Review Article

用于检测 COVID-19 的诊断工具清单

卷 22, 期 7, 2022

发表于: 11 January, 2022

页: [608 - 620] 页: 13

弟呕挨: 10.2174/1566524021666210910113714

价格: $65

摘要

由 SARS-COV-2 引起的持续流行的 2019 年冠状病毒病 (COVID-19) 已影响全球数百万人的生命,并扰乱了人类几乎所有的活动。在没有有效治疗方法的紧迫情况下,快速准确地诊断冠状病毒是限制传播的唯一出路。自 COVID-19 出现以来,对诊断测试的需求日益增加,而 RT-PCR 是常用的筛查测试,不仅耗时而且需要复杂的资源。为了解决 COVID-19 的传播速度不断增加的问题,由于对疫苗的研究仍处于初级水平,因此迫切需要更多的诊断工具。这篇综述总结了基于核酸和血清学的各种现有诊断方法的清单,以及一些研究新原理的方法,即。 CRISPR、生物传感器和 NGS。此外,还建议使用已获得美国和欧洲当局批准用于诊断 COVID-19 的可访问诊断套件,这将有助于在给定情况下选择最有效的测试。综上所述,本综述将为进一步加强对 SARS-COV-2 快速、安全诊断的研究铺平道路。

关键词: COVID-19、SARS-COV-2、诊断、核酸、血清学、生物传感器、NGS、CRISPR。

[1]
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470-3.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[2]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[4]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[5]
Han Y, Yang H. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J Med Virol 2020; 92(6): 639-44.
[http://dx.doi.org/10.1002/jmv.25749] [PMID: 32141619]
[6]
Gopal C. Kundu,Srinivas Patnaik,Amit S Yadav,NNV Radharani,Ipsita G Kundu: SARS-CoV-2: Origin, patho-genesis and Therapeutic Interventions. Coronaviruses 2020; 2(7): e160721188927.
[http://dx.doi.org/10.2174/2666796701999201209144207]
[7]
Therapeutic Measures for the Novel Coronavirus A Review of Current Status and Future Perspective. Curr Mol Med 2021; 21(7): 562-72.
[http://dx.doi.org/10.2174/1566524020666201203170230]
[8]
Ali N, Rampazzo RCP, Costa ADT, Krieger MA. Current nucleic acid extraction mehods and their implications to point-of-care diagnostics. BioMed Res Int 2017; 2017: 9306564.
[http://dx.doi.org/10.1155/2017/9306564] [PMID: 28785592]
[9]
Mlcochova Petra, Collier Dami, Ritchie Allyson, et al. The Cambridge institute of therapeutic immunology and infectious disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration.
[10]
Kilic T, Weissleder R, Lee H. Molecular and immunological diagnostic tests of COVID-19–current status and challenges. iScience 2020; 23(8): 101406.
[http://dx.doi.org/10.1016/j.isci.2020.101406] [PMID: 32771976]
[11]
Corman V, Bleicker T, Brünink S, Drosten C, Zambon M. Diagnostic detection of Wuhan coronavirus 2019 by real-time RT-PCR. Geneva: World Health Organization 2020.
[12]
Bustin SA, Ed. AZ of quantitative PCR. La Jolla, CA: International University Lin 2004; pp. 439-92.
[13]
Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques 2005; 39(1): 75-85.
[http://dx.doi.org/10.2144/05391RV01] [PMID: 16060372]
[14]
Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020; 9(1): 386-9.
[http://dx.doi.org/10.1080/22221751.2020.1729071] [PMID: 32065057]
[15]
Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J Virol 2016; 90(16): 7415-28.
[http://dx.doi.org/10.1128/JVI.00080-16] [PMID: 27279608]
[16]
Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 2020; 25(10): 2000180.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.10.2000180] [PMID: 32183930]
[17]
Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 2009; 15(2): 62-9.
[http://dx.doi.org/10.1007/s10156-009-0669-9] [PMID: 19396514]
[18]
Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000; 28(12): E63.
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[19]
Chou PH, Lin YC, Teng PH, Chen CL, Lee PY. Real-time target-specific detection of loop-mediated isothermal amplification for white spot syndrome virus using fluorescence energy transfer-based probes. J Virol Methods 2011; 173(1): 67-74.
[http://dx.doi.org/10.1016/j.jviromet.2011.01.009] [PMID: 21256868]
[20]
Nagai K, Horita N, Yamamoto M, et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis. Sci Rep 2016; 6: 39090.
[http://dx.doi.org/10.1038/srep39090] [PMID: 27958360]
[21]
Qian C, Wang R, Wu H, Ji F, Wu J. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Anal Chim Acta 2019; 1050: 1-15.
[http://dx.doi.org/10.1016/j.aca.2018.10.054] [PMID: 30661576]
[22]
Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 2014; 13(1): 99.
[http://dx.doi.org/10.1186/1475-2875-13-99] [PMID: 24629133]
[23]
Faye O, Faye O, Soropogui B, et al. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Euro Surveill 2015; 20(44): 30053.
[http://dx.doi.org/10.2807/1560-7917.ES.2015.20.44.30053] [PMID: 26558690]
[24]
Yehia N, Arafa AS, Abd El Wahed A, El-Sanousi AA, Weidmann M, Shalaby MA. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J Virol Methods 2015; 223: 45-9.
[http://dx.doi.org/10.1016/j.jviromet.2015.07.011] [PMID: 26225482]
[25]
Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol 2006; 4(7): e204.
[http://dx.doi.org/10.1371/journal.pbio.0040204] [PMID: 16756388]
[26]
Krõlov K, Frolova J, Tudoran O, et al. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn 2014; 16(1): 127-35.
[http://dx.doi.org/10.1016/j.jmoldx.2013.08.003] [PMID: 24331366]
[27]
Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 2014; 9(11): e112146.
[http://dx.doi.org/10.1371/journal.pone.0112146] [PMID: 25372030]
[28]
Xia S, Chen X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA. Cell Discov 2020; 6(1): 37.
[http://dx.doi.org/10.1038/s41421-020-0175-x] [PMID: 34045433]
[29]
Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18(2): 67-83.
[http://dx.doi.org/10.1038/s41579-019-0299-x] [PMID: 31857715]
[30]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[31]
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018; 360(6387): 436-9.
[http://dx.doi.org/10.1126/science.aar6245] [PMID: 29449511]
[32]
Chiu C. Cutting-edge infectious disease diagnostics with CRISPR. Cell Host Microbe 2018; 23(6): 702-4.
[http://dx.doi.org/10.1016/j.chom.2018.05.016] [PMID: 29902435]
[33]
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356(6336): 438-42.
[http://dx.doi.org/10.1126/science.aam9321] [PMID: 28408723]
[34]
Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018; 360(6387): 444-8.
[http://dx.doi.org/10.1126/science.aas8836] [PMID: 29700266]
[35]
Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 2018; 4(1): 20.
[http://dx.doi.org/10.1038/s41421-018-0028-z] [PMID: 29707234]
[36]
Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020; 38(7): 870-4.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[37]
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 2019; 14(10): 2986-3012.
[http://dx.doi.org/10.1038/s41596-019-0210-2] [PMID: 31548639]
[38]
Peeling RW, Wedderburn CJ, Garcia PJ, et al. Serology testing in the COVID-19 pandemic response. Lancet Infect Dis 2020; 20(9): e245-9.
[http://dx.doi.org/10.1016/S1473-3099(20)30517-X] [PMID: 32687805]
[39]
Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020; 71(16): 2027-34.
[http://dx.doi.org/10.1093/cid/ciaa344] [PMID: 32221519]
[40]
Mahmoudi T, de la Guardia M, Baradaran B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. Trends Analyt Chem 2020; 125: 115842.
[http://dx.doi.org/10.1016/j.trac.2020.115842]
[41]
Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, et al. Evaluation of commercial and automated SARS-CoV-2 IgG and IgA ELISAs using coronavirus disease (COVID-19) patient samples. Euro Surveill 2020; 25(18): 2000603.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.18.2000603] [PMID: 32400364]
[42]
Woo PC, Lau SK, Wong BH, et al. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide. J Clin Microbiol 2004; 42(12): 5885-8.
[http://dx.doi.org/10.1128/JCM.42.12.5885-5888.2004] [PMID: 15583332]
[43]
Tan CW, Chia WN, Chen MI, Hu Z, Young BE, Tan YJA. SARS-CoV-2 surrogate virus neutralization test (sVNT) based on antibody-mediated blockage of ACE2-spike (RBD) protein-protein interaction. Nat Biotechnol 2020; 38(9): 1073-8.
[http://dx.doi.org/10.21203/rs.3.rs-24574/v1]
[44]
Xiong H, Wu Y, Cao J, et al. Robust neutralization assay based on SARS-CoV-2 S-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressed BHK21 cells. Emerg Microbes Infect 2020; 9(1): 2105-13.
[http://dx.doi.org/10.1101/2020.04.08.026948]
[45]
Lijia S, Lihong S, Huabin W, et al. Serological chemiluminescence immunoassay for the diagnosis of SARS-CoV-2 infection. J Clin Lab Anal 2020; 34(10): e23466.
[http://dx.doi.org/10.1002/jcla.23466] [PMID: 32671890]
[46]
Bhunia AK. Biosensors and bio‐based methods for the separation and detection of foodborne pathogens. In: advances in food and nutrition research. Academic Press 2008; Vol. 54: pp. 1-44.
[http://dx.doi.org/10.1016/S1043-4526(07)00001-0]
[47]
Demeke A, Samaddar M, Alharbi MG, Al-Hindi RR, Bhunia AK. Biosensor and molecular-based methods for the detection of human coronaviruses: A review. Mol Cell Probes 2020; 101662.
[http://dx.doi.org/10.1016/j.mcp.2020.101662]
[48]
Holford TR, Davis F, Higson SP. Recent trends in antibody based sensors. Biosens Bioelectron 2012; 34(1): 12-24.
[http://dx.doi.org/10.1016/j.bios.2011.10.023] [PMID: 22387037]
[49]
Nehra A, Pal Singh K. Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens Bioelectron 2015; 74: 731-43.
[http://dx.doi.org/10.1016/j.bios.2015.07.030] [PMID: 26210471]
[50]
Janissen R, Sahoo PK, Santos CA, et al. InP nanowire biosensor with tailored biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett 2017; 17(10): 5938-49.
[http://dx.doi.org/10.1021/acs.nanolett.7b01803] [PMID: 28895736]
[51]
Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020; 14(4): 5135-42.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[52]
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020; 14(5): 5268-77.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[53]
Hui Q, Pan Y, Yang Z. based devices for rapid diagnostics and testing sewage for early warning of COVID-19 outbreak. Case Studies in Chemical and Environmental Engineering 2020; 100064.
[http://dx.doi.org/10.1016/j.cscee.2020.100064]
[54]
Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol 2020; 38(5): 515-8.
[http://dx.doi.org/10.1038/d41587-020-00010-2] [PMID: 32203294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy