861.
[PMID: 30358185]
[15]
Richon, V.M.; O’Brien, J.P. Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin. Cancer Res., 2002, 8(3), 662-664.
[PMID: 11895892]
[16]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[17]
Damaskos, C.; Garmpis, N.; Valsami, S.; Spartalis, E.; Antoniou, E.A.; Tomos, P.; Karamaroudis, S.; Zoumpou, T.; Pergialiotis, V.; Stergios, K.; Michaelides, C.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: A novel therapeutic weapon against medullary thyroid cancer? Anticancer Res., 2016, 36(10), 5019-5024.
[http://dx.doi.org/10.21873/anticanres.11070] [PMID: 27798860]
[18]
Giaginis, C.; Damaskos, C.; Koutsounas, I.; Zizi-Serbetzoglou, A.; Tsoukalas, N.; Patsouris, E.; Kouraklis, G.; Theocharis, S. Histone deacetylase (HDAC)-1, -2, -4 and -6 expression in human pancreatic adenocarcinoma: Associations with clinicopathological parameters, tumor proliferative capacity and patients’ survival. BMC Gastroenterol., 2015, 15, 148.
[http://dx.doi.org/10.1186/s12876-015-0379-y] [PMID: 26502922]
[19]
Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432.
[http://dx.doi.org/10.1038/sj.onc.1210610] [PMID: 17694083]
[20]
Sambucetti, L.C.; Fischer, D.D.; Zabludoff, S.; Kwon, P.O.; Chamberlin, H.; Trogani, N.; Xu, H.; Cohen, D. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem., 1999, 274(49), 34940-34947.
[http://dx.doi.org/10.1074/jbc.274.49.34940] [PMID: 10574969]
[21]
Whetstine, J.R.; Ceron, J.; Ladd, B.; Dufourcq, P.; Reinke, V.; Shi, Y. Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. Mol. Cell, 2005, 18(4), 483-490.
[http://dx.doi.org/10.1016/j.molcel.2005.04.006] [PMID: 15893731]
[22]
Lutz, L.; Fitzner, I.C.; Ahrens, T.; Geißler, A.L.; Makowiec, F.; Hopt, U.T.; Bogatyreva, L.; Hauschke, D.; Werner, M.; Lassmann, S. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro. Am. J. Cancer Res., 2016, 6(3), 664-676.
[PMID: 27152243]
[23]
Weichert, W.; Röske, A.; Niesporek, S.; Noske, A.; Buckendahl, A.C.; Dietel, M.; Gekeler, V.; Boehm, M.; Beckers, T.; Denkert, C. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin. Cancer Res., 2008, 14(6), 1669-1677.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0990] [PMID: 18347167]
[24]
Chakrabarti, A.; Melesina, J.; Kolbinger, F.R.; Oehme, I.; Senger, J.; Witt, O.; Sippl, W.; Jung, M. Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med. Chem., 2016, 8(13), 1609-1634.
[http://dx.doi.org/10.4155/fmc-2016-0117] [PMID: 27572818]
[25]
Kang, Y.; Nian, H.; Rajendran, P.; Kim, E.; Dashwood, W.M.; Pinto, J.T.; Boardman, L.A.; Thibodeau, S.N.; Limburg, P.J.; Löhr, C.V.; Bisson, W.H.; Williams, D.E.; Ho, E.; Dashwood, R.H. HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death Dis., 2014, 5(10), e1476.
[http://dx.doi.org/10.1038/cddis.2014.422] [PMID: 25321483]
[26]
Wilson, A.J.; Byun, D.S.; Nasser, S.; Murray, L.B.; Ayyanar, K.; Arango, D.; Figueroa, M.; Melnick, A.; Kao, G.D.; Augenlicht, L.H.; Mariadason, J.M. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol. Biol. Cell, 2008, 19(10), 4062-4075.
[http://dx.doi.org/10.1091/mbc.e08-02-0139] [PMID: 18632985]
[27]
He, P.; Liang, J.; Shao, T.; Guo, Y.; Hou, Y.; Li, Y. HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression. Int. J. Clin. Exp. Med., 2015, 8(4), 6510-6516.
[PMID: 26131280]
[28]
Wang, Q.; Tan, R.; Zhu, X.; Zhang, Y.; Tan, Z.; Su, B.; Li, Y. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression. Oncotarget, 2016, 7(9), 10064-10072.
[http://dx.doi.org/10.18632/oncotarget.7134] [PMID: 26848526]
[29]
Lee, J.H.; Jeong, E.G.; Choi, M.C.; Kim, S.H.; Park, J.H.; Song, S.H.; Park, J.; Bang, Y.J.; Kim, T.Y. Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells. Mol. Cells, 2010, 30(2), 107-112.
[http://dx.doi.org/10.1007/s10059-010-0094-z] [PMID: 20680488]
[30]
Gao, C.; Cheng, X.; Lam, M.; Liu, Y.; Liu, Q.; Chang, K.S.; Kao, H.Y. Signal-dependent regulation of transcription by histone deacetylase 7 involves recruitment to promyelocytic leukemia protein nuclear bodies. Mol. Biol. Cell, 2008, 19(7), 3020-3027.
[http://dx.doi.org/10.1091/mbc.e07-11-1203] [PMID: 18463162]
[31]
Blixt, N.C.; Faulkner, B.K.; Astleford, K.; Lelich, R.; Schering, J.; Spencer, E.; Gopalakrishnan, R.; Jensen, E.D.; Mansky, K.C. Class II and IV HDACs function as inhibitors of osteoclast differentiation. PLoS One, 2017, 12(9), e0185441.
[http://dx.doi.org/10.1371/journal.pone.0185441] [PMID: 28953929]
[32]
Kim, M.S.; Kwon, H.J.; Lee, Y.M.; Baek, J.H.; Jang, J.E.; Lee, S.W.; Moon, E.J.; Kim, H.S.; Lee, S.K.; Chung, H.Y.; Kim, C.W.; Kim, K.W. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med., 2001, 7(4), 437-443.
[http://dx.doi.org/10.1038/86507] [PMID: 11283670]
[33]
Nosho, K.; Shima, K.; Irahara, N.; Kure, S.; Firestein, R.; Baba, Y.; Toyoda, S.; Chen, L.; Hazra, A.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod. Pathol., 2009, 22(7), 922-932.
[http://dx.doi.org/10.1038/modpathol.2009.49] [PMID: 19430421]
[34]
Deubzer, H.E.; Schier, M.C.; Oehme, I.; Lodrini, M.; Haendler, B.; Sommer, A.; Witt, O. HDAC11 is a novel drug target in carcinomas. Int. J. Cancer, 2013, 132(9), 2200-2208.
[http://dx.doi.org/10.1002/ijc.27876] [PMID: 23024001]
[35]
Tomson, T.; Battino, D.; Perucca, E. The remarkable story of valproic acid. Lancet Neurol., 2016, 15(2), 141.
[http://dx.doi.org/10.1016/S1474-4422(15)00398-1] [PMID: 28463122]
[36]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), E1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[37]
Damaskos, C.; Garmpis, N.; Karatzas, T.; Nikolidakis, L.; Kostakis, I.D.; Garmpi, A.; Karamaroudis, S.; Boutsikos, G.; Damaskou, Z.; Kostakis, A.; Kouraklis, G. Histone deacetylase (HDAC) inhibitors: Current evidence for therapeutic activities in pancreatic cancer. Anticancer Res., 2015, 35(6), 3129-3135.
[PMID: 26026072]
[38]
Theocharis, S.; Klijanienko, J.; Giaginis, C.; Rodriguez, J.; Jouffroy, T.; Girod, A.; Alexandrou, P.; Sastre-Garau, X. Histone deacetylase-1 and -2 expression in mobile tongue squamous cell carcinoma: Associations with clinicopathological parameters and patients survival. J. Oral Pathol. Med., 2011, 40(9), 706-714.
[http://dx.doi.org/10.1111/j.1600-0714.2011.01031.x] [PMID: 21457345]
[39]
Damaskos, C.; Tomos, I.; Garmpis, N.; Karakatsani, A.; Dimitroulis, D.; Garmpi, A.; Spartalis, E.; Kampolis, C.F.; Tsagkari, E.; Loukeri, A.A.; Margonis, G.A.; Spartalis, M.; Andreatos, N.; Schizas, D.; Kokkineli, S.; Antoniou, E.A.; Nonni, A.; Tsourouflis, G.; Markatos, K.; Kontzoglou, K.; Kostakis, A.; Tomos, P. Histone deacetylase inhibitors as a novel targeted therapy against non-small cell lung cancer: Where are we now and what should we expect? Anticancer Res., 2018, 38(1), 37-43.
[http://dx.doi.org/10.21873/anticanres.12189] [PMID: 29277754]
[40]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Dimitroulis, D.; Spartalis, E.; Margonis, G.A.; Schizas, D.; Deskou, I.; Doula, C.; Magkouti, E.; Andreatos, N.; Antoniou, E.A.; Nonni, A.; Kontzoglou, K.; Mantas, D. Targeting histone deacetylases in malignant melanoma: A future therapeutic agent or just great expectations? Anticancer Res., 2017, 37(10), 5355-5362.
[http://dx.doi.org/10.21873/anticanres.11961] [PMID: 28982843]
[41]
Spartalis, E.; Athanasiadis, D.I.; Chrysikos, D.; Spartalis, M.; Boutzios, G.; Schizas, D.; Garmpis, N.; Damaskos, C.; Paschou, S.A.; Ioannidis, A.; Tsourouflis, G.; Dimitroulis, D.; Nikiteas, N.I. Histone deacetylase inhibitors and anaplastic thyroid carcinoma. Anticancer Res., 2019, 39(3), 1119-1127.
[http://dx.doi.org/10.21873/anticanres.13220] [PMID: 30842140]
[42]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Georgakopoulou, V.E.; Sarantis, P.; Antoniou, E.A.; Karamouzis, M.V.; Nonni, A.; Schizas, D.; Diamantis, E.; Koustas, E.; Farmaki, P.; Syllaios, A.; Patsouras, A.; Kontzoglou, K.; Trakas, N.; Dimitroulis, D. Histone deacetylase inhibitors in the treatment of hepatocellular carcinoma: Current evidence and future opportunities. J. Pers. Med., 2021, 11(3), 223.
[http://dx.doi.org/10.3390/jpm11030223] [PMID: 33809844]
[43]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[44]
Ribrag, V.; Kim, W.S.; Bouabdallah, R.; Lim, S.T.; Coiffier, B.; Illes, A.; Lemieux, B.; Dyer, M.J.S.; Offner, F.; Felloussi, Z.; Kloos, I.; Luan, Y.; Vezan, R.; Graef, T.; Morschhauser, F. Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: Results of a phase II study. Haematologica, 2017, 102(5), 903-909.
[http://dx.doi.org/10.3324/haematol.2016.154377] [PMID: 28126962]
[45]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Spartalis, E.; Kalampokas, E.; Kalampokas, T.; Margonis, G.A.; Schizas, D.; Andreatos, N.; Angelou, A.; Lavaris, A.; Athanasiou, A.; Apostolou, K.G.; Spartalis, M.; Damaskou, Z.; Daskalopoulou, A.; Diamantis, E.; Tsivelekas, K.; Alavanos, A.; Valsami, S.; Moschos, M.M.; Sampani, A.; Nonni, A.; Antoniou, E.A.; Mantas, D.; Tsourouflis, G.; Markatos, K.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Kostakis, A.; Dimitroulis, D. Targeting histone deacetylases in endometrial cancer: A paradigm-shifting therapeutic strategy? Eur. Rev. Med. Pharmacol. Sci., 2018, 22(4), 950-960.
[http://dx.doi.org/10.26355/eurrev_201802_14376] [PMID: 29509243]
[46]
Moschos, M.M.; Dettoraki, M.; Androudi, S.; Kalogeropoulos, D.; Lavaris, A.; Garmpis, N.; Damaskos, C.; Garmpi, A.; Tsatsos, M. The role of histone deacetylase inhibitors in uveal melanoma: Current evidence. Anticancer Res., 2018, 38(7), 3817-3824.
[http://dx.doi.org/10.21873/anticanres.12665] [PMID: 29970501]
[47]
Palmieri, D.; Lockman, P.R.; Thomas, F.C.; Hua, E.; Herring, J.; Hargrave, E.; Johnson, M.; Flores, N.; Qian, Y.; Vega-Valle, E.; Taskar, K.S.; Rudraraju, V.; Mittapalli, R.K.; Gaasch, J.A.; Bohn, K.A.; Thorsheim, H.R.; Liewehr, D.J.; Davis, S.; Reilly, J.F.; Walker, R.; Bronder, J.L.; Feigenbaum, L.; Steinberg, S.M.; Camphausen, K.; Meltzer, P.S.; Richon, V.M.; Smith, Q.R.; Steeg, P.S. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin. Cancer Res., 2009, 15(19), 6148-6157.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1039] [PMID: 19789319]
[48]
Garmpis, N.; Damaskos, C.; Garmpi, A.; Kalampokas, E.; Kalampokas, T.; Spartalis, E.; Daskalopoulou, A.; Valsami, S.; Kontos, M.; Nonni, A.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylases as new therapeutic targets in triple-negative breast cancer: Progress and promises. Cancer Genomics Proteomics, 2017, 14(5), 299-313.
[http://dx.doi.org/10.21873/cgp.20041] [PMID: 28870998]
[49]
Ree, A.H.; Dueland, S.; Folkvord, S.; Hole, K.H.; Seierstad, T.; Johansen, M.; Abrahamsen, T.W.; Flatmark, K. Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol., 2010, 11(5), 459-464.
[http://dx.doi.org/10.1016/S1470-2045(10)70058-9] [PMID: 20378407]
[50]
Fakih, M.G.; Groman, A.; McMahon, J.; Wilding, G.; Muindi, J.R. A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer. Cancer Chemother. Pharmacol., 2012, 69(3), 743-751.
[http://dx.doi.org/10.1007/s00280-011-1762-1] [PMID: 22020318]
[51]
Fakih, M.G.; Pendyala, L.; Fetterly, G.; Toth, K.; Zwiebel, J.A.; Espinoza-Delgado, I.; Litwin, A.; Rustum, Y.M.; Ross, M.E.; Holleran, J.L.; Egorin, M.J. A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin. Cancer Res., 2009, 15(9), 3189-3195.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2999] [PMID: 19383814]
[52]
Fu, S.; Hou, M.M.; Naing, A.; Janku, F.; Hess, K.; Zinner, R.; Subbiah, V.; Hong, D.; Wheler, J.; Piha-Paul, S.; Tsimberidou, A.; Karp, D.; Araujo, D.; Kee, B.; Hwu, P.; Wolff, R.; Kurzrock, R.; Meric-Bernstam, F. Phase I study of pazopanib and vorinostat: A therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation. Ann. Oncol., 2015, 26(5), 1012-1018.
[http://dx.doi.org/10.1093/annonc/mdv066] [PMID: 25669829]
[53]
Sung, M.W.; Waxman, S. Combination of cytotoxic-differentiation therapy with 5-fluorouracil and phenylbutyrate in patients with advanced colorectal cancer. Anticancer Res., 2007, 27(2), 995-1001.
[PMID: 17465233]
[54]
Ngamphaiboon, N.; Dy, G.K.; Ma, W.W.; Zhao, Y.; Reungwetwattana, T.; DePaolo, D.; Ding, Y.; Brady, W.; Fetterly, G.; Adjei, A.A. A phase I study of the histone deacetylase (HDAC) inhibitor entinostat, in combination with sorafenib in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(1), 225-232.
[http://dx.doi.org/10.1007/s10637-014-0174-6] [PMID: 25371323]
[55]
Munster, P.; Marchion, D.; Bicaku, E.; Lacevic, M.; Kim, J.; Centeno, B.; Daud, A.; Neuger, A.; Minton, S.; Sullivan, D. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: Phase I/II trial of valproic acid and epirubicin/FEC. Clin. Cancer Res., 2009, 15(7), 2488-2496.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1930] [PMID: 19318486]
[56]
Strickler, J.H.; Starodub, A.N.; Jia, J.; Meadows, K.L.; Nixon, A.B.; Dellinger, A.; Morse, M.A.; Uronis, H.E.; Marcom, P.K.; Zafar, S.Y.; Haley, S.T.; Hurwitz, H.I. Phase I study of bevacizumab, everolimus, and panobinostat (LBH-589) in advanced solid tumors. Cancer Chemother. Pharmacol., 2012, 70(2), 251-258.
[http://dx.doi.org/10.1007/s00280-012-1911-1] [PMID: 22744359]
[57]
Marks, P.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: Causes and therapies. Nat. Rev. Cancer, 2001, 1(3), 194-202.
[http://dx.doi.org/10.1038/35106079] [PMID: 11902574]
[58]
Li, Q.; Ding, C.; Meng, T.; Lu, W.; Liu, W.; Hao, H.; Cao, L. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J. Pharmacol. Sci., 2017, 135(4), 148-155.
[http://dx.doi.org/10.1016/j.jphs.2017.11.004] [PMID: 29233468]
[59]
Won, H.R.; Ryu, H.W.; Shin, D.H.; Yeon, S.K.; Lee, D.H.; Kwon, S.H. A452, an HDAC6-selective inhibitor, synergistically enhances the anticancer activity of chemotherapeutic agents in colorectal cancer cells. Mol. Carcinog., 2018, 57(10), 1383-1395.
[http://dx.doi.org/10.1002/mc.22852] [PMID: 29917295]
[60]
Fazzone, W.; Wilson, P.M.; Labonte, M.J.; Lenz, H.J.; Ladner, R.D. Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells. Int. J. Cancer, 2009, 125(2), 463-473.
[http://dx.doi.org/10.1002/ijc.24403] [PMID: 19384949]
[61]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[62]
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342.
[http://dx.doi.org/10.1056/NEJMoa032691] [PMID: 15175435]
[63]
Lenz, H.J.; Van Cutsem, E.; Khambata-Ford, S.; Mayer, R.J.; Gold, P.; Stella, P.; Mirtsching, B.; Cohn, A.L.; Pippas, A.W.; Azarnia, N.; Tsuchihashi, Z.; Mauro, D.J.; Rowinsky, E.K. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J. Clin. Oncol., 2006, 24(30), 4914-4921.
[http://dx.doi.org/10.1200/JCO.2006.06.7595] [PMID: 17050875]
[64]
Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; Adenis, A.; Tabernero, J.; Yoshino, T.; Lenz, H.J.; Goldberg, R.M.; Sargent, D.J.; Cihon, F.; Cupit, L.; Wagner, A.; Laurent, D. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 2013, 381(9863), 303-312.
[http://dx.doi.org/10.1016/S0140-6736(12)61900-X] [PMID: 23177514]
[65]
Inoue, T.; Hibi, K.; Nakayama, G.; Komatsu, Y.; Fukuoka, T.; Kodera, Y.; Ito, K.; Akiyama, S.; Nakao, A. Expression level of thymidylate synthase is a good predictor of chemosensitivity to 5-fluorouracil in colorectal cancer. J. Gastroenterol., 2005, 40(2), 143-147.
[http://dx.doi.org/10.1007/s00535-004-1512-9] [PMID: 15770397]
[66]
Johnston, P.G.; Lenz, H.J.; Leichman, C.G.; Danenberg, K.D.; Allegra, C.J.; Danenberg, P.V.; Leichman, L. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res., 1995, 55(7), 1407-1412.
[PMID: 7882343]
[67]
Lee, J.H.; Park, J.H.; Jung, Y.; Kim, J.H.; Jong, H.S.; Kim, T.Y.; Bang, Y.J. Histone deacetylase inhibitor enhances 5-fluorouracil cytotoxicity by down-regulating thymidylate synthase in human cancer cells. Mol. Cancer Ther., 2006, 5(12), 3085-3095.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0419] [PMID: 17172411]
[68]
Glaser, K.B.; Staver, M.J.; Waring, J.F.; Stender, J.; Ulrich, R.G.; Davidsen, S.K. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: Defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther., 2003, 2(2), 151-163.
[PMID: 12589032]
[69]
Carew, J.S.; Nawrocki, S.T.; Kahue, C.N.; Zhang, H.; Yang, C.; Chung, L.; Houghton, J.A.; Huang, P.; Giles, F.J.; Cleveland, J.L. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood, 2007, 110(1), 313-322.
[http://dx.doi.org/10.1182/blood-2006-10-050260] [PMID: 17363733]
[70]
Carew, J.S.; Nawrocki, S.T.; Cleveland, J.L. Modulating autophagy for therapeutic benefit. Autophagy, 2007, 3(5), 464-467.
[http://dx.doi.org/10.4161/auto.4311] [PMID: 17495516]
[71]
Mahalingam, D.; Mita, M.; Sarantopoulos, J.; Wood, L.; Amaravadi, R.K.; Davis, L.E.; Mita, A.C.; Curiel, T.J.; Espitia, C.M.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy, 2014, 10(8), 1403-1414.
[http://dx.doi.org/10.4161/auto.29231] [PMID: 24991835]
[72]
Habermann, J.K.; Paulsen, U.; Roblick, U.J.; Upender, M.B.; McShane, L.M.; Korn, E.L.; Wangsa, D.; Krüger, S.; Duchrow, M.; Bruch, H.P.; Auer, G.; Ried, T. Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer, 2007, 46(1), 10-26.
[http://dx.doi.org/10.1002/gcc.20382] [PMID: 17044061]
[73]
Upender, M.B.; Habermann, J.K.; McShane, L.M.; Korn, E.L.; Barrett, J.C.; Difilippantonio, M.J.; Ried, T. Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Res., 2004, 64(19), 6941-6949.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0474] [PMID: 15466185]
[74]
Ried, T.; Knutzen, R.; Steinbeck, R.; Blegen, H.; Schröck, E.; Heselmeyer, K.; du Manoir, S.; Auer, G. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer, 1996, 15(4), 234-245.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199604)15:4<234:AID-GCC5>3.0.CO;2-2] [PMID: 8703849]
[75]
Buishand, F.O.; Cardin, E.; Hu, Y.; Ried, T. Trichostatin A preferentially reverses the upregulation of gene-expression levels induced by gain of chromosome 7 in colorectal cancer cell lines. Genes Chromosomes Cancer, 2018, 57(1), 35-41.
[http://dx.doi.org/10.1002/gcc.22505] [PMID: 28940826]
[76]
Huang, C.; Wu, X.F.; Wang, X.L. Trichostatin a inhibits phenotypic transition and induces apoptosis of the TAF-treated normal colonic epithelial cells through regulation of TGF-β pathway. Int. J. Biochem. Cell Biol., 2019, 114, 105565.
[http://dx.doi.org/10.1016/j.biocel.2019.105565] [PMID: 31278993]
[77]
Dotse, E.; Bian, Y. Isolation of colorectal cancer stem-like cells. Cytotechnology, 2016, 68(4), 609-619.
[http://dx.doi.org/10.1007/s10616-014-9806-0] [PMID: 25535115]
[78]
Anderson, E.C.; Hessman, C.; Levin, T.G.; Monroe, M.M.; Wong, M.H. The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers (Basel), 2011, 3(1), 319-339.
[http://dx.doi.org/10.3390/cancers3010319] [PMID: 21318087]
[79]
Tanase, C.P.; Neagu, A.I.; Necula, L.G.; Mambet, C.; Enciu, A.M.; Calenic, B.; Cruceru, M.L.; Albulescu, R. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J. Gastroenterol., 2014, 20(31), 10790-10801.
[http://dx.doi.org/10.3748/wjg.v20.i31.10790] [PMID: 25152582]
[80]
Zheng, S.; Xin, L.; Liang, A.; Fu, Y. Cancer stem cell hypothesis: A brief summary and two proposals. Cytotechnology, 2013, 65(4), 505-512.
[http://dx.doi.org/10.1007/s10616-012-9517-3] [PMID: 23250634]
[81]
Hermann, P.C.; Bhaskar, S.; Cioffi, M.; Heeschen, C. Cancer stem cells in solid tumors. Semin. Cancer Biol., 2010, 20(2), 77-84.
[http://dx.doi.org/10.1016/j.semcancer.2010.03.004] [PMID: 20371287]
[82]
Huang, T.H.; Wu, S.Y.; Huang, Y.J.; Wei, P.L.; Wu, A.T.; Chao, T.Y. The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorigenesis and colon cancer stem-like cells. Am. J. Cancer Res., 2017, 7(5), 1227-1237.
[PMID: 28560069]
[83]
Nakajima, H.; Kim, Y.B.; Terano, H.; Yoshida, M.; Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res., 1998, 241(1), 126-133.
[http://dx.doi.org/10.1006/excr.1998.4027] [PMID: 9633520]
[84]
Wang, T.Y.; Chai, Y.R.; Jia, Y.L.; Gao, J.H.; Peng, X.J.; Han, H.F. Crosstalk among the proteome, lysine phosphorylation, and acetylation in romidepsin-treated colon cancer cells. Oncotarget, 2016, 7(33), 53471-53501.
[http://dx.doi.org/10.18632/oncotarget.10840] [PMID: 27472459]
[85]
Wang, T.Y.; Jia, Y.L.; Zhang, X.; Sun, Q.L.; Li, Y.C.; Zhang, J.H.; Zhao, C.P.; Wang, X.Y.; Wang, L. Treating colon cancer cells with FK228 reveals a link between histone lysine acetylation and extensive changes in the cellular proteome. Sci. Rep., 2015, 5, 18443.
[http://dx.doi.org/10.1038/srep18443] [PMID: 26675280]
[86]
Adachi, M.; Zhang, Y.; Zhao, X.; Minami, T.; Kawamura, R.; Hinoda, Y.; Imai, K. Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clin. Cancer Res., 2004, 10(11), 3853-3862.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0806] [PMID: 15173094]
[87]
Shi, Y.; Fu, Y.; Zhang, X.; Zhao, G.; Yao, Y.; Guo, Y.; Ma, G.; Bai, S.; Li, H. Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol. Immunother., 2021, 70(1), 61-73.
[http://dx.doi.org/10.1007/s00262-020-02653-1] [PMID: 32632663]
[88]
Bracker, T.U.; Sommer, A.; Fichtner, I.; Faus, H.; Haendler, B.; Hess-Stumpp, H. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int. J. Oncol., 2009, 35(4), 909-920.
[PMID: 19724929]
[89]
Zhu, S.; Denman, C.J.; Cobanoglu, Z.S.; Kiany, S.; Lau, C.C.; Gottschalk, S.M.; Hughes, D.P.; Kleinerman, E.S.; Lee, D.A. The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm. Res., 2015, 32(3), 779-792.
[http://dx.doi.org/10.1007/s11095-013-1231-0] [PMID: 24203492]
[90]
Schmudde, M.; Braun, A.; Pende, D.; Sonnemann, J.; Klier, U.; Beck, J.F.; Moretta, L.; Bröker, B.M. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett., 2008, 272(1), 110-121.
[http://dx.doi.org/10.1016/j.canlet.2008.06.027] [PMID: 18718708]
[91]
Berghuis, D.; Schilham, M.W.; Vos, H.I.; Santos, S.J.; Kloess, S.; Buddingh’, E.P.; Egeler, R.M.; Hogendoorn, P.C.; Lankester, A.C. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin. Sarcoma Res., 2012, 2(1), 8.
[http://dx.doi.org/10.1186/2045-3329-2-8] [PMID: 22587892]
[92]
Lees, A.; McIntyre, A.J.; Crawford, N.T.; Falcone, F.; McCann, C.; Holohan, C.; Quinn, G.P.; Roberts, J.Z.; Sessler, T.; Gallagher, P.F.; Gregg, G.M.A.; McAllister, K.; McLaughlin, K.M.; Allen, W.L.; Egan, L.J.; Ryan, A.E.; Labonte-Wilson, M.J.; Dunne, P.D.; Wappett, M.; Coyle, V.M.; Johnston, P.G.; Kerr, E.M.; Longley, D.B.; McDade, S.S. The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proc. Natl. Acad. Sci. USA, 2020, 117(30), 17808-17819.
[http://dx.doi.org/10.1073/pnas.2001520117] [PMID: 32661168]
[93]
Hicks, K.C.; Knudson, K.M.; Lee, K.L.; Hamilton, D.H.; Hodge, J.W.; Figg, W.D.; Ordentlich, P.; Jones, F.R.; Rabizadeh, S.; Soon-Shiong, P.; Schlom, J.; Gameiro, S.R. Cooperative immune-mediated mechanisms of the HDAC inhibitor entinostat, an IL15 superagonist, and a cancer vaccine effectively synergize as a novel cancer therapy. Clin. Cancer Res., 2020, 26(3), 704-716.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0727] [PMID: 31645354]
[94]
Feng, J.; Cen, J.; Li, J.; Zhao, R.; Zhu, C.; Wang, Z.; Xie, J.; Tang, W. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adhes. Migr., 2015, 9(6), 495-501.
[http://dx.doi.org/10.1080/19336918.2015.1112486] [PMID: 26632346]
[95]
Langlands, A.J.; Carroll, T.D.; Chen, Y.; Näthke, I. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells. Cell Death Dis., 2018, 9(3), 255.
[http://dx.doi.org/10.1038/s41419-017-0199-9] [PMID: 29449562]
[96]
Terranova-Barberio, M.; Pecori, B.; Roca, M.S.; Imbimbo, S.; Bruzzese, F.; Leone, A.; Muto, P.; Delrio, P.; Avallone, A.; Budillon, A.; Di Gennaro, E. Synergistic antitumor interaction between valproic acid, capecitabine and radiotherapy in colorectal cancer: critical role of p53. J. Exp. Clin. Cancer Res., 2017, 36(1), 177.
[http://dx.doi.org/10.1186/s13046-017-0647-5] [PMID: 29212503]
[97]
Ghecham, A.; Senator, A.; Pawlowska, E.; Bouafia, W.; Błasiak, J. Epigenetic modifiers 5-aza-2¢-deoxycytidine and valproic acid differentially change viability, DNA damage and gene expression in metastatic and non-metastatic colon cancer cell lines. Acta Biochim. Pol., 2019, 66(3), 355-360.
[http://dx.doi.org/10.18388/abp.2019_2814] [PMID: 31284710]
[98]
Sanaei, M.; Kavoosi, F.; Mansoori, O. Effect of valproic acid in comparison with vorinostat on cell growth inhibition and apoptosis induction in the human colon cancer SW48 cells in vitro. Exp. Oncol., 2018, 40(2), 95-100.
[http://dx.doi.org/10.31768/2312-8852.2018.40(2):95-100] [PMID: 29949538]
[99]
Patel, M.M.; Patel, B.M. Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: Role of HDAC inhibition. Eur. J. Pharm. Sci., 2018, 121, 188-199.
[http://dx.doi.org/10.1016/j.ejps.2018.05.026] [PMID: 29852291]
[100]
Avallone, A.; Piccirillo, M.C.; Di Gennaro, E.; Romano, C.; Calabrese, F.; Roca, M.S.; Tatangelo, F.; Granata, V.; Cassata, A.; Cavalcanti, E.; Maurea, N.; Maiolino, P.; Silvestro, L.; De Stefano, A.; Giuliani, F.; Rosati, G.; Tamburini, E.; Aprea, P.; Vicario, V.; Nappi, A.; Vitagliano, C.; Casaretti, R.; Leone, A.; Petrillo, A.; Botti, G.; Delrio, P.; Izzo, F.; Perrone, F.; Budillon, A. Randomized phase II study of valproic acid in combination with bevacizumab and oxaliplatin/fluoropyrimidine regimens in patients with RAS-mutated metastatic colorectal cancer: The REVOLUTION study protocol. Ther. Adv. Med. Oncol., 2020, 12, 1758835920929589.
[http://dx.doi.org/10.1177/1758835920929589] [PMID: 32849914]
[101]
Andrews, K.T.; Walduck, A.; Kelso, M.J.; Fairlie, D.P.; Saul, A.; Parsons, P.G. Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. Int. J. Parasitol., 2000, 30(6), 761-768.
[http://dx.doi.org/10.1016/S0020-7519(00)00043-6] [PMID: 10856511]
[102]
Kwon, S.H.; Ahn, S.H.; Kim, Y.K.; Bae, G.U.; Yoon, J.W.; Hong, S.; Lee, H.Y.; Lee, Y.W.; Lee, H.W.; Han, J.W. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J. Biol. Chem., 2002, 277(3), 2073-2080.
[http://dx.doi.org/10.1074/jbc.M106699200] [PMID: 11698395]
[103]
Zhang, J.; Lai, Z.; Huang, W.; Ling, H.; Lin, M.; Tang, S.; Liu, Y.; Tao, Y. Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anticancer. Agents Med. Chem., 2017, 17(10), 1374-1382.
[http://dx.doi.org/10.2174/1871520617666170419120044] [PMID: 28425856]
[104]
Han, J.W.; Ahn, S.H.; Park, S.H.; Wang, S.Y.; Bae, G.U.; Seo, D.W.; Kwon, H.K.; Hong, S.; Lee, H.Y.; Lee, Y.W.; Lee, H.W. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res., 2000, 60(21), 6068-6074.
[PMID: 11085529]
[105]
Abaza, M.S.; Bahman, A.M.; Al-Attiyah, R. Superior antimitogenic and chemosensitization activities of the combination treatment of the histone deacetylase inhibitor apicidin and proteasome inhibitors on human colorectal cancer cells. Int. J. Oncol., 2014, 44(1), 105-128.
[http://dx.doi.org/10.3892/ijo.2013.2146] [PMID: 24146045]
[106]
Anantharaju, P.G.; Reddy, B.D.; Padukudru, M.A.; Kumari Chitturi, C.M.; Vimalambike, M.G.; Madhunapantula, S.V. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC). Cancer Biol. Ther., 2017, 18(7), 492-504.
[http://dx.doi.org/10.1080/15384047.2017.1324374] [PMID: 28506198]
[107]
Booth, L.; Roberts, J.L.; Rais, R.; Cutler, R.E., Jr; Diala, I.; Lalani, A.S.; Hancock, J.F.; Poklepovic, A.; Dent, P. Neratinib augments the lethality of. [regorafenib + sildenafil] J. Cell. Physiol., 2019, 234(4), 4874-4887.
[http://dx.doi.org/10.1002/jcp.27276] [PMID: 30203445]
[108]
Zhang, X.H.; Ma, Q.; Wu, H.P.; Khamis, M.Y.; Li, Y.H.; Ma, L.Y.; Liu, H.M. A review of progress in histone deacetylase 6 inhibitors research: Structural specificity and functional diversity. J. Med. Chem., 2021, 64(3), 1362-1391.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01782] [PMID: 33523672]
[109]
Liang, T.; Fang, H. Structure, functions and selective inhibitors of HDAC6. Curr. Top. Med. Chem., 2018, 18(28), 2429-2447.
[http://dx.doi.org/10.2174/1568026619666181129141822] [PMID: 30499393]
[110]
Miyake, Y.; Keusch, J.J.; Wang, L.; Saito, M.; Hess, D.; Wang, X.; Melancon, B.J.; Helquist, P.; Gut, H.; Matthias, P. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol., 2016, 12(9), 748-754.
[http://dx.doi.org/10.1038/nchembio.2140] [PMID: 27454931]
[111]
Liu, W.; Liang, Y.; Si, X. Hydroxamic acid hybrids as the potential anticancer agents: An Overview. Eur. J. Med. Chem., 2020, 205, 112679.
[http://dx.doi.org/10.1016/j.ejmech.2020.112679] [PMID: 32791404]
[112]
Pulya, S.; Amin, S.A.; Adhikari, N.; Biswas, S.; Jha, T.; Ghosh, B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res., 2021, 163, 105274.
[http://dx.doi.org/10.1016/j.phrs.2020.105274] [PMID: 33171304]
[113]
Younes, A.; Berdeja, J.G.; Patel, M.R.; Flinn, I.; Gerecitano, J.F.; Neelapu, S.S.; Kelly, K.R.; Copeland, A.R.; Akins, A.; Clancy, M.S.; Gong, L.; Wang, J.; Ma, A.; Viner, J.L.; Oki, Y. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: An open-label, dose-escalation, phase 1 trial. Lancet Oncol., 2016, 17(5), 622-631.
[http://dx.doi.org/10.1016/S1470-2045(15)00584-7] [PMID: 27049457]
[114]
Wang, Z.; Tang, F.; Hu, P.; Wang, Y.; Gong, J.; Sun, S.; Xie, C. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma. Oncol. Rep., 2016, 36(1), 589-597.
[http://dx.doi.org/10.3892/or.2016.4811] [PMID: 27221381]
[115]
Ojha, R.; Nepali, K.; Chen, C.H.; Chuang, K.H.; Wu, T.Y.; Lin, T.E.; Hsu, K.C.; Chao, M.W.; Lai, M.J.; Lin, M.H.; Huang, H.L.; Chang, C.D.; Pan, S.L.; Chen, M.C.; Liou, J.P. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur. J. Med. Chem., 2020, 190, 112086.
[http://dx.doi.org/10.1016/j.ejmech.2020.112086] [PMID: 32058238]
[116]
Knox, T.; Sahakian, E.; Banik, D.; Hadley, M.; Palmer, E.; Noonepalle, S.; Kim, J.; Powers, J.; Gracia-Hernandez, M.; Oliveira, V.; Cheng, F.; Chen, J.; Barinka, C.; Pinilla-Ibarz, J.; Lee, N.H.; Kozikowski, A.; Villagra, A. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci. Rep., 2019, 9(1), 6136.
[http://dx.doi.org/10.1038/s41598-019-42237-3] [PMID: 30992475]
[117]
Khabele, D. The therapeutic potential of class I selective histone deacetylase inhibitors in ovarian cancer. Front. Oncol., 2014, 4, 111.
[http://dx.doi.org/10.3389/fonc.2014.00111] [PMID: 24904826]
[118]
Singh, A.K.; Bishayee, A.; Pandey, A.K. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 2018, 10(6), 731.
[http://dx.doi.org/10.3390/nu10060731] [PMID: 29882797]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy