Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Celecoxib as a Potential Inhibitor in the Treatment of Inflammatory Diseases - A Review

Author(s): Josiane Viana Cruz, Joaquín María Campos Rosa*, Njogu Mark Kimani, Silvana Giuliatti and Cleydson Breno Rodrigues dos Santos

Volume 29, Issue 17, 2022

Published on: 12 January, 2022

Page: [3028 - 3049] Pages: 22

DOI: 10.2174/0929867328666210910125229

Price: $65

Abstract

This article aims at reviewing celecoxib as a potential inhibitor in the treatment of inflammatory diseases. The enzyme cyclooxygenase (COX) predominantly has two isoforms called cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). The former plays a constitutive role related to homeostatic effects in renal and platelets, while the latter is mainly responsible for the induction of inflammatory effects. Since COX-2 plays an important role in the pathogenesis of inflammatory diseases, it has been signaled as a target for the planning of anti-inflammatory intermediates. Many inhibitors developed and planned for COX-2 inhibition have presented side effects to humans, mainly in the gastrointestinal and/or cardiovascular tract. Therefore, it is necessary to design new potential COX-2 inhibitors, which are relatively safe and have no side effects. In this sense, celecoxib is the only potent, selective COX-2 inhibitor that is still commercially available (within the “coxib” family). Thus, celecoxib became a commercial prototype inhibitor for the development of anti-inflammatory agents for the COX-2 enzyme. This review provides inhibition highlights that should provide a structural basis for the design of promising new non-steroidal anti-inflammatory drugs (NSAIDs), which act as COX-2 inhibitors with lesser side effects on the human body.

Keywords: Inflammation, cyclooxygenase-2, non-steroidal anti-inflammatory, celecoxib, ADME, toxicity.

[1]
Liu, Y.-Z.; Wang, Y.-X.; Jiang, C.-L. Inflammation: The common pathway of stress-related diseases. Front. Hum. Neurosci., 2017, 11, 316.
[http://dx.doi.org/10.3389/fnhum.2017.00316] [PMID: 28676747]
[2]
Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; Hotchkiss, R.; Joosten, L.A.B.; Kastner, D.L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, K.H.G.; Nowak, K.L.; O’Neill, L.A.; Pickkers, P.; van der Poll, T.; Ridker, P.M.; Schalkwijk, J.; Schwartz, D.A.; Siegmund, B.; Steer, C.J.; Tilg, H.; van der Meer, J.W.M.; van de Veerdonk, F.L.; Dinarello, C.A. A guiding map for inflammation. Nat. Immunol., 2017, 18(8), 826-831.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[3]
Barcella, C.A.; Lamberts, M.; McGettigan, P.; Fosbøl, E.L.; Lindhardsen, J.; Torp-Pedersen, C.; Gislason, G.H.; Olsen, A.S. Differences in cardiovascular safety with non-steroidal anti-inflammatory drug therapy-A nationwide study in patients with osteoarthritis. Basic Clin. Pharmacol. Toxicol., 2019, 124(5), 629-641.
[http://dx.doi.org/10.1111/bcpt.13182] [PMID: 30484960]
[4]
Piper, K.; Garelnabi, M. Eicosanoids: Atherosclerosis and cardiometabolic health. J. Clin. Transl. Endocrinol., 2020, 19, 100216.
[http://dx.doi.org/10.1016/j.jcte.2020.100216] [PMID: 32071878]
[5]
Araújo, P.H.F.; Ramos, R.S.; da Cruz, J.N.; Silva, S.G.; Ferreira, E.F.B.; de Lima, L.R.; Macêdo, W.J.C.; Espejo-Román, J.M.; Campos, J.M.; Santos, C.B.R. Identification of potential COX-2 inhibitors for the treatment of inflammatory diseases using molecular modeling approaches. Molecules, 2020, 25(18), 4183.
[http://dx.doi.org/10.3390/molecules25184183] [PMID: 32932669]
[6]
Sohilait, M.R.; Pranowo, H.D.; Haryadi, W. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation, 2017, 13(11), 356-359.
[http://dx.doi.org/10.6026/97320630013356] [PMID: 29225427]
[7]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[8]
Shin, S. Safety of celecoxib versus traditional nonsteroidal anti-inflammatory drugs in older patients with arthritis. J. Pain Res., 2018, 11, 3211-3219.
[http://dx.doi.org/10.2147/JPR.S186000] [PMID: 30588073]
[9]
A current view on inflammation. Nat. Immunol., 2017, 18(8), 825.
[http://dx.doi.org/10.1038/ni.3798] [PMID: 28722714]
[10]
Giridharan, V.V.; Masud, F.; Petronilho, F.; Dal-Pizzol, F.; Barichello, T. Infection-induced systemic inflammation is a potential driver of alzheimer’s disease progression. Front. Aging Neurosci., 2019, 11, 122.
[http://dx.doi.org/10.3389/fnagi.2019.00122] [PMID: 31191296]
[11]
Pierce, A.; Pittet, J.F. Inflammatory response to trauma: Implications for coagulation and resuscitation. Curr. Opin. Anaesthesiol., 2014, 27(2), 246-252.
[http://dx.doi.org/10.1097/ACO.0000000000000047] [PMID: 24419158]
[12]
Wallach, D.; Kang, T.-B.; Kovalenko, A. Concepts of tissue injury and cell death in inflammation: A historical perspective. Nat. Rev. Immunol., 2014, 14(1), 51-59.
[http://dx.doi.org/10.1038/nri3561] [PMID: 24336099]
[13]
Duan, L.; Rao, X.; Sigdel, K.R. Regulation of inflammation in autoimmune disease. J. Immunol. Res., 2019, 2019, 7403796.
[http://dx.doi.org/10.1155/2019/7403796] [PMID: 30944837]
[14]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[15]
Leick, M.; Azcutia, V.; Newton, G.; Luscinskas, F.W. Leukocyte recruitment in inflammation: Basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res., 2014, 355(3), 647-656.
[http://dx.doi.org/10.1007/s00441-014-1809-9] [PMID: 24562377]
[16]
Aghasafari, P.; George, U.; Pidaparti, R. A review of inflammatory mechanism in airway diseases. Inflamm. Res., 2019, 68(1), 59-74.
[http://dx.doi.org/10.1007/s00011-018-1191-2] [PMID: 30306206]
[17]
Rogler, G. Resolution of inflammation in inflammatory bowel disease. Lancet Gastroenterol. Hepatol., 2017, 2(7), 521-530.
[http://dx.doi.org/10.1016/S2468-1253(17)30031-6] [PMID: 28606878]
[18]
Afonina, I.S.; Zhong, Z.; Karin, M.; Beyaert, R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat. Immunol., 2017, 18(8), 861-869.
[http://dx.doi.org/10.1038/ni.3772] [PMID: 28722711]
[19]
Ptaschinski, C.; Lukacs, N.W. Acute and chronic inflammation induces disease pathogenesis. Essent. Concepts Mol. Pathol., 2020, 19-31.
[http://dx.doi.org/10.1016/B978-0-12-813257-9.00002-4]
[20]
Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta, 2014, 1843(11), 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[21]
Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014, 561459.
[http://dx.doi.org/10.1155/2014/561459] [PMID: 24876674]
[22]
Dileepan, M.; Rastle-Simpson, S.; Greenberg, Y.; Wijesinghe, D.S.; Kumar, N.G.; Yang, J.; Hwang, S.H.; Hammock, B.D.; Sriramarao, P.; Rao, S.P. Effect of dual sEH/COX-2 inhibition on allergen-induced airway inflammation. Front. Pharmacol., 2019, 10, 1118.
[http://dx.doi.org/10.3389/fphar.2019.01118] [PMID: 31611798]
[23]
Vitoria, W.O.; Thomé, L.S.; Kanashiro-Galo, L.; Carvalho, L.V.; Penny, R.; Santos, W.L.C.; Vasconcelos, P.F.D.C.; Sotto, M.N.; Duarte, M.I.S.; Quaresma, J.A.S.; Pagliari, C. Upregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in renal tissue in severe dengue in humans: Effects on endothelial activation/dysfunction. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180353.
[http://dx.doi.org/10.1590/0037-8682-0353-2018] [PMID: 31778418]
[24]
Harjunpää, H.; Asens, M.L.; Guenther, C.; Fagerholm, S.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol., 2019, 10, 1078.
[http://dx.doi.org/10.3389/fimmu.2019.01078] [PMID: 31231358]
[25]
Pahwa, R.; Bansal, A.G.P.P.; Jialal, I. Chronic inflammation; StatPearls, 2020.
[26]
Mescher, A.L. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration (Oxf.), 2017, 4(2), 39-53.
[http://dx.doi.org/10.1002/reg2.77] [PMID: 28616244]
[27]
Ralph, S.J.; Nozuhur, S.; Moreno-Sánchez, R.; Rodríguez-Enríquez, S. Rhys Pritchard. NSAID celecoxib: A potent mitochondrial pro-oxidant cytotoxic agent sensitizing metastatic cancers and cancer stem cells to chemotherapy. J. Cancer Metastasis Treat., 2018, 4, 49.
[http://dx.doi.org/10.20517/2394-4722.2018.42]
[28]
Silva, W.J.M.; Ferrari, C.K.B. Mitochondrial metabolism, free radicals and aging. Rev. Bras. Geriatr. Gerontol., 2011, 14(3), 441-451.
[http://dx.doi.org/10.1590/S1809-98232011000300005]
[29]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[30]
Craig, C.R.; Stitzel, R.E. Modern pharmacology with clinical applications, 6rd ed; Guanabara Koogan: Rio de Janeiro, 2011.
[31]
Biswas, S.; Das, R.; Banerjee, E.R. Role of free radicals in human inflammatory diseases. AIMS Biophys., 2017, 4(4), 596-614.
[http://dx.doi.org/10.3934/biophy.2017.4.596]
[32]
Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; Shanmugam, K.; Münch, G.; Wu, M.J.; Satyanarayanan, M.; Vysetti, B. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med., 2012, 12, 173.
[http://dx.doi.org/10.1186/1472-6882-12-173] [PMID: 23038995]
[33]
Murakami, M.; Hirano, T. The molecular mechanisms of chronic inflammation development. Front. Immunol., 2012, 3, 323.
[http://dx.doi.org/10.3389/fimmu.2012.00323] [PMID: 23162547]
[34]
Ogrunc, M.; Di Micco, R.; Liontos, M.; Bombardelli, L.; Mione, M.; Fumagalli, M.; Gorgoulis, V.G.; d’Adda di Fagagna, F. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ., 2014, 21(6), 998-1012.
[http://dx.doi.org/10.1038/cdd.2014.16] [PMID: 24583638]
[35]
Kong, A.N.T. Inflammation, oxidative stress, and cancer: Dietary approaches for cancer prevention, 1st ed; CRC Press: New York, 2013.
[36]
Niederhuber, J.E.; Armitage, J.O.; Doroshow, J.H.; Kastan, M.B.; Tepper, J.E. Abeloff’s clinical oncology, 5th ed; Elsevier: Philadelphia, 2014.
[37]
Branco, A.C.C.C.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of histamine in modulating the immune response and inflammation. Mediators Inflamm., 2018, 2018, 9524075.
[http://dx.doi.org/10.1155/2018/9524075] [PMID: 30224900]
[38]
Herr, N.; Bode, C.; Duerschmied, D. The effects of serotonin in immune cells. Front. Cardiovasc. Med., 2017, 4, 48.
[http://dx.doi.org/10.3389/fcvm.2017.00048] [PMID: 28775986]
[39]
Othman, R.; Vaucher, E.; Couture, R. Bradykinin type 1 receptor - inducible nitric oxide synthase: A new axis implicated in diabetic retinopathy. Front. Pharmacol., 2019, 10, 300.
[http://dx.doi.org/10.3389/fphar.2019.00300] [PMID: 30983997]
[40]
Smith, W.L.; Murphy, R.C. The eicosanoids: Cyclooxygenase, lipoxygenase and epoxygenase pathways. biochemistry of lipids; Lipoproteins and Membranes, 2016, pp. 259-296.
[http://dx.doi.org/10.1016/B978-0-444-63438-2.00009-2]
[41]
Hammock, B.D.; Wang, W.; Gilligan, M.M.; Panigrahy, D. Eicosanoids: The overlooked storm in coronavirus disease 2019 (COVID-19)? Am. J. Pathol., 2020, 190(9), 1782-1788.
[http://dx.doi.org/10.1016/j.ajpath.2020.06.010] [PMID: 32650004]
[42]
Yui, K.; Imataka, G.; Nakamura, H.; Ohara, N.; Naito, Y. Eicosanoids derived from arachidonic acid and their family prostaglandins and cyclooxygenase in psychiatric disorders. Curr. Neuropharmacol., 2015, 13(6), 776-785.
[http://dx.doi.org/10.2174/1570159X13666151102103305] [PMID: 26521945]
[43]
Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol., 2015, 15(8), 511-523.
[http://dx.doi.org/10.1038/nri3859] [PMID: 26139350]
[44]
Gong, L.; Thorn, C.F.; Bertagnolli, M.M.; Grosser, T.; Altman, R.B.; Klein, T.E. Celecoxib pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2012, 22(4), 310-318.
[http://dx.doi.org/10.1097/FPC.0b013e32834f94cb] [PMID: 22336956]
[45]
Mendes, R.T.; Stanczyk, C.P.; Sordi, R.; Otuki, M.F.; dos Santos, F.A.; Fernandes, D. Selective inhibition of cyclooxygenase-2: Risks and benefits. Rev. Bras. Reumatol., 2012, 52(5), 767-782.
[PMID: 23090376]
[46]
Seo, M.J.; Oh, D.K. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog. Lipid Res., 2017, 66, 50-68.
[http://dx.doi.org/10.1016/j.plipres.2017.04.003] [PMID: 28392405]
[47]
Basumatary, P.; Das, M.; Barman, P.; Choudhury, M. Molecular docking study of 2, 3-dimethylmaleic anhydride (3, 4-dimethyl-2, 5-furandione) as anti-inflammatory agent. Trends in Bioinformatics, 2018, 11(2), 56-63.
[http://dx.doi.org/10.3923/tb.2018.56.63]
[48]
Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50(Suppl.), S29-S34.
[http://dx.doi.org/10.1194/jlr.R800042-JLR200] [PMID: 18952571]
[49]
Yagami, T.; Koma, H.; Yamamoto, Y. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol. Neurobiol., 2016, 53(7), 4754-4771.
[http://dx.doi.org/10.1007/s12035-015-9355-3] [PMID: 26328537]
[50]
Oniga, S.D.; Pacureanu, L.; Stoica, C.I.; Palage, M.D.; Craciun, A.; Rusu, L.R.; Crisan, E-L.; Araniciu, C. COX inhibition profile and molecular docking studies of some 2-(trimethoxyphenyl)-thiazo. Molecules, 2017, 22, 1507.
[http://dx.doi.org/10.3390/molecules22091507]
[51]
Mohsin, N-U-A.; Irfan, M. Selective cyclooxygenase-2 inhibitors: A review of recent chemical scaffolds with promising anti-inflammatory and COX-2 inhibitory activities. Med. Chem. Res., 2020, 29, 809-830.
[http://dx.doi.org/10.1007/s00044-020-02528-1]
[52]
Hilário, M.O.E.; Terreri, M.T.; Len, C.A. Nonsteroidal anti-inflammatory drugs: Cyclooxygenase 2 inhibitors. J. Pediatr. (Rio J.), 2006, 82(5)(Suppl.), S206-S212.
[http://dx.doi.org/10.2223/JPED.1560] [PMID: 17136297]
[53]
Sharma, S.; Verma, A.; Chauhan, R.; Kedar, M.; Kulshrestha, R. Study of cyclooxygenase-3 on the bases of its facts and controversies. IJPSR, 2019, 10(1), 387-392.
[54]
Khan, S.; Andrews, K.L.; Chin-Dusting, J.P.F. Cyclo-oxygenase (COX) inhibitors and cardiovascular risk: Are non-steroidal anti-inflammatory drugs really anti-inflammatory? Int. J. Mol. Sci., 2019, 20(17), 4262.
[http://dx.doi.org/10.3390/ijms20174262] [PMID: 31480335]
[55]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Ali, W.A.M.; Kamel, G.M. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,5- diarylpyrazole derivatives. J. Enzyme Inhib. Med. Chem., 2016, 31(sup3), 54-60.
[http://dx.doi.org/10.1080/14756366.2016.1201815] [PMID: 27541738]
[56]
Chaudhary, N.; Aparoy, P. Application of per-residue energy decomposition to identify the set of amino acids critical for in silico prediction of COX-2 inhibitory activity. Heliyon, 2020, 6(10), e04944.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04944] [PMID: 33083581]
[57]
Curtis, E.; Fuggle, N.; Shaw, S.; Spooner, L.; Ntani, G.; Parsons, C.; Corp, N.; Honvo, G.; Baird, J.; Maggi, S.; Dennison, E.; Bruyère, O.; Reginster, J.-Y.; Cooper, C. Safety of cyclooxygenase-2 inhibitors in osteoarthritis: Outcomes of a systematic review and meta-analysis. Drugs Aging, 2019, 36(Suppl. 1), 25-44.
[http://dx.doi.org/10.1007/s40266-019-00664-x] [PMID: 31073922]
[58]
Anzini, M.; Rovini, M.; Cappelli, A.; Vomero, S.; Manetti, F.; Botta, M.; Sautebin, L.; Rossi, A.; Pergola, C.; Ghelardini, C.; Norcini, M.; Giordani, A.; Makovec, F.; Anzellotti, P.; Patrignani, P.; Biava, M. Synthesis, biological evaluation, and enzyme docking simulations of 1,5-diarylpyrrole-3-alkoxyethyl ethers as selective cyclooxygenase-2 inhibitors endowed with anti-inflammatory and antinociceptive activity. J. Med. Chem., 2008, 51(15), 4476-4481.
[http://dx.doi.org/10.1021/jm800084s] [PMID: 18598017]
[59]
Heidarpoor Saremi, L.; Ebrahimi, A.; Lagzian, M. Identification of new potential cyclooxygenase-2 inhibitors: Insight from high throughput virtual screening of 18 million compounds combined with molecular dynamic simulation and quantum mechanics. J. Biomol. Struct. Dyn., 2021, 39(5), 1717-1734.
[http://dx.doi.org/10.1080/07391102.2020.1737574] [PMID: 32122267]
[60]
Patrono, C. Cardiovascular effects of cyclooxygenase-2 inhibitors: A mechanistic and clinical perspective. Br. J. Clin. Pharmacol., 2016, 82(4), 957-964.
[http://dx.doi.org/10.1111/bcp.13048] [PMID: 27317138]
[61]
Ferrer, M.D.; Busquets-Cortés, C.; Capó, X.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem., 2019, 26(18), 3225-3241.
[http://dx.doi.org/10.2174/0929867325666180514112124] [PMID: 29756563]
[62]
Alexanian, A.; Sorokin, A. Cyclooxygenase 2: Protein-protein interactions and posttranslational modifications. Physiol. Genomics, 2017, 49(11), 667-681.
[http://dx.doi.org/10.1152/physiolgenomics.00086.2017] [PMID: 28939645]
[63]
Bansal, K.; Balaji, K.N. Intracellular pathogen sensor NOD2 programs macrophages to trigger Notch1 activation. J. Biol. Chem., 2011, 286(7), 5823-5835.
[http://dx.doi.org/10.1074/jbc.M110.192393] [PMID: 21156799]
[64]
Haile, P.A.; Votta, B.J.; Marquis, R.W.; Bury, M.J.; Mehlmann, J.F.; Singhaus, R., Jr; Charnley, A.K.; Lakdawala, A.S.; Convery, M.A.; Lipshutz, D.B.; Desai, B.M.; Swift, B.; Capriotti, C.A.; Berger, S.B.; Mahajan, M.K.; Reilly, M.A.; Rivera, E.J.; Sun, H.H.; Nagilla, R.; Beal, A.M.; Finger, J.N.; Cook, M.N.; King, B.W.; Ouellette, M.T.; Totoritis, R.D.; Pierdomenico, M.; Negroni, A.; Stronati, L.; Cucchiara, S.; Ziółkowski, B.; Vossenkämper, A.; MacDonald, T.T.; Gough, P.J.; Bertin, J.; Casillas, L.N. The identification and pharmacological characterization of 6-(tert-butylsulfonyl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a highly potent and selective inhibitor of RIP2 kinase. J. Med. Chem., 2016, 59(10), 4867-4880.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00211] [PMID: 27109867]
[65]
Canning, P.; Ruan, Q.; Schwerd, T.; Hrdinka, M.; Maki, J.L.; Saleh, D.; Suebsuwong, C.; Ray, S.; Brennan, P.E.; Cuny, G.D.; Uhlig, H.H.; Gyrd-Hansen, M.; Degterev, A.; Bullock, A.N. Inflammatory signaling by NOD-RIPK2 Is inhibited by clinically relevant type II kinase inhibitors. Chem. Biol., 2015, 22(9), 1174-1184.
[http://dx.doi.org/10.1016/j.chembiol.2015.07.017] [PMID: 26320862]
[66]
Cruz, J.V.; Giuliatti, S.; Alves, L.B.; Silva, R.C.; Ferreira, E.F.B.; Kimani, N.M.; Silva, C.H.T.P.; Souza, J.S.N.; Espejo-Román, J.M.; Santos, C.B.R. Identification of novel potential cyclooxygenase-2 inhibitors using ligand- and structure-based virtual screening approaches. J. Biomol. Struct. Dyn., 2021, 1-23.
[http://dx.doi.org/10.1080/07391102.2020.1871413] [PMID: 33427075]
[67]
Tasneem, S.; Saleem, M.; Saeed, S.A. Nonsteroidal anti-inflammatory drugs as potential ecto-nucleotide phosphodiesterase inhibitors. Braz. J. Pharm. Sci., 2020, 56, 1-6.
[http://dx.doi.org/10.1590/s2175-97902019000318271]
[68]
Banerjee, A.G.; Das, N.; Shengule, S.A.; Sharma, P.A.; Srivastava, R.S.; Shrivastava, S.K. Design, synthesis, evaluation and molecular modelling studies of some novel 5,6-diphenyl-1,2,4-triazin-3(2H)-ones bearing five-member heterocyclic moieties as potential COX-2 inhibitors: A hybrid pharmacophore approach. Bioorg. Chem., 2016, 69, 102-120.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.003] [PMID: 27750057]
[69]
Kaur, S.; Kumari, P.; Singh, G.; Bhatti, R.; Singh, P. Design and synthesis of aza-/oxa heterocycle-based conjugates as novel anti-inflammatory agents targeting cyclooxygenase-2. ACS Omega, 2018, 3(5), 5825-5845.
[http://dx.doi.org/10.1021/acsomega.8b00445] [PMID: 30023927]
[70]
Anzini, M.; Di Capua, A.; Valenti, S.; Brogi, S.; Rovini, M.; Giuliani, G.; Cappelli, A.; Vomero, S.; Chiasserini, L.; Sega, A.; Poce, G.; Giorgi, G.; Calderone, V.; Martelli, A.; Testai, L.; Sautebin, L.; Rossi, A.; Pace, S.; Ghelardini, C.; Di Cesare Mannelli, L.; Benetti, V.; Giordani, A.; Anzellotti, P.; Dovizio, M.; Patrignani, P.; Biava, M. Novel analgesic/anti-inflammatory agents: 1,5-diarylpyrrole nitrooxyalkyl ethers and related compounds as cyclooxygenase-2 inhibiting nitric oxide donors. J. Med. Chem., 2013, 56(8), 3191-3206.
[http://dx.doi.org/10.1021/jm301370e] [PMID: 23534442]
[71]
Goodman, M.C.; Xu, S.; Rouzer, C.A.; Banerjee, S.; Ghebreselasie, K.; Migliore, M.; Piomelli, D.; Marnett, L.J. Dual cyclooxygenase-fatty acid amide hydrolase inhibitor exploits novel binding interactions in the cyclooxygenase active site. J. Biol. Chem., 2018, 293(9), 3028-3038.
[http://dx.doi.org/10.1074/jbc.M117.802058] [PMID: 29326169]
[72]
Vecchio, A.J.; Malkowski, M.G. The structure of NS-398 bound to cyclooxygenase-2. J. Struct. Biol., 2011, 176(2), 254-258.
[http://dx.doi.org/10.1016/j.jsb.2011.07.019] [PMID: 21843643]
[73]
Moro, M.G.; Sánchez, P.K.V.; Lupepsa, A.C.; Baller, E.M.; Franco, G.C.N. Cyclooxygenase biology in renal function – literature review. Rev. Colomb. Nefrol, 2017, 4(1), 27-37.
[http://dx.doi.org/10.22265/acnef.4.1.263]
[74]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[75]
Abdellatif, K.R.A.; Elsaady, M.T.; Abdel-Aziz, S.A.; Abusabaa, A.H.A. Synthesis, cyclooxygenase inhibition and anti-inflammatory evaluation of new 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives possessing methanesulphonyl pharmacophore. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1545-1555.
[http://dx.doi.org/10.3109/14756366.2016.1158168] [PMID: 27072288]
[76]
Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis., 2018, 9(1), 143-150.
[http://dx.doi.org/10.14336/AD.2017.0306] [PMID: 29392089]
[77]
Grosser, T.; Theken, K.N.; FitzGerald, G.A. Cyclooxygenase inhibition: Pain, inflammation, and the cardiovascular system. Clin. Pharmacol. Ther., 2017, 102(4), 611-622.
[http://dx.doi.org/10.1002/cpt.794] [PMID: 28710775]
[78]
Bakr, R. B.; Azouz, A. A.; Abdellatif, K. R. A. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo[3,4-d]pyrimidine derivatives. J. Enzyme Inhib. Med. Chem, 2016, 31(sup2), 6-12.
[79]
Chan, F.K.L.; Ching, J.Y.L.; Tse, Y.K.; Lam, K.; Wong, G.L.H.; Ng, S.C.; Lee, V.; Au, K.W.L.; Cheong, P.K.; Suen, B.Y.; Chan, H.; Kee, K.M.; Lo, A.; Wong, V.W.S.; Wu, J.C.Y.; Kyaw, M.H. Gastrointestinal safety of celecoxib versus naproxen in patients with cardiothrombotic diseases and arthritis after upper gastrointestinal bleeding (CONCERN): An industry-independent, double-blind, double-dummy, randomised trial. Lancet, 2017, 389(10087), 2375-2382.
[http://dx.doi.org/10.1016/S0140-6736(17)30981-9] [PMID: 28410791]
[80]
Desborough, M.J.R.; Keeling, D.M. The aspirin story - from willow to wonder drug. Br. J. Haematol., 2017, 177(5), 674-683.
[http://dx.doi.org/10.1111/bjh.14520] [PMID: 28106908]
[81]
Ornelas, A.; Zacharias-Millward, N.; Menter, D.G.; Davis, J.S.; Lichtenberger, L.; Hawke, D.; Hawk, E.; Vilar, E.; Bhattacharya, P.; Millward, S. Beyond COX-1: The effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev., 2017, 36(2), 289-303.
[http://dx.doi.org/10.1007/s10555-017-9675-z] [PMID: 28762014]
[82]
Mazaleuskaya, L.L.; Theken, K.N.; Gong, L.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Ibuprofen pathways. Pharmacogenet. Genomics, 2015, 25(2), 96-106.
[http://dx.doi.org/10.1097/FPC.0000000000000113] [PMID: 25502615]
[83]
Kołodziejska, J.; Kołodziejczyk, M. Diclofenac in the treatment of pain in patients with rheumatic diseases. Reumatologia, 2018, 56(3), 174-183.
[http://dx.doi.org/10.5114/reum.2018.76816] [PMID: 30042605]
[84]
Lucas, S. The Pharmacology of Indomethacin. Headache, 2016, 56(2), 436-446.
[http://dx.doi.org/10.1111/head.12769] [PMID: 26865183]
[85]
Angiolillo, D.J.; Weisman, S.M. Clinical pharmacology and cardiovascular safety of naproxen. Am. J. Cardiovasc. Drugs, 2017, 17(2), 97-107.
[http://dx.doi.org/10.1007/s40256-016-0200-5] [PMID: 27826802]
[86]
Sadeq, O.R. Hepatotoxicity associated with piroxicam therapy. J. Pharm. Res., 2018, 12(4), 554-559.
[87]
Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Nowaszewska, B.K.; Celińska-Janowicz, K.; Miltyk, W. Celecoxib in cancer therapy and prevention - review. Curr. Drug Targets, 2019, 20(3), 302-315.
[http://dx.doi.org/10.2174/1389450119666180803121737] [PMID: 30073924]
[88]
Ruhidas, B.; Ray, R.; Naskar, D.; Chakra, B.K.; Chatterjee, T.K. Pharmacological and toxicological investigations of etodolac loaded gum katira microspheres prepared by W1/O/W2 emulsion solvent evaporation technique in rats. Braz. J. Pharm. Sci., 2017, 53(4), e00212.
[89]
Junior, J.A.V.; Catapan, D.C.; Fraiz, F.V.; Junior, P.V.M.; Prado, A.M.B.; Anater, A.; Pimpão, C.T. Use of meloxicam as anti-inflammatory and analgesic in cats. Rev. Acad. Ciênc. Anim., 2016, 14, 109-117.
[90]
Kwon, J.; Kim, S.; Yoo, H.; Lee, E. Nimesulide-induced hepatotoxicity: A systematic review and meta-analysis. PLoS One, 2019, 14(1), e0209264.
[http://dx.doi.org/10.1371/journal.pone.0209264] [PMID: 30677025]
[91]
Orlando, B.J.; Malkowski, M.G. Crystal structure of rofecoxib bound to human cyclooxygenase-2. Acta Crystallogr. F Struct. Biol. Commun., 2016, 72(Pt 10), 772-776.
[http://dx.doi.org/10.1107/S2053230X16014230] [PMID: 27710942]
[92]
Zhang, R.; Liu, Z.; Zhang, H.; Zhang, Y.; Lin, D. The COX-2-selective antagonist (NS-398) inhibits choroidal neovascularization and subretinal fibrosis. PLoS One, 2016, 11(1), e0146808.
[http://dx.doi.org/10.1371/journal.pone.0146808] [PMID: 26760305]
[93]
Atukorala, I.; Hunter, D.J. Valdecoxib: The rise and fall of a COX-2 inhibitor. Expert Opin. Pharmacother., 2013, 14(8), 1077-1086.
[http://dx.doi.org/10.1517/14656566.2013.783568] [PMID: 23517091]
[94]
Schmidt, M.; Lamberts, M.; Olsen, A.M.; Fosbøll, E.L.; Niessner, A.; Tamargo, J.; Rosano, G.; Agewall, S.; Kaski, J.C.; Kjeldsen, K.; Lewis, B.S.; Torp-Pedersen, C. Cardiovascular safety of non-aspirin non-steroidal anti-inflammatory drugs: Review and position paper by the working group for cardiovascular pharmacotherapy of the European society of cardiology. Eur. Heart J. Cardiovasc. Pharmacother., 2016, 2(2), 108-118.
[http://dx.doi.org/10.1093/ehjcvp/pvv054] [PMID: 27533522]
[95]
Day, R.O.; Graham, G.G. The vascular effects of COX-2 selective inhibitors. Aust. Prescr., 2004, 27, 142-145.
[http://dx.doi.org/10.18773/austprescr.2004.119]
[96]
Li, J.; Hao, Q.; Cao, W.; Vadgama, J.V.; Wu, Y. Celecoxib in breast cancer prevention and therapy. Cancer Manag. Res., 2018, 10, 4653-4667.
[http://dx.doi.org/10.2147/CMAR.S178567] [PMID: 30464589]
[97]
Barreiro, E.J.; Kümmerle, A.E.; Fraga, C.A.M. The methylation effect in medicinal chemistry. Chem. Rev., 2011, 111(9), 5215-5246.
[http://dx.doi.org/10.1021/cr200060g] [PMID: 21631125]
[98]
Krasselt, M.; Baerwald, C. Celecoxib for the treatment of musculoskeletal arthritis. Expert Opin. Pharmacother., 2019, 20(14), 1689-1702.
[http://dx.doi.org/10.1080/14656566.2019.1645123] [PMID: 31339385]
[99]
Pitchon, D.N.; Dayan, A.C.; Schwenk, E.S.; Baratta, J.L.; Viscusi, E.R. Updates on multimodal analgesia for orthopedic surgery. Anesthesiol. Clin., 2018, 36(3), 361-373.
[http://dx.doi.org/10.1016/j.anclin.2018.05.001] [PMID: 30092934]
[100]
Hashemipour, M.A.; Mehrabizadeh Honarmand, H.; Falsafi, F.; Tahmasebi Arashlo, M.; Rajabalian, S.; Gandjalikhan Nassab, S.A. In vitro cytotoxic effects of celecoxib, mefenamic acid, aspirin and indometacin on several cells lines. J. Dent. (Shiraz), 2016, 17(3), 219-225.
[PMID: 27602398]
[101]
Attiq, A.; Ashraf, M.; Jalil, J.; Javeed, A.; Anjum, A.A.; Ullah, A.; Umair, M.; Sarwat Ali, S. Augmented cytotoxic, mutagenic and genotoxic response triggered by carvedilol and celecoxib combinations. Braz. J. Pharm. Sci., 2018, 54(1), 17292.
[http://dx.doi.org/10.1590/s2175-97902018000117292]
[102]
Huang, K.-H.; Kuo, K.-L.; Ho, I.-L.; Chang, H.-C.; Chuang, Y.-T.; Lin, W.-C.; Lee, P.-Y.; Chang, S.-C.; Chiang, C.-K.; Pu, Y.-S.; Chou, C.-T.; Hsu, C.-H.; Liu, S.-H. Celecoxib-induced cytotoxic effect is potentiated by inhibition of autophagy in human urothelial carcinoma cells. PLoS One, 2013, 8(12), e82034.
[http://dx.doi.org/10.1371/journal.pone.0082034] [PMID: 24349176]
[103]
Kong, Y.; Gu, C.; Zhong, D.; Zhao, X.; Lin, Q.; Wang, K.; Xun, T.; Yu, L.; Liu, S. Celecoxib antagonizes the cytotoxicity of oxaliplatin in human esophageal cancer cells by impairing the drug influx. Eur. J. Pharm. Sci., 2016, 81, 137-148.
[http://dx.doi.org/10.1016/j.ejps.2015.10.009] [PMID: 26474693]
[104]
Gordo, A.C.; Walker, C.; Armada, B.; Zhou, D. Efficacy of celecoxib versus ibuprofen for the treatment of patients with osteoarthritis of the knee: A randomized double-blind, non-inferiority trial. J. Int. Med. Res., 2017, 45(1), 59-74.
[http://dx.doi.org/10.1177/0300060516673707] [PMID: 28222627]
[105]
CELEBREX® (CELECOXIB). Pfizer Pharmaceuticals Available from: https://www.pfizer.com.br/ bulas/ celebra(Accessed July 10, 2021).
[106]
Nissen, S.E.; Yeomans, N.D.; Solomon, D.H.; Lüscher, T.F.; Libby, P.; Husni, M.E.; Graham, D.Y.; Borer, J.S.; Wisniewski, L.M.; Wolski, K.E.; Wang, Q.; Menon, V.; Ruschitzka, F.; Gaffney, M.; Beckerman, B.; Berger, M.F.; Bao, W.; Lincoff, A.M. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N. Engl. J. Med., 2016, 375(26), 2519-2529.
[http://dx.doi.org/10.1056/NEJMoa1611593] [PMID: 27959716]
[107]
Basso, J.; Mendes, M.; Fortuna, A.; Vitorino, R.; Sousa, J.; Pais, A.; Vitorino, C. Nanotechnological approaches in cancer: The role of celecoxib and disulfiram. Drug Repurposing in Cancer Therapy, 2020; pp. 353-393.
[http://dx.doi.org/10.1016/B978-0-12-819668-7.00014-2]
[108]
Solomon, D.H.; Husni, M.E.; Libby, P.A.; Yeomans, N.D.; Lincoff, A.M.; Lϋscher, T.F.; Menon, V.; Brennan, D.M.; Wisniewski, L.M.; Nissen, S.E.; Borer, J.S. The risk of major NSAID toxicity with celecoxib, ibuprofen, or naproxen: A secondary analysis of the PRECISION trial. Am. J. Med., 2017, 130(12), 1415-1422.e4.
[http://dx.doi.org/10.1016/j.amjmed.2017.06.028] [PMID: 28756267]
[109]
Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA, 2000, 284(10), 1247-1255.
[http://dx.doi.org/10.1001/jama.284.10.1247] [PMID: 10979111]
[110]
Wang, B.; Wang, J.; Huang, S.-Q.; Su, H.-H.; Zhou, S.-F. Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr. Drug Metab., 2009, 10(7), 781-834.
[http://dx.doi.org/10.2174/138920009789895480] [PMID: 19925388]
[111]
Al-Rashed, F.; Calay, D.; Lang, M.; Thornton, C.C.; Bauer, A.; Kiprianos, A.; Haskard, D.O.; Seneviratne, A.; Boyle, J.J.; Schönthal, A.H.; Wheeler-Jones, C.P.; Mason, J.C. Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling. Sci. Rep., 2018, 8(1), 6271.
[http://dx.doi.org/10.1038/s41598-018-24548-z] [PMID: 29674687]
[112]
McCormack, P.L. Celecoxib: A review of its use for symptomatic relief in the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. Drugs, 2011, 71(18), 2457-2489.
[http://dx.doi.org/10.2165/11208240-000000000-00000] [PMID: 22141388]
[113]
Zeng, C.; Wei, J.; Li, H.; Yang, T.; Gao, S-G.; Li, Y-S.; Xiong, Y-L.; Xiao, W-F.; Luo, W.; Yang, T-B.; Lei, G.H. Comparison between 200 mg QD and 100 mg BID oral celecoxib in the treatment of knee or hip osteoarthritis. Sci. Rep., 2015, 5, 10593.
[http://dx.doi.org/10.1038/srep10593] [PMID: 26012738]
[114]
Bertagnolli, M.M.; Eagle, C.J.; Zauber, A.G.; Redston, M.; Solomon, S.D.; Kim, K.; Tang, J.; Rosenstein, R.B.; Wittes, J.; Corle, D.; Hess, T.M.; Woloj, G.M.; Boisserie, F.; Anderson, W.F.; Viner, J.L.; Bagheri, D.; Burn, J.; Chung, D.C.; Dewar, T.; Foley, T.R.; Hoffman, N.; Macrae, F.; Pruitt, R.E.; Saltzman, J.R.; Salzberg, B.; Sylwestrowicz, T.; Gordon, G.B.; Hawk, E.T. Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med., 2006, 355(9), 873-884.
[http://dx.doi.org/10.1056/NEJMoa061355] [PMID: 16943400]
[115]
Bertagnolli, M.M. Eagle, C. J.; Zauber, A. G.; Redston, M.; Breazna, A.; Kim, K.; Tang, J.; Rosenstein, R. B.; Umar, A.; Bagheri, D.; Collins, N. T.; Burn, J.; Chung, D. C.; Dewar, T.; Foley, T. R.; Hoffman, N.; Macrae, F.; Pruitt, R. E.; Saltzman, J. R.; Salzberg, B.; Sylwestrowicz, T.; Hawk, E.; T. Five year efficacy and safety analysis of the adenoma prevention with celecoxib (APC). Trial. Cancer Prev. Res. (Phila.), 2009, 2(4), 310-321.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0206] [PMID: 19336730]
[116]
Trelle, S.; Reichenbach, S.; Wandel, S.; Hildebrand, P.; Tschannen, B.; Villiger, P.M.; Egger, M.; Jüni, P. Cardiovascular safety of non-steroidal anti-inflammatory drugs: Network meta-analysis. BMJ, 2011, 342, c7086.
[http://dx.doi.org/10.1136/bmj.c7086] [PMID: 21224324]
[117]
Solomon, S.D.; Wittes, J.; Finn, P.V.; Fowler, R.; Viner, J.; Bertagnolli, M.M.; Arber, N.; Levin, B.; Meinert, C.L.; Martin, B.; Pater, J.L.; Goss, P.E.; Lance, P.; Obara, S.; Chew, E.Y.; Kim, J.; Arndt, G.; Hawk, E. Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: The cross trial safety analysis. Circulation, 2008, 117(16), 2104-2113.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.764530] [PMID: 18378608]
[118]
Tang, C.; Dong, X.; He, W.; Cheng, S.; Chen, Y.; Huang, Y.; Yin, B.; Sheng, Y.; Zhou, J.; Wu, X.; Zeng, F.; Li, Z.; Liang, F. Cerebral mechanism of celecoxib for treating knee pain: Study protocol for a randomized controlled parallel trial. Trials, 2019, 20(1), 58.
[http://dx.doi.org/10.1186/s13063-018-3111-8] [PMID: 30651138]
[119]
Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.B.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J.; Kiefer, J.R.; Carter, J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett., 2010, 20(23), 7159-7163.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.054] [PMID: 20709553]
[120]
Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C.T.; Scozzafava, A.; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition. J. Med. Chem., 2004, 47(3), 550-557.
[http://dx.doi.org/10.1021/jm030912m] [PMID: 14736236]
[121]
Di Fiore, A.; Pedone, C.; D’Ambrosio, K.; Scozzafava, A.; De Simone, G.; Supuran, C.T. Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II “selective” inhibitor celecoxib. Bioorg. Med. Chem. Lett., 2006, 16(2), 437-442.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.040] [PMID: 16290146]
[122]
Rimon, G.; Sidhu, R.S.; Lauver, D.A.; Lee, J.Y.; Sharma, N.P.; Yuan, C.; Frieler, R.A.; Trievel, R.C.; Lucchesi, B.R.; Smith, W.L. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 28-33.
[http://dx.doi.org/10.1073/pnas.0909765106] [PMID: 19955429]
[123]
Puljak, L.; Marin, A.; Vrdoljak, D.; Markotic, F.; Utrobicic, A.; Tugwell, P. Celecoxib for osteoarthritis. Cochrane Database Syst. Rev., 2017, 5(5), CD009865.
[PMID: 28530031]
[124]
Cho, H.; Walker, A.; Williams, J.; Hasty, K.A. Study of osteoarthritis treatment with anti-inflammatory drugs: Cyclooxygenase-2 inhibitor and steroids. BioMed Res. Int., 2015, 2015, 595273.
[http://dx.doi.org/10.1155/2015/595273] [PMID: 26000299]
[125]
Xu, C.; Gu, K.; Yasen, Y.; Hou, Y. Efficacy and safety of celecoxib therapy in osteoarthritis: A meta-analysis of randomized controlled trials. Medicine (Baltimore), 2016, 95(20), e3585.
[http://dx.doi.org/10.1097/MD.0000000000003585] [PMID: 27196460]
[126]
Nakata, K.; Hanai, T.; Take, Y.; Osada, T.; Tsuchiya, T.; Shima, D.; Fujimoto, Y. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: A systematic review. Osteoarthritis Cartilage, 2018, 26(10), 1263-1273.
[http://dx.doi.org/10.1016/j.joca.2018.05.021] [PMID: 29890262]
[127]
Zweers, M.C.; de Boer, T.N.; van Roon, J.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; Mastbergen, S.C. Celecoxib: Considerations regarding its potential disease-modifying properties in osteoarthritis. Arthritis Res. Ther., 2011, 13(5), 239.
[http://dx.doi.org/10.1186/ar3437] [PMID: 21955617]
[128]
Theodossiou, T.A.; Ali, M.; Grigalavicius, M.; Grallert, B.; Dillard, P.; Schink, K.O.; Olsen, C.E.; Wälchli, S.; Inderberg, E.M.; Kubin, A.; Peng, Q.; Berg, K. Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT-tamoxifen hybrid therapy. NPJ Breast Cancer, 2019, 5, 13.
[http://dx.doi.org/10.1038/s41523-019-0108-8] [PMID: 30993194]
[129]
Huang, Z.; Yu, P.; Tang, J. Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model. Onco Targets Ther., 2020, 13, 5395-5405.
[http://dx.doi.org/10.2147/OTT.S249756] [PMID: 32606757]
[130]
Hamy, A-S.; Tury, S.; Wang, X.; Gao, J.; Pierga, J-Y.; Giacchetti, S.; Brain, E.; Pistilli, B.; Marty, M.; Espié, M.; Benchimol, G.; Laas, E.; Laé, M.; Asselain, B.; Aouchiche, B.; Edelman, M.; Reyal, F. Celecoxib with neoadjuvant chemotherapy for breast cancer might worsen outcomes differentially by COX-2 expression and ER status: Exploratory analysis of the REMAGUS02 trial. J. Clin. Oncol., 2019, 37(8), 624-635.
[http://dx.doi.org/10.1200/JCO.18.00636] [PMID: 30702971]
[131]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), 2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]
[132]
Zhou, X.; Wang, X.; Zhao, Y.; Yi, C. The role of celecoxib for colorectal cancer treatment: A systematic review. Transl. Cancer Res., 2018, 7(6), 1527-1536.
[http://dx.doi.org/10.21037/tcr.2018.11.22]
[133]
Yakushiji, K.; Sato, H.; Ogino, M.; Suzuki, H.; Seto, Y.; Onoue, S. Self-emulsifying drug delivery system of celecoxib for avoiding delayed oral absorption in rats with impaired gastric motility. AAPS PharmSciTech, 2020, 21(5), 135.
[http://dx.doi.org/10.1208/s12249-020-01686-0] [PMID: 32419073]
[134]
Encina, G.; Encabo, M.; Escriche, M.; Lahjou, M.; Sicard, E.; Smith, K.; Gascon, N.; Plata-Salamán, C.; Videla, S. The effect of food on tramadol and celecoxib bioavailability following oral administration of co-crystal of tramadol-celecoxib (CTC): A randomised, open-label, single-dose, crossover study in healthy volunteers. Clin. Drug Investig., 2018, 38(9), 819-827.
[http://dx.doi.org/10.1007/s40261-018-0672-y] [PMID: 30008052]
[135]
Pal, A.; Shenoy, S.; Gautam, A.; Munjal, S.; Niu, J.; Gopalakrishnan, M.; Gobburru, J. Pharmacokinetics of DFN-15, a novel oral solution of celecoxib, versus celecoxib 400-mg capsules: A randomized crossover study in fasting healthy volunteers. Clin. Drug Investig., 2017, 37(10), 937-946.
[http://dx.doi.org/10.1007/s40261-017-0548-6] [PMID: 28748412]
[136]
Subhahar, M.B.; Singh, J.; Albert, P.H.; Kadry, A.M. Pharmacokinetics, metabolism and excretion of celecoxib, a selective cyclooxygenase-2 inhibitor, in horses. J. Vet. Pharmacol. Ther., 2019, 42(5), 518-524.
[http://dx.doi.org/10.1111/jvp.12757] [PMID: 30888074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy