Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

CRISPR-Cas9 Genome Engineering: Trends in Medicine and Health

Author(s): Sumera Zaib*, Mushtaq A. Saleem and Imtiaz Khan*

Volume 22, Issue 3, 2022

Published on: 13 September, 2021

Page: [410 - 421] Pages: 12

DOI: 10.2174/1389557521666210913112030

Price: $65

Abstract

The ability to engineer biological systems and organisms holds enormous potential for applications across basic science, medicine, and biotechnology. Over the past few decades, the development of CRISPR (clustered regularly interspaced short palindromic repeat) has revolutionized the whole genetic engineering process utilizing the principles of Watson-Crick base pairing. CRISPRCas9 technology offers the simplest, fastest, most versatile, reliable, and precise method of genetic manipulation, thus enabling geneticists and medical researchers to edit parts of the genome by removing, adding, or altering sections of the DNA sequence. The current review focuses on the applications of CRISPR-Cas9 in the field of medical research. Compared with other gene-editing technologies, CRISPR/Cas9 demonstrates numerous advantages for the treatment of various medical conditions, including cancer, hepatitis B, cardiovascular diseases, or even high cholesterol. Given its promising performance, CRISPR/Cas9 gene-editing technology will surely help in the therapy of several disorders while addressing the issues pertaining to the minimization of the off-target effects of gene editing and incomplete matches between sgRNA and genomic DNA by Cas9.

Keywords: CRISPR, chromatin, genetic engineering, genome editing, restriction endonucleases, RNA-guided endonucleases.

Graphical Abstract

[1]
Tebas, P.; Stein, D.; Tang, W.W.; Frank, I.; Wang, S.Q.; Lee, G.; Spratt, S.K.; Surosky, R.T.; Giedlin, M.A.; Nichol, G.; Holmes, M.C.; Gregory, P.D.; Ando, D.G.; Kalos, M.; Collman, R.G.; Binder-Scholl, G.; Plesa, G.; Hwang, W.T.; Levine, B.L.; June, C.H. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med., 2014, 370(10), 901-910.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[2]
Capecchi, M.R. Altering the genome by homologous recombination. Science, 1989, 244(4910), 1288-1292.
[http://dx.doi.org/10.1126/science.2660260] [PMID: 2660260]
[3]
Rudin, N.; Sugarman, E.; Haber, J.E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 1989, 122(3), 519-534.
[http://dx.doi.org/10.1093/genetics/122.3.519] [PMID: 2668114]
[4]
Bibikova, M.; Beumer, K.; Trautman, J.K.; Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Sci., 2003, 300(5620), 764.
[http://dx.doi.org/10.1126/science.1079512] [PMID: 12730594]
[5]
Bibikova, M.; Golic, M.; Golic, K.G.; Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3), 1169-1175.
[http://dx.doi.org/10.1093/genetics/161.3.1169] [PMID: 12136019]
[6]
Smith, J.; Grizot, S.; Arnould, S.; Duclert, A.; Epinat, J.C.; Chames, P.; Prieto, J.; Redondo, P.; Blanco, F.J.; Bravo, J.; Montoya, G.; Pâques, F.; Duchateau, P. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res., 2006, 34(22), e149.
[http://dx.doi.org/10.1093/nar/gkl720] [PMID: 17130168]
[7]
Miller, J.C.; Holmes, M.C.; Wang, J.; Guschin, D.Y.; Lee, Y.L.; Rupniewski, I.; Beausejour, C.M.; Waite, A.J.; Wang, N.S.; Kim, K.A.; Gregory, P.D.; Pabo, C.O.; Rebar, E.J. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol., 2007, 25(7), 778-785.
[http://dx.doi.org/10.1038/nbt1319] [PMID: 17603475]
[8]
Miller, J.C.; Tan, S.; Qiao, G.; Barlow, K.A.; Wang, J.; Xia, D.F.; Meng, X.; Paschon, D.E.; Leung, E.; Hinkley, S.J.; Dulay, G.P.; Hua, K.L.; Ankoudinova, I.; Cost, G.J.; Urnov, F.D.; Zhang, H.S.; Holmes, M.C.; Zhang, L.; Gregory, P.D.; Rebar, E.J. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol., 2011, 29(2), 143-148.
[http://dx.doi.org/10.1038/nbt.1755] [PMID: 21179091]
[9]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Sci., 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[10]
Maeder, M.L.; Angstman, J.F.; Richardson, M.E.; Linder, S.J.; Cascio, V.M.; Tsai, S.Q.; Ho, Q.H.; Sander, J.D.; Reyon, D.; Bernstein, B.E.; Costello, J.F.; Wilkinson, M.F.; Joung, J.K. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol., 2013, 31(12), 1137-1142.
[http://dx.doi.org/10.1038/nbt.2726] [PMID: 24108092]
[11]
Beerli, R.R.; Schopfer, U.; Dreier, B.; Barbas, C.F., III Chemically regulated zinc finger transcription factors. J. Biol. Chem., 2000, 275(42), 32617-32627.
[http://dx.doi.org/10.1074/jbc.M005108200] [PMID: 10924515]
[12]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/jb.169.12.5429-5433.1987] [PMID: 3316184]
[13]
Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[14]
Haft, D.H.; Selengut, J.; Mongodin, E.F.; Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol., 2005, 1(6), e60.
[http://dx.doi.org/10.1371/journal.pcbi.0010060] [PMID: 16292354]
[15]
Hale, C.R.; Zhao, P.; Olson, S.; Duff, M.O.; Graveley, B.R.; Wells, L.; Terns, R.M.; Terns, M.P. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 2009, 139(5), 945-956.
[http://dx.doi.org/10.1016/j.cell.2009.07.040] [PMID: 19945378]
[16]
Mojica, F.J.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 2005, 60(2), 174-182.
[http://dx.doi.org/10.1007/s00239-004-0046-3] [PMID: 15791728]
[17]
Tang, T.H.; Bachellerie, J.P.; Rozhdestvensky, T.; Bortolin, M.L.; Huber, H.; Drungowski, M.; Elge, T.; Brosius, J.; Hüttenhofer, A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7536-7541.
[http://dx.doi.org/10.1073/pnas.112047299] [PMID: 12032318]
[18]
Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading), 2005, 151(Pt 8), 2551-2561.
[http://dx.doi.org/10.1099/mic.0.28048-0] [PMID: 16079334]
[19]
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Sci., 2007, 315(5819), 1709-1712.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[20]
Brouns, S.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Sci., 2008, 321(5891), 960-964.
[http://dx.doi.org/10.1126/science.1159689] [PMID: 18703739]
[21]
Marraffini, L.A.; Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Sci., 2008, 322(5909), 1843-1845.
[http://dx.doi.org/10.1126/science.1165771] [PMID: 19095942]
[22]
Garneau, J.E.; Dupuis, M-È.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320), 67-71.
[http://dx.doi.org/10.1038/nature09523] [PMID: 21048762]
[23]
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340), 602-607.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[24]
Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res., 2011, 39(21), 9275-9282.
[http://dx.doi.org/10.1093/nar/gkr606] [PMID: 21813460]
[25]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[26]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[27]
Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262-1278. [REMOVED HYPERLINK FIELD].
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[28]
Jinek, M.; East, A.; Cheng, A.; Lin, S.; Ma, E.; Doudna, J. RNA-programmed genome editing in human cells. eLife, 2013, 2, e00471.
[http://dx.doi.org/10.7554/eLife.00471] [PMID: 23386978]
[29]
Nishimasu, H.; Ran, F.A.; Hsu, P.D.; Konermann, S.; Shehata, S.I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5), 935-949.
[http://dx.doi.org/10.1016/j.cell.2014.02.001] [PMID: 24529477]
[30]
Chylinski, K.; Makarova, K.S.; Charpentier, E.; Koonin, E.V. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res., 2014, 42(10), 6091-6105.
[http://dx.doi.org/10.1093/nar/gku241] [PMID: 24728998]
[31]
Shah, S.A.; Erdmann, S.; Mojica, F.J.; Garrett, R.A. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biol., 2013, 10(5), 891-899.
[http://dx.doi.org/10.4161/rna.23764] [PMID: 23403393]
[32]
Sternberg, S.H.; Redding, S.; Jinek, M.; Greene, E.C.; Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490), 62-67.
[http://dx.doi.org/10.1038/nature13011] [PMID: 24476820]
[33]
Hou, Z.; Zhang, Y.; Propson, N.E.; Howden, S.E.; Chu, L.F.; Sontheimer, E.J.; Thomson, J.A. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA, 2013, 110(39), 15644-15649.
[http://dx.doi.org/10.1073/pnas.1313587110] [PMID: 23940360]
[34]
Esvelt, K.M.; Mali, P.; Braff, J.L.; Moosburner, M.; Yaung, S.J.; Church, G.M. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods, 2013, 10(11), 1116-1121.
[http://dx.doi.org/10.1038/nmeth.2681] [PMID: 24076762]
[35]
Niu, Y.; Shen, B.; Cui, Y.; Chen, Y.; Wang, J.; Wang, L.; Kang, Y.; Zhao, X.; Si, W.; Li, W.; Xiang, A.P.; Zhou, J.; Guo, X.; Bi, Y.; Si, C.; Hu, B.; Dong, G.; Wang, H.; Zhou, Z.; Li, T.; Tan, T.; Pu, X.; Wang, F.; Ji, S.; Zhou, Q.; Huang, X.; Ji, W.; Sha, J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4), 836-843.
[http://dx.doi.org/10.1016/j.cell.2014.01.027] [PMID: 24486104]
[36]
Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213), 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[37]
Jinek, M.; Jiang, F.; Taylor, D.W.; Sternberg, S.H.; Kaya, E.; Ma, E.; Anders, C.; Hauer, M.; Zhou, K.; Lin, S.; Kaplan, M.; Iavarone, A.T.; Charpentier, E.; Nogales, E.; Doudna, J.A. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176), 1247997.
[http://dx.doi.org/10.1126/science.1247997] [PMID: 24505130]
[38]
Anders, C.; Niewoehner, O.; Duerst, A.; Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513(7519), 569-573.
[http://dx.doi.org/10.1038/nature13579] [PMID: 25079318]
[39]
Kuscu, C.; Arslan, S.; Singh, R.; Thorpe, J.; Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol., 2014, 32(7), 677-683.
[http://dx.doi.org/10.1038/nbt.2916] [PMID: 24837660]
[40]
Wu, X.; Scott, D.A.; Kriz, A.J.; Chiu, A.C.; Hsu, P.D.; Dadon, D.B.; Cheng, A.W.; Trevino, A.E.; Konermann, S.; Chen, S.; Jaenisch, R.; Zhang, F.; Sharp, P.A. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol., 2014, 32(7), 670-676.
[http://dx.doi.org/10.1038/nbt.2889] [PMID: 24752079]
[41]
Fu, Y.; Sander, J.D.; Reyon, D.; Cascio, V.M.; Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 2014, 32(3), 279-284.
[http://dx.doi.org/10.1038/nbt.2808] [PMID: 24463574]
[42]
Gabriel, R.; Lombardo, A.; Arens, A.; Miller, J.C.; Genovese, P.; Kaeppel, C.; Nowrouzi, A.; Bartholomae, C.C.; Wang, J.; Friedman, G.; Holmes, M.C.; Gregory, P.D.; Glimm, H.; Schmidt, M.; Naldini, L.; von Kalle, C. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol., 2011, 29(9), 816-823.
[http://dx.doi.org/10.1038/nbt.1948] [PMID: 21822255]
[43]
Kearns, N.A.; Genga, R.M.J.; Enuameh, M.S.; Garber, M.; Wolfe, S.A.; Maehr, R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 2014, 141(1), 219-223.
[http://dx.doi.org/10.1242/dev.103341] [PMID: 24346702]
[44]
Rong, Z.; Zhu, S.; Xu, Y.; Fu, X. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell, 2014, 5(4), 258-260.
[http://dx.doi.org/10.1007/s13238-014-0032-5] [PMID: 24622843]
[45]
Chen, C.; Liu, Y.; Rappaport, A.R.; Kitzing, T.; Schultz, N.; Zhao, Z.; Shroff, A.S.; Dickins, R.A.; Vakoc, C.R.; Bradner, J.E.; Stock, W.; LeBeau, M.M.; Shannon, K.M.; Kogan, S.; Zuber, J.; Lowe, S.W. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell, 2014, 25(5), 652-665.
[http://dx.doi.org/10.1016/j.ccr.2014.03.016] [PMID: 24794707]
[46]
Torres, R.; Martin, M.C.; Garcia, A.; Cigudosa, J.C.; Ramirez, J.C.; Rodriguez-Perales, S. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun., 2014, 5, 3964.
[http://dx.doi.org/10.1038/ncomms4964] [PMID: 24888982]
[47]
Heckl, D.; Kowalczyk, M.S.; Yudovich, D.; Belizaire, R.; Puram, R.V.; McConkey, M.E.; Thielke, A.; Aster, J.C.; Regev, A.; Ebert, B.L. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol., 2014, 32(9), 941-946.
[http://dx.doi.org/10.1038/nbt.2951] [PMID: 24952903]
[48]
Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Sci., 2014, 343(6166), 80-84.
[http://dx.doi.org/10.1126/science.1246981] [PMID: 24336569]
[49]
Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelson, T.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Sci., 2014, 343(6166), 84-87.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[50]
Wu, Y.; Liang, D.; Wang, Y.; Bai, M.; Tang, W.; Bao, S.; Yan, Z.; Li, D.; Li, J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013, 13(6), 659-662.
[http://dx.doi.org/10.1016/j.stem.2013.10.016] [PMID: 24315440]
[51]
Schwank, G.; Koo, B-K.; Sasselli, V.; Dekkers, J.F.; Heo, I.; Demircan, T.; Sasaki, N.; Boymans, S.; Cuppen, E.; van der Ent, C.K.; Nieuwenhuis, E.E.S.; Beekman, J.M.; Clevers, H. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013, 13(6), 653-658.
[http://dx.doi.org/10.1016/j.stem.2013.11.002] [PMID: 24315439]
[52]
Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 2014, 32(4), 347-355.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[53]
Li, W.; Teng, F.; Li, T.; Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol., 2013, 31(8), 684-686.
[http://dx.doi.org/10.1038/nbt.2652] [PMID: 23929337]
[54]
Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; Zhang, F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6), 1380-1389.
[http://dx.doi.org/10.1016/j.cell.2013.08.021] [PMID: 23992846]
[55]
(a)Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNAguided platform for sequence-specific control of gene expression. Cell,, 2013, 152(5), 1173-1183.
[http://dx.doi.org/10.1016/j.cell.2013.02.022 ] [PMID: 23452860]
(b)Quiberoni, A.; Moineau, S.; Rousseau, G.M.; Reinheimer, J.; Ackermann, H.W. Streptococcus thermophilus bacteriophages. Int. Dairy J., 2010, 20, 657-664.
[http://dx.doi.org/10.1016/j.idairyj.2010.03.012]
[56]
Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; Lim, W.A.; Weissman, J.S.; Qi, L.S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2), 442-451.
[http://dx.doi.org/10.1016/j.cell.2013.06.044] [PMID: 23849981]
[57]
Konermann, S.; Brigham, M.D.; Trevino, A.; Hsu, P.D.; Heidenreich, M.; Cong, L.; Platt, R.J.; Scott, D.A.; Church, G.M.; Zhang, F. Optical control of mammalian endogenous transcription and epigenetic states. Nature, 2013, 500(7463), 472-476.
[http://dx.doi.org/10.1038/nature12466] [PMID: 23877069]
[58]
Perez-Pinera, P.; Kocak, D.D.; Vockley, C.M.; Adler, A.F.; Kabadi, A.M.; Polstein, L.R.; Thakore, P.I.; Glass, K.A.; Ousterout, D.G.; Leong, K.W.; Guilak, F.; Crawford, G.E.; Reddy, T.E.; Gersbach, C.A. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 2013, 10(10), 973-976.
[http://dx.doi.org/10.1038/nmeth.2600] [PMID: 23892895]
[59]
Mendenhall, E.M.; Williamson, K.E.; Reyon, D.; Zou, J.Y.; Ram, O.; Joung, J.K.; Bernstein, B.E. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol., 2013, 31(12), 1133-1136.
[http://dx.doi.org/10.1038/nbt.2701] [PMID: 24013198]
[60]
Chen, B.; Gilbert, L.A.; Cimini, B.A.; Schnitzbauer, J.; Zhang, W.; Li, G.W.; Park, J.; Blackburn, E.H.; Weissman, J.S.; Qi, L.S.; Huang, B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 2013, 155(7), 1479-1491.
[http://dx.doi.org/10.1016/j.cell.2013.12.001] [PMID: 24360272]
[61]
Xie, K.; Yang, Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant, 2013, 6(6), 1975-1983.
[http://dx.doi.org/10.1093/mp/sst119] [PMID: 23956122]
[62]
Zhang, H.; Zhang, J.; Wei, P.; Zhang, B.; Gou, F.; Feng, Z.; Mao, Y.; Yang, L.; Zhang, H.; Xu, N.; Zhu, J.K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J., 2014, 12(6), 797-807.
[http://dx.doi.org/10.1111/pbi.12200] [PMID: 24854982]
[63]
Cheng, A.W.; Wang, H.; Yang, H.; Shi, L.; Katz, Y.; Theunissen, T.W.; Rangarajan, S.; Shivalila, C.S.; Dadon, D.B.; Jaenisch, R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res., 2013, 23(10), 1163-1171.
[http://dx.doi.org/10.1038/cr.2013.122] [PMID: 23979020]
[64]
Lombardo, A.; Genovese, P.; Beausejour, C.M.; Colleoni, S.; Lee, Y.L.; Kim, K.A.; Ando, D.; Urnov, F.D.; Galli, C.; Gregory, P.D.; Holmes, M.C.; Naldini, L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol., 2007, 25(11), 1298-1306.
[http://dx.doi.org/10.1038/nbt1353] [PMID: 17965707]
[65]
Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Sci., 2013, 342(6165), 1432-1433.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[66]
Yin, H.; Xue, W.; Chen, S.; Bogorad, R.L.; Benedetti, E.; Grompe, M.; Koteliansky, V.; Sharp, P.A.; Jacks, T.; Anderson, D.G. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol., 2014, 32(6), 551-553.
[http://dx.doi.org/10.1038/nbt.2884] [PMID: 24681508]
[67]
Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading), 2005, 151(Pt 3), 653-663.
[http://dx.doi.org/10.1099/mic.0.27437-0] [PMID: 15758212]
[68]
Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct, 2006, 1, 7.
[http://dx.doi.org/10.1186/1745-6150-1-7] [PMID: 16545108]
[69]
Koonin, E.V.; Makarova, K.S.; Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol., 2017, 37, 67-78.
[http://dx.doi.org/10.1016/j.mib.2017.05.008] [PMID: 28605718]
[70]
Wright, A.V.; Nuñez, J.K.; Doudna, J.A. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell, 2016, 164(1-2), 29-44.
[http://dx.doi.org/10.1016/j.cell.2015.12.035] [PMID: 26771484]
[71]
Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Haft, D.H.; Horvath, P.; Moineau, S.; Mojica, F.J.M.; Terns, R.M.; Terns, M.P.; White, M.F.; Yakunin, A.F.; Garrett, R.A.; van der Oost, J.; Backofen, R.; Koonin, E.V. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol., 2015, 13(11), 722-736.
[http://dx.doi.org/10.1038/nrmicro3569] [PMID: 26411297]
[72]
Hart, T.; Chandrashekhar, M.; Aregger, M.; Steinhart, Z.; Brown, K.R.; MacLeod, G.; Mis, M.; Zimmermann, M.; Fradet-Turcotte, A.; Sun, S.; Mero, P.; Dirks, P.; Sidhu, S.; Roth, F.P.; Rissland, O.S.; Durocher, D.; Angers, S.; Moffat, J. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell, 2015, 163(6), 1515-1526.
[http://dx.doi.org/10.1016/j.cell.2015.11.015] [PMID: 26627737]
[73]
Fellmann, C.; Gowen, B.G.; Lin, P-C.; Doudna, J.A.; Corn, J.E. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat. Rev. Drug Discov., 2017, 16(2), 89-100.
[http://dx.doi.org/10.1038/nrd.2016.238] [PMID: 28008168]
[74]
Jiang, C.; Lin, X.; Zhao, Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol. Med., 2019, 25(11), 1039-1049.
[http://dx.doi.org/10.1016/j.molmed.2019.07.007] [PMID: 31422862]
[75]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[76]
Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858), 1917-1920.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[77]
Jacinto, F.V.; Link, W.; Ferreira, B.I. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. J. Cell. Mol. Med., 2020, 24(7), 3766-3778.
[http://dx.doi.org/10.1111/jcmm.14916] [PMID: 32096600]
[78]
German, D.M.; Mitalipov, S.; Mishra, A.; Kaul, S. Therapeutic genome editing in cardiovascular diseases. JACC Basic Transl. Sci., 2019, 4(1), 122-131.
[http://dx.doi.org/10.1016/j.jacbts.2018.11.004] [PMID: 30847427]
[79]
Ma, H.; Marti-Gutierrez, N.; Park, S-W.; Wu, J.; Lee, Y.; Suzuki, K.; Koski, A.; Ji, D.; Hayama, T.; Ahmed, R.; Darby, H.; Van Dyken, C.; Li, Y.; Kang, E.; Park, A-R.; Kim, D.; Kim, S-T.; Gong, J.; Gu, Y.; Xu, X.; Battaglia, D.; Krieg, S.A.; Lee, D.M.; Wu, D.H.; Wolf, D.P.; Heitner, S.B.; Belmonte, J.C.I.; Amato, P.; Kim, J-S.; Kaul, S.; Mitalipov, S. Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548(7668), 413-419.
[http://dx.doi.org/10.1038/nature23305] [PMID: 28783728]
[80]
Viswanathan, S.K.; Sanders, H.K.; McNamara, J.W.; Jagadeesan, A.; Jahangir, A.; Tajik, A.J.; Sadayappan, S. Hypertrophic cardiomyopathy clinical phenotype is independent of gene mutation and mutation dosage. PLoS One, 2017, 12(11), e0187948.
[http://dx.doi.org/10.1371/journal.pone.0187948] [PMID: 29121657]
[81]
Kaneko, M.; Hashikami, K.; Yamamoto, S.; Matsumoto, H.; Nishimoto, T. Phospholamban Ablation using CRISPR/Cas9 system improves mortality in a murine heart failure model. PLoS One, 2016, 11(12), e0168486.
[http://dx.doi.org/10.1371/journal.pone.0168486] [PMID: 27992596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy