General Review Article

氟化姜黄素类似物的抗增殖潜力:实验和计算分析与文献走综述

卷 29, 期 8, 2022

发表于: 10 January, 2022

页: [1459 - 1471] 页: 13

弟呕挨: 10.2174/0929867328666210910141316

价格: $65

摘要

背景:食品中的姜黄素、调味剂和着色剂具有强大的抗氧化、抗肿瘤活性和抗炎作用。然而,它们会迅速代谢成活性较低的代谢物。因此,已经进行了各种研究以合成具有增强治疗活性的新的稳定的姜黄素类似物。 方法:通过氟苯甲醛(1a-1f)与姜黄素的Knoevenagel缩合合成含氟姜黄素化合物(2a-2f)。通过脱甲氧基姜黄素与 3,4-二氟苯甲醛 (1f) 的缩合合成氟化脱甲氧基姜黄素 (3a)。这些化合物的结构通过FTIR、1H-NMR、13C-NMR、19FNMR和质谱确认。使用 MTT 测定法评估了这些合成化合物对乳腺癌细胞 (4T1)、黑色素瘤癌细胞 (B16F10) 和正常细胞系 (NIH 3T3) 的抗增殖活性。研究了姜黄素、2f 和 3a 与几种蛋白质(1HCL、2ZOQ、3D94、5EW3、4WA9、1XKK、6CCY)的相互作用。通过分子动力学模拟研究表皮生长因子受体(EGFR)的结构保存。 结果:获得的光谱数据证实了所提出的氟化类似物的结构。结果表明,化合物2f和3a对癌细胞增殖的抑制作用明显优于其他化合物。化合物2f和3a与EGFR的亲和力最高,结合能最低。姜黄素、2f 和 3a 与 EGFR 的结合能分别为 -7.8、-10 和 -9.8 kcal/mol。分子对接结果表明化合物2f和3a与EGFR通过氢键的形成牢固地结合成复合物。 结论:综上所述,我们发现氟化脱甲氧基姜黄素和氟化姜黄素可诱导癌细胞死亡并以高亲和力与EGFR结合。

关键词: 姜黄素、去甲氧基姜黄素、肿瘤、乳腺癌、抗增殖、计算分析

« Previous
[1]
Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[2]
Sadeghian, M.; Rahmani, S.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. J. Affect. Disord., 2021, 278, 627-636.
[http://dx.doi.org/10.1016/j.jad.2020.09.091] [PMID: 33038707]
[3]
Ghandadi, M.; Sahebkar, A. Curcumin: An effective inhibitor of interleukin-6. Curr. Pharm. Des., 2017, 23(6), 921-931.
[http://dx.doi.org/10.2174/1381612822666161006151605] [PMID: 27719643]
[4]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Res. (Stuttg.), 2018, 68(7), 403-409.
[http://dx.doi.org/10.1055/s-0044-101752] [PMID: 29458218]
[5]
Hatamipour, M.; Johnston, T.P.; Sahebkar, A. One Molecule, Many Targets and Numerous Effects: The Pleiotropy of Curcumin Lies in its Chemical Structure Curr. Pharm. Des., 2018, 24(19), 2129-2136.
[http://dx.doi.org/10.2174/1381612824666180522111036] [PMID: 29788873]
[6]
Mohajeri, M.; Bianconi, V.; Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156, 104765.
[http://dx.doi.org/10.1016/j.phrs.2020.104765] [PMID: 32217147]
[7]
Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Khanbabaei, H; Shamshirian, A.; Amiri Moghadam, S. ArefNezhad, R.; Sahebkar, A.; Avan, A.; Mirzaei, H. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract., 2019, 215(10), 152556.
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[8]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[9]
Sardjiman, S.; Reksohadiprodjo, M.; Hakim, L.; Van der Goot, H; Timmerman, H. 1, 5-Diphenyl-1, 4-pentadiene-3- ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. Eur. J. Med. Chem., 1997, 32(7-8), 625-630.
[http://dx.doi.org/10.1016/S0223-5234(97)83288-6]
[10]
Tomren, M.A.; Másson, M.; Loftsson, T.; Tønnesen, H.H. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int. J. Pharm., 2007, 338(1-2), 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.013] [PMID: 17298869]
[11]
Fang, L.; Gou, S.; Liu, X.; Cao, F.; Cheng, L. Design, synthesis and anti-Alzheimer properties of dimethylaminomethyl-substituted curcumin derivatives. Bioorg. Med. Chem. Lett., 2014, 24(1), 40-43.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.011] [PMID: 24342238]
[12]
Fang, X.; Fang, L.; Gou, S.; Cheng, L. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin. Bioorg. Med. Chem. Lett., 2013, 23(5), 1297-1301.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.098] [PMID: 23357628]
[13]
Qiu, X.; Du, Y.; Lou, B.; Zuo, Y.; Shao, W.; Huo, Y.; Huang, J.; Yu, Y.; Zhou, B.; Du, J.; Fu, H.; Bu, X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J. Med. Chem., 2010, 53(23), 8260-8273.
[http://dx.doi.org/10.1021/jm1004545] [PMID: 21070043]
[14]
Smart, B.E. Introduction: fluorine chemistry. Chem. Rev., 1996, 5, 1555-1556.
[http://dx.doi.org/10.1021/cr960075e]
[15]
Padhye, S.; Yang, H.; Jamadar, A.; Cui, Q.C.; Chavan, D.; Dominiak, K.; McKinney, J.; Banerjee, S.; Dou, Q.P.; Sarkar, F.H. New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm. Res., 2009, 26(8), 1874-1880.
[http://dx.doi.org/10.1007/s11095-009-9900-8] [PMID: 19421843]
[16]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[17]
Katsidoni, V.; Alexiou, P.; Fotiadou, M.; Pelecanou, M.; Sagnou, M.; Panagis, G. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit morphine’s rewarding effect in rats. Psychopharmacology (Berl.), 2014, 231(23), 4467-4478.
[http://dx.doi.org/10.1007/s00213-014-3603-5] [PMID: 24838368]
[18]
Yodkeeree, S.; Chaiwangyen, W.; Garbisa, S. Limtrakul, PJTJonb Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. 2009, 20(2), 87-95.
[19]
Liu, Y-L.; Yang, H-P.; Gong, L.; Tang, C-L.; Wang, H-J. Hypomethylation effects of curcumin, demethoxycurcumin and bisdemethoxycurcumin on WIF-1 promoter in non-small cell lung cancer cell lines. Mol. Med. Rep., 2011, 4(4), 675-679.
[20]
Shieh, J-M.; Chen, Y-C.; Lin, Y-C.; Lin, J-N.; Chen, W-C. Chen, Y-Y Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells. J. Agric. Food Chem., 2013, 61(26), 6366-6375.
[http://dx.doi.org/10.1021/jf4012455] [PMID: 23777448]
[21]
Lin, H-Y.; Lin, J-N.; Ma, J-W.; Yang, N-S.; Ho, C-T.; Kuo, S-C. Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy. J. Funct. Foods, 2013, 12, 439-449.
[http://dx.doi.org/10.1016/j.jff.2014.12.014]
[22]
Knight, T.; Irving, J.A.E. Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front. Oncol., 2014, 4, 160.
[http://dx.doi.org/10.3389/fonc.2014.00160] [PMID: 25009801]
[23]
Chohan, T.A.; Qian, H.; Pan, Y.; Chen, J-Z. Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Curr. Med. Chem., 2015, 22(2), 237-263.
[http://dx.doi.org/10.2174/0929867321666141106113633] [PMID: 25386824]
[24]
Verheul, H.M.; Pinedo, H.M. The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors. Clin. Breast Cancer, 2000, 1(Suppl. 1), S80-S84.
[http://dx.doi.org/10.3816/CBC.2000.s.015] [PMID: 11970755]
[25]
Greuber, E.K.; Smith-Pearson, P.; Wang, J.; Pendergast, A.M. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat. Rev. Cancer, 2013, 13(8), 559-571.
[http://dx.doi.org/10.1038/nrc3563] [PMID: 23842646]
[26]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[27]
Alwhaibi, A.; Verma, A.; Adil, M.S.; Somanath, P.R. The unconventional role of Akt1 in the advanced cancers and in diabetes-promoted carcinogenesis. Pharmacol. Res., 2019, 145, 104270.
[http://dx.doi.org/10.1016/j.phrs.2019.104270] [PMID: 31078742]
[28]
Vyas, A.; Dandawate, P.; Padhye, S.; Ahmad, A.; Sarkar, F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des., 2013, 19(11), 2047-2069.
[PMID: 23116312]
[29]
Pisano, M.; Dettori, M.A.; Fabbri, D.; Delogu, G.; Palmieri, G.; Rozzo, C. Anticancer Activity of Two Novel Hydroxylated Biphenyl Compounds toward Malignant Melanoma Cells. Int. J. Mol. Sci., 2021, 22(11), 5636.
[http://dx.doi.org/10.3390/ijms22115636] [PMID: 34073232]
[30]
Khazaei Koohpar, Z.; Entezari, M.; Movafagh, A.; Hashemi, M. Anticancer activity of curcumin on human breast adenocarcinoma: Role of Mcl-1 gene. Iran. J. Cancer Prev., 2015, 8(3), e2331.
[http://dx.doi.org/10.17795/ijcp2331] [PMID: 26413251]
[31]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Chemical biology; Springer, 2015, pp. 243-250.
[32]
Dorai, T.; Gehani, N.; Katz, A. Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol. Urol., 2000, 1, 1-6.
[PMID: 10851300]
[33]
Yim-im, W.; Sawatdichaikul, O.; Semsri, S.; Horata, N.; Mokmak, W.; Tongsima, S.; Suksamrarn, A.; Choowongkomon, K. Computational analyses of curcuminoid analogs against kinase domain of HER2. BMC Bioinformatics., 2014, 15(1), 261.
[http://dx.doi.org/10.1186/1471-2105-15-261] [PMID: 25089037]
[34]
Xu, Y-Y.; Cao, Y.; Ma, H.; Li, H-Q.; Ao, G-Z.J.B. chemistry m. Design, synthesis and molecular docking of α, β-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity. Bioorg. Med. Chem., 2013, 21(2), 388-394.
[http://dx.doi.org/10.1016/j.bmc.2012.11.031] [PMID: 23245570]
[35]
Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. (Mosk.), 2008, 42(4), 701-706.
[PMID: 18856071]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy