Mini-Review Article

血小板在严重和致命形式的 COVID-19 中的作用

卷 22, 期 7, 2022

发表于: 24 February, 2022

页: [572 - 583] 页: 12

弟呕挨: 10.2174/1566524021666210910112404

价格: $65

摘要

2019年12月31日,世界卫生组织收到中国武汉多起肺炎病例报告。病原体后来被确认为严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2)。从那时起,SARS-CoV-2 病毒在世界范围内传播,并在 2020 年引发了 2019 年冠状病毒 (COVID-19) 大流行,根据世界卫生组织的世界地图,该流行病一直持续到 5 月 18 日, 2021年,全球感染163,312,429人,造成3,386,825人死亡。大多数危重患者迅速发展为急性呼吸窘迫综合征(ARDS),并且据报道,感染性休克、不可逆代谢性酸中毒、凝血功能障碍或止血和血栓形成异常是导致 COVID-19 死亡的主要原因。在严重和致命的 COVID-19 患者中的主要发现清楚地表明,血小板在严重疾病病例的发展中起着至关重要的作用。血小板是负责止血和血栓形成的去核细胞;因此,促炎微环境诱导的血小板高反应性有助于“细胞因子风暴”,这是 COVID-19 更具侵袭性过程的特征。

关键词: COVID-19、SARS-COV-2、血小板、细胞因子风暴、几种 COVID 形式、致命的 COVID 形式。

[1]
Palacios-Cruz M, Santos E, Velazquez Cervantes MA. LeA3n Juarez M. COVID-19, a worldwide public health emergency. Rev Clin Esp 2020; 221: 2254-8874.
[2]
Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol 2017; 25(1): 35-48.
[http://dx.doi.org/10.1016/j.tim.2016.09.001] [PMID: 27743750]
[3]
Rabaan AA, Al-Ahmed SH, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med 2020; 28(2): 174-84.
[PMID: 32275259]
[4]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[5]
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535-8.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[6]
Fan Y, Zhao K, Shi ZL, Zhou P. Bat coronaviruses in China. Viruses 2019; 11(3): 210.
[http://dx.doi.org/10.3390/v11030210] [PMID: 30832341]
[7]
Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs 2019; 9(1): 35-42.
[http://dx.doi.org/10.18683/germs.2019.1155] [PMID: 31119115]
[8]
Peeri NC, Shrestha N, Rahman MS, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int J Epidemiol 2020; 49(3): 717-26.
[http://dx.doi.org/10.1093/ije/dyaa033] [PMID: 32086938]
[9]
Lam TTY, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583(7815): 282-5.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[10]
Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 2020; 9(3): 186.
[http://dx.doi.org/10.3390/pathogens9030186] [PMID: 32143502]
[11]
Platto S, Xue T, Carafoli E. COVID19: An announced pandemic. Cell Death Dis 2020; 11(9): 799.
[http://dx.doi.org/10.1038/s41419-020-02995-9] [PMID: 32973152]
[12]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3)105924
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[13]
Sanyaolu A, Okorie C, Marinkovic A, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med (Lond) 2020; 2(8): 1069-76.
[14]
Wang H, Li X, Li T, et al. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis 2020; 39(9): 1629-35.
[http://dx.doi.org/10.1007/s10096-020-03899-4] [PMID: 32333222]
[15]
Vallamkondu J, John A, Wani WY, et al. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165889
[http://dx.doi.org/10.1016/j.bbadis.2020.165889] [PMID: 32603829]
[16]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[17]
Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol 2020; 319(2): C258-67.
[http://dx.doi.org/10.1152/ajpcell.00224.2020] [PMID: 32510973]
[18]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[19]
Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 2020; 182(2): 429-446.e14.
[http://dx.doi.org/10.1016/j.cell.2020.05.042] [PMID: 32526206]
[20]
Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J 2020; 39(3): 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[21]
Durante A, Peretto G, Laricchia A, et al. Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis. Curr Pharm Des 2012; 18(7): 981-1004.
[http://dx.doi.org/10.2174/138161212799436467] [PMID: 22283771]
[22]
Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020; 157104833
[http://dx.doi.org/10.1016/j.phrs.2020.104833] [PMID: 32302706]
[23]
Perini MV, Dmello RS, Nero TL, Chand AL. Evaluating the benefits of renin-angiotensin system inhibitors as cancer treatments. Pharmacol Ther 2020; 211107527
[http://dx.doi.org/10.1016/j.pharmthera.2020.107527] [PMID: 32173557]
[24]
McRobbie H, Kwan B. Tobacco use disorder and the lungs. Addiction 2021; 116(9): 2559-71.
[http://dx.doi.org/10.1111/add.15309] [PMID: 33140508]
[25]
Young MJ, Clyne CD, Chapman KE. Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2. J Endocrinol 2020; 247(2): R45-62.
[http://dx.doi.org/10.1530/JOE-20-0260] [PMID: 32966970]
[26]
Zamorano Cuervo N, Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020; 9e61390
[http://dx.doi.org/10.7554/eLife.61390] [PMID: 33164751]
[27]
Wang L, Xiang Y. Spike glycoprotein-mediated entry of SARS coronaviruses. Viruses 2020; 12(11): 1289.
[http://dx.doi.org/10.3390/v12111289] [PMID: 33187074]
[28]
Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39(10)e105114
[http://dx.doi.org/10.15252/embj.2020105114] [PMID: 32246845]
[29]
Kumar V. Emerging human coronavirus infections (SARS, MERS, and COVID-19): Where they are leading us. Int Rev Immunol 2020; 3: 1-49.
[http://dx.doi.org/10.1080/08830185.2019.1707479] [PMID: 32744465]
[30]
Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol 2013; 87(11): 6150-60.
[http://dx.doi.org/10.1128/JVI.03372-12] [PMID: 23536651]
[31]
Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med 2020; 18(1): 216.
[http://dx.doi.org/10.1186/s12916-020-01673-z] [PMID: 32664879]
[32]
Lippi G, Lavie CJ, Henry BM, Sanchis-Gomar F. Do genetic polymorphisms in angiotensin converting enzyme 2 (ACE2) gene play a role in coronavirus disease 2019 (COVID-19)? Clin Chem Lab Med 2020; 58(9): 1415-22.
[http://dx.doi.org/10.1515/cclm-2020-0727] [PMID: 32598305]
[33]
Mohammad A, Marafie SK, Alshawaf E, Abu-Farha M, Abubaker J, Al-Mulla F. Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci 2020; 259118219
[http://dx.doi.org/10.1016/j.lfs.2020.118219] [PMID: 32768580]
[34]
Darbani B. The expression and polymorphism of entry machinery for COVID-19 in human: Juxtaposing population groups, gender, and different tissues. Int J Environ Res Public Health 2020; 17(10): 3433.
[http://dx.doi.org/10.3390/ijerph17103433] [PMID: 32423095]
[35]
Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020; 6: 11.
[http://dx.doi.org/10.1038/s41421-020-0147-1] [PMID: 32133153]
[36]
Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020; 26(7): 1017-32.
[http://dx.doi.org/10.1038/s41591-020-0968-3] [PMID: 32651579]
[37]
McGonagle D. O(tm)Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol 2020; 2(7): e437-45.
[http://dx.doi.org/10.1016/S2665-9913(20)30121-1] [PMID: 32835247]
[38]
Sinha P, Matthay MA, Calfee CS. Is a ocytokine storm? relevant to COVID-19? JAMA Intern Med 2020; 180(9): 1152-4.
[http://dx.doi.org/10.1001/jamainternmed.2020.3313] [PMID: 32602883]
[39]
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017; 39(5): 517-28.
[http://dx.doi.org/10.1007/s00281-017-0639-8] [PMID: 28555385]
[40]
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012; 76(1): 16-32.
[http://dx.doi.org/10.1128/MMBR.05015-11] [PMID: 22390970]
[41]
Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol Lett 2020; 225: 31-2.
[http://dx.doi.org/10.1016/j.imlet.2020.06.013] [PMID: 32569607]
[42]
Akbari H, Tabrizi R, Lankarani KB, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci 2020; 258118167
[http://dx.doi.org/10.1016/j.lfs.2020.118167] [PMID: 32735885]
[43]
Hosking MP, Lane TE. The role of chemokines during viral infection of the CNS. PLoS Pathog 2010; 6(7)e1000937
[http://dx.doi.org/10.1371/journal.ppat.1000937] [PMID: 20686655]
[44]
Oliviero A, de Castro F, Coperchini F, Chiovato L, Rotondi M. COVID-19 pulmonary and olfactory dysfunctions: Is the chemokine CXCL10 the common denominator? Neuroscientist 2020; 27(3)1073858420939033
[http://dx.doi.org/10.1177/1073858420939033] [PMID: 32659199]
[45]
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. Ann Transl Med 2018; 6(2): 32.
[http://dx.doi.org/10.21037/atm.2017.12.18] [PMID: 29430449]
[46]
Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: Four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 2005; 33(4): 319-27.
[http://dx.doi.org/10.1165/rcmb.F305] [PMID: 16172252]
[47]
Polak SB, Van Gool IC, Cohen D, von der Thusen JH, van Paassen J. A systematic review of pathological findings in COVID-19: A pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol 2020; 33(11): 2128-38.
[http://dx.doi.org/10.1038/s41379-020-0603-3] [PMID: 32572155]
[48]
Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020; 57102833
[http://dx.doi.org/10.1016/j.ebiom.2020.102833] [PMID: 32574956]
[49]
Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020; 172(9): 629-32.
[http://dx.doi.org/10.7326/M20-0533] [PMID: 32163542]
[50]
Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med 2020; 58(7): 1021-8.
[http://dx.doi.org/10.1515/cclm-2020-0369] [PMID: 32286245]
[51]
Chung F. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-I3. Mediators Inflamm 2001; 10(2): 51-9.
[http://dx.doi.org/10.1080/09629350120054518] [PMID: 11405550]
[52]
Copaescu A, Smibert O, Gibson A, Phillips EJ, Trubiano JA. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 2020; 146(3): 518-34.
[http://dx.doi.org/10.1016/j.jaci.2020.07.001] [PMID: 32896310]
[53]
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18(12): 773-89.
[http://dx.doi.org/10.1038/s41577-018-0066-7] [PMID: 30254251]
[54]
Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018; 104: 8-13.
[http://dx.doi.org/10.1016/j.cyto.2018.01.025] [PMID: 29414327]
[55]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodra-guez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[56]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[57]
Zhang N, Zhao YD, Wang XM. CXCL10 an important chemokine associated with cytokine storm in COVID-19 infected patients. Eur Rev Med Pharmacol Sci 2020; 24(13): 7497-505.
[PMID: 32706090]
[58]
Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016; 19(2): 181-93.
[http://dx.doi.org/10.1016/j.chom.2016.01.007] [PMID: 26867177]
[59]
Vargas G, Medeiros Geraldo LH, Gedeao Salomao N, Viana Paes M, Regina Souza Lima F, Carvalho Alcantara Gomes F. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain Behav Immun Health 2020; 7100127
[http://dx.doi.org/10.1016/j.bbih.2020.100127] [PMID: 32838339]
[60]
Bektas A, Schurman SH, Franceschi C, Ferrucci L. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun Ageing 2020; 17: 23.
[http://dx.doi.org/10.1186/s12979-020-00196-8] [PMID: 32849908]
[61]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[62]
Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020; 77(2): 198-209.
[http://dx.doi.org/10.1111/his.14134] [PMID: 32364264]
[63]
Wu T, Zuo Z, Kang S, et al. Multi-organ dysfunction in patients with COVID-19: A systematic review and meta-analysis. Aging Dis 2020; 11(4): 874-94.
[http://dx.doi.org/10.14336/AD.2020.0520] [PMID: 32765952]
[64]
Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12(11): 1764-75.
[http://dx.doi.org/10.1111/jth.12730] [PMID: 25224706]
[65]
Margraf A, Nussbaum C, Rohwedder I, et al. Maturation of platelet function during murine fetal development in vivo. Arterioscler Thromb Vasc Biol 2017; 37(6): 1076-86.
[http://dx.doi.org/10.1161/ATVBAHA.116.308464] [PMID: 28428216]
[66]
Rossaint J, Vestweber D, Zarbock A. GDF-15 prevents platelet integrin activation and thrombus formation. J Thromb Haemost 2013; 11(2): 335-44.
[http://dx.doi.org/10.1111/jth.12100] [PMID: 23231375]
[67]
Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70(12): 6524-33.
[http://dx.doi.org/10.1128/IAI.70.12.6524-6533.2002] [PMID: 12438321]
[68]
van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 2019; 16(3): 166-79.
[http://dx.doi.org/10.1038/s41569-018-0110-0] [PMID: 30429532]
[69]
Chen Y, Yuan Y, Li W. Sorting machineries: how platelet-dense granules differ from In-granules. Biosci Rep 2018; 38(5)BSR20180458
[http://dx.doi.org/10.1042/BSR20180458] [PMID: 30104399]
[70]
Metzelaar MJ, Clevers HC. Lysosomal membrane glycoproteins in platelets. Thromb Haemost 1992; 68(4): 378-82.
[http://dx.doi.org/10.1055/s-0038-1646280] [PMID: 1448767]
[71]
LefranAais E, Ortiz-MuAnoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544(7648): 105-9.
[http://dx.doi.org/10.1038/nature21706] [PMID: 28329764]
[72]
Rodvien R, Mielke CH Jr. Role of platelets in hemostasis and thrombosis. West J Med 1976; 125(3): 181-6.
[PMID: 969503]
[73]
Menter DG, Kopetz S, Hawk E, et al. Platelet ofirst responders? in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36(2): 199-213.
[http://dx.doi.org/10.1007/s10555-017-9682-0] [PMID: 28730545]
[74]
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-odouble-edged sword? Cancer Metastasis Rev 2020; 39(4): 1205-21.
[http://dx.doi.org/10.1007/s10555-020-09926-2] [PMID: 32869161]
[75]
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent updates on mouse models for human immunodeficiency, influenza, and dengue viral infections. Viruses 2019; 11(3): 252.
[http://dx.doi.org/10.3390/v11030252] [PMID: 30871179]
[76]
Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 2020; 257118102
[http://dx.doi.org/10.1016/j.lfs.2020.118102] [PMID: 32687918]
[77]
Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost 2017; 15(7): 1295-306.
[http://dx.doi.org/10.1111/jth.13720] [PMID: 28671345]
[78]
Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1Iy synthesis. J Cell Biol 2001; 154(3): 485-90.
[http://dx.doi.org/10.1083/jcb.200105058] [PMID: 11489912]
[79]
Pujol JP, Chadjichristos C, Legendre F, et al. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res 2008; 49(3): 293-7.
[http://dx.doi.org/10.1080/03008200802148355] [PMID: 18661363]
[80]
Vrijens P, Noppen S, Boogaerts T, et al. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor Iy signalling pathway. J Gen Virol 2019; 100(4): 583-601.
[http://dx.doi.org/10.1099/jgv.0.001235] [PMID: 30762518]
[81]
Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood 2020; 136(11): 1317-29.
[http://dx.doi.org/10.1182/blood.2020007214] [PMID: 32573711]
[82]
Wolf M, Moser B. Antimicrobial activities of chemokines: not just a side-effect? Front Immunol 2012; 3: 213.
[http://dx.doi.org/10.3389/fimmu.2012.00213] [PMID: 22837760]
[83]
Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting platelets and toll-like receptors (TLRs): At the interface of vascular immunity and thrombosis. Int J Mol Sci 2020; 21(17): 6150.
[http://dx.doi.org/10.3390/ijms21176150] [PMID: 32858930]
[84]
Jeisy-Scott V, Kim JH, Davis WG, Cao W, Katz JM, Sambhara S. TLR7 recognition is dispensable for influenza virus A infection but important for the induction of hemagglutinin-specific antibodies in response to the 2009 pandemic split vaccine in mice. J Virol 2012; 86(20): 10988-98.
[http://dx.doi.org/10.1128/JVI.01064-12] [PMID: 22837197]
[85]
Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respiration 2017; 93(3): 212-25.
[http://dx.doi.org/10.1159/000453002] [PMID: 27997925]
[86]
Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13(1): 120.
[http://dx.doi.org/10.1186/s13045-020-00954-7] [PMID: 32887634]
[87]
Zaid Y, Puhm F, Allaeys I, et al. Platelets can contain SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res 2020; 127: 1404-18.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317703]
[88]
Campbell RA, Schwertz H, Hottz ED, et al. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 2019; 133(19): 2013-26.
[http://dx.doi.org/10.1182/blood-2018-09-873984] [PMID: 30723081]
[89]
Grobler C, Maphumulo SC, Grobbelaar LM, et al. Covid-19: The rollercoaster of fibrin(Ogen), D-dimer, von willebrand factor, p-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int J Mol Sci 2020; 21(14): 5168.
[http://dx.doi.org/10.3390/ijms21145168] [PMID: 32708334]
[90]
Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18(7): 1747-51.
[http://dx.doi.org/10.1111/jth.14854] [PMID: 32302448]
[91]
Li C, Hu B, Zhang Z, et al. D-dimer Triage for COVID-19. Acad Emerg Med 2020; 27(7): 612-3.
[http://dx.doi.org/10.1111/acem.14037] [PMID: 32506683]
[92]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[93]
Yu B, Li X, Chen J, et al. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: A retrospective analysis. J Thromb Thrombolysis 2020; 50(3): 548-57.
[http://dx.doi.org/10.1007/s11239-020-02171-y] [PMID: 32524516]
[94]
Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost 2020; 18(9): 2103-9.
[http://dx.doi.org/10.1111/jth.14975] [PMID: 32558075]
[95]
Li X, Ma X. Acute respiratory failure in COVID-19: Is it otypical? ARDS? Crit Care 2020; 24(1): 198.
[http://dx.doi.org/10.1186/s13054-020-02911-9] [PMID: 32375845]
[96]
Shin EK, Park H, Noh JY, Lim KM, Chung JH. Platelet shape changes and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic drugs. Biomol Ther (Seoul) 2017; 25(3): 223-30.
[http://dx.doi.org/10.4062/biomolther.2016.138] [PMID: 27871158]
[97]
Costanzo L, Palumbo FP, Ardita G, Antignani PL, Arosio E, Failla G. Coagulopathy, thromboembolic complications, and the use of heparin in COVID-19 pneumonia. J Vasc Surg Venous Lymphat Disord 2020; 8(5): 711-6.
[http://dx.doi.org/10.1016/j.jvsv.2020.05.018] [PMID: 32561465]
[98]
Yamani LN, Syahrul F. Public health perspective of the COVID-19 pandemic: Host characteristics and prevention of COVID-19 in the community. World Acad Sci J 2020; 2: 21.
[99]
Iba T, Warkentin TE, Thachil J, Levi M, Levy JH. Proposal of the definition for COVID-19-associated coagulopathy. J Clin Med 2021; 10(2): 191.
[http://dx.doi.org/10.3390/jcm10020191] [PMID: 33430431]
[100]
Li Q, Cao Y, Chen L, et al. Hematological features of persons with COVID-19. Leukemia 2020; 34(8): 2163-72.
[http://dx.doi.org/10.1038/s41375-020-0910-1] [PMID: 32528042]
[101]
Bianconi V, Violi F, Fallarino F, Pignatelli P, Sahebkar A, Pirro M. Is acetylsalicylic acid a safe and potentially useful choice for adult patients with COVID-19? Drugs 2020; 80(14): 1383-96.
[http://dx.doi.org/10.1007/s40265-020-01365-1] [PMID: 32705604]
[102]
ClinicalTrialsgov identifier (NCTnumber): NCT04365309.
[103]
Amin AR, Attur MG, Pillinger M, Abramson SB. The pleiotropic functions of aspirin: Mechanisms of action. Cell Mol Life Sci 1999; 56(3-4): 305-12.
[http://dx.doi.org/10.1007/s000180050432] [PMID: 11212358]
[104]
Muller C, Karl N, Ziebuhr J, Pleschka S. D-Lysine acetyl- salicylate + glycine impairs coronavirus replication. J Antivir Antiretrovir 2016; 8: 142-50.
[105]
Nasrolahi A, Haghani K, Gheysarzadeh A, Bakhtiyari S. Do genetic factors predispose people to COVID-19: A review article. Curr Mol Med 2021; 21: 457-61.
[106]
Zhao J, Yang Y, Huang H, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. Cli Infect Dis 2020; 4: ciaa1150.
[http://dx.doi.org/10.1093/cid/ciaa1150]
[107]
Guillon P, Clement M, Sebille V, et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 2008; 18(12): 1085-93.
[http://dx.doi.org/10.1093/glycob/cwn093] [PMID: 18818423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy