Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

High-component Reactions (HCRs): An Overview of MCRs Containing Seven or More Components as Versatile Tools in Organic Synthesis

Author(s): Kobra Nikoofar* and Fatemeh Molaei Yielzoleh

Volume 19, Issue 1, 2022

Published on: 10 September, 2021

Page: [115 - 147] Pages: 33

DOI: 10.2174/1570179418666210910111208

Price: $65

Abstract

Abstract: Recently, multi-component reactions (MCRs) have gained special attention due to their versatility for the synthesis of polycyclic heterocycles. Moreover, their applicability can become more widespread as they can be combined together as a union of MCRs. In this overview, the authors have tried to collect the MCRs containing more than seven components that can lead to effectual heterocycles in organic and/or pharmaceutical chemistry. The review contains papers published up to the end of 2020. The subject is classified based on the number of substrates, such as seven-, eight-, nine-, ten-, and more components. The authors expect their report to be helpful for researchers to clarify their route to significant MCRs.

Keywords: Multi-component reactions (MCRs), pseudo MCRs, seven-component, eight-component, high-component reactions (HCRs), onepot, domino, macromolecules, heterocycles.

Graphical Abstract

[1]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[2]
Ugi, I.; Dömling, A.; Hörl, W. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18, 115-122.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[3]
Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 73, 187-191.
[http://dx.doi.org/10.1351/pac200173010187]
[4]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[5]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661 ]
[6]
Müller, T.J. Multicomponent reactions. Beilstein J. Org. Chem., 2011, 7, 960-961.
[http://dx.doi.org/10.3762/bjoc.7.107] [PMID: 21915194]
[7]
Climent, M.J.; Corma, A.; Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2, 16-58.
[http://dx.doi.org/10.1039/C1RA00807B]
[8]
Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
[9]
Müller, T.J. Multicomponent reactions II. Beilstein J. Org. Chem., 2014, 10, 115-116.
[http://dx.doi.org/10.3762/bjoc.10.7] [PMID: 24454563]
[10]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[11]
Ismaili, L.; do Carmo Carreiras, M. Multicomponent reactions for multitargeted compounds for Alzheimer’s disease. Curr. Top. Med. Chem., 2017, 17(31), 3319-3327.
[http://dx.doi.org/10.2174/1568026618666180112155424] [PMID: 29332584]
[12]
Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: a patent review (2010-2020). Expert Opin. Ther. Pat., 2021, 31(3), 267-289.
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
[13]
Zarganes-Tzitzikas, T.; Dömling, A. Modern multicomponent reactions for better drug syntheses. Org. Chem. Front., 2014, 1(7), 834-837.
[http://dx.doi.org/10.1039/C4QO00088A] [PMID: 25147729]
[14]
Kalinski, C.; Lemoine, H.; Schmidt, J.; Burdack, Ch.; Kolb, J.; Umkehrer, M.; Ross, G. Multicomponent reactions for generic drug synthesis. Synthesis, 2008, 2008, 4007-4011.
[http://dx.doi.org/10.1055/s-0028-1083239]
[15]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[16]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310] [PMID: 20922748]
[17]
Isambert, N.; Lavilla, R. Heterocycles as key substrates in multicomponent reactions: the fast lane towards molecular complexity. Chemistry, 2008, 14(28), 8444-8454.
[http://dx.doi.org/10.1002/chem.200800473] [PMID: 18576454]
[18]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
[19]
Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
[20]
Schaper, K.; Müller, T.J.J. Thiophene syntheses by ring forming multicomponent reactions. Top. Curr. Chem. (Cham), 2018, 376(5), 38.
[http://dx.doi.org/10.1007/s41061-018-0216-1] [PMID: 30221315]
[21]
Ruijter, E.; Orru, R.V.A. Multicomponent reactions - opportunities for the pharmaceutical industry. Drug Discov. Today. Technol., 2013, 10(1), e15-e20.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.012] [PMID: 24050225]
[22]
Wang, P-L.; Ding, S-Y.; Zhang, Z-C.; Wang, Z.P.; Wang, W.; Wang, Z-P.; Wang, W. constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc., 2019, 141(45), 18004-18008.
[http://dx.doi.org/10.1021/jacs.9b10625] [PMID: 31682437]
[23]
Ugi, I.; Heck, S. The multicomponent reactions and their libraries for natural and preparative chemistry. Comb. Chem. High Throughput Screen., 2001, 4(1), 1-34.
[http://dx.doi.org/10.2174/1386207013331291] [PMID: 11281825]
[24]
Ulaczyk-Lesanko, A.; Hall, D.G. Wanted: new multicomponent reactions for generating libraries of polycyclic natural products. Curr. Opin. Chem. Biol., 2005, 9(3), 266-276.
[http://dx.doi.org/10.1016/j.cbpa.2005.04.003] [PMID: 15939328]
[25]
Afshari, R.; Shaabani, A. Materials functionalization with multicomponent reactions: State of the art. ACS Comb. Sci., 2018, 20(9), 499-528.
[http://dx.doi.org/10.1021/acscombsci.8b00072] [PMID: 30106275]
[26]
Reguera, L.; Méndez, Y.; Humpierre, A.R.; Valdés, O.; Rivera, D.G. Multicomponent reactions in ligation and bioconjugation chemistry. Acc. Chem. Res., 2018, 51(6), 1475-1486.
[http://dx.doi.org/10.1021/acs.accounts.8b00126] [PMID: 29799718]
[27]
Lamberth, C. Multicomponent reactions in crop protection chemistry. Bioorg. Med. Chem., 2020, 28(10), 115471-115480.
[http://dx.doi.org/10.1016/j.bmc.2020.115471] [PMID: 32253096]
[28]
de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[29]
Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
[30]
Singh, M.Sh.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2, 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[31]
Jiang, B.; Shi, F.; Tu, Sh-J. Microwave-assisted multicomponent reactions in the heterocyclic chemistry. Curr. Org. Chem., 2010, 14, 357-378.
[http://dx.doi.org/10.2174/138527210790231892]
[32]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[33]
Kakuchi, R. Multicomponent reactions in polymer synthesis. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 46-48.
[http://dx.doi.org/10.1002/anie.201305538] [PMID: 24302633]
[34]
Zhang, Z.; You, Y.; Hong, C. Multicomponent reactions and multicomponent cascade reactions for the synthesis of sequence‐controlled polymers. Macromol. Rapid Commun., 2018, 39(23)e1800362
[http://dx.doi.org/10.1002/marc.201800362] [PMID: 30066410]
[35]
Pirrung, M.C.; Sarma, K.D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc., 2004, 126(2), 444-445.
[http://dx.doi.org/10.1021/ja038583a] [PMID: 14719923]
[36]
Paprocki, D.; Madej, A.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Multicomponent reactions accelerated by aqueous micelles. Front Chem., 2018, 6, 502-522.
[http://dx.doi.org/10.3389/fchem.2018.00502] [PMID: 30406083]
[37]
Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Photoinduced multicomponent reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(50), 15476-15484.
[http://dx.doi.org/10.1002/anie.201605288] [PMID: 27487327]
[38]
Dyker, G. Amino acid derivatives by multicomponent reactions. Angew. Chem. Int. Ed. Engl., 1997, 36, 1700-1702.
[http://dx.doi.org/10.1002/anie.199717001]
[39]
Strecker, A. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper. Ann. Chem. Pharm., 1850, 75, 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[40]
Dömling, A.; Ugi, I. The seven‐component reaction. Angwe. Chem., 1993, 32, 563-564.
[http://dx.doi.org/10.1002/anie.199305631]
[41]
Ugi, I.; Meyr, R. Neue darstellungsmethode für isonitrile. Angew. Chem., 1958, 70, 702-703.
[http://dx.doi.org/10.1002/ange.19580702213]
[42]
Zarganes-Tzitzikas, T.; Chandgude, A.L.; Dömling, A. Multicomponent reactions, union of MCRs and beyond. Chem. Rec., 2015, 15(5), 981-996.
[http://dx.doi.org/10.1002/tcr.201500201] [PMID: 26455350]
[43]
Mironov, M.A. Design of multi‐component reactions: From libraries of compounds to libraries of reactions. QSAR Comb. Sci., 2006, 25, 423-431.
[http://dx.doi.org/10.1002/qsar.200540190]
[44]
Al‐Tel, T.H.; Al‐Qawasmeh, R.A.; Voelter, W. Rapid assembly of polyfunctional Structures using a one‐pot five‐and six‐component sequential Groebke–Blackburn/Ugi/Passerini process. Eur. J. Org. Chem., 2010, 2010, 5586-5593.
[http://dx.doi.org/10.1002/ejoc.201000808]
[45]
Syamala, M. Recent progress in three-component reactions. an update. Org. Prep. Proced. Int., 2009, 41, 1-68.
[http://dx.doi.org/10.1080/00304940802711218]
[46]
Mohammadkhani, L.; Heravi, M.M. Synthesis of various N‐heterocycles using the Ugi four‐center three‐component reaction. ChemistrySelect, 2019, 4, 10187-10196.
[http://dx.doi.org/10.1002/slct.201902029]
[47]
Paira, M. New artificial macrocycles accessed by Ugi four-component reaction (U-4CR). Chem. Biol. Interact., 2019, 9, 186-197.
[48]
Heravi, M.M.; Mohammadkhani, L. Chapter five-synthesis of various N-heterocycles using the four-component Ugi reaction. Adv. Heterocycl. Chem., 2020, 131, 351-403.
[http://dx.doi.org/10.1016/bs.aihch.2019.04.001]
[49]
Nenajdenko, V.G. Access to molecular complexity. multicomponent reactions involving five or more components. Russ. Chem. Rev., 2020, 89, 1274-1336.
[http://dx.doi.org/10.1070/RCR5010]
[50]
Maskrey, T.S.; Frischling, M.C.; Rice, M.L.; Wipf, P. Five-component Biginelli-Diels-Alder cascade reaction. Front Chem., 2018, 6, 376.
[http://dx.doi.org/10.3389/fchem.2018.00376] [PMID: 30211156]
[51]
Molaei Yielzoleh, F.; Nikoofar, K. An outlook to six- and pseudo six-component reactions in organic synthesis with a glance at some aspects of green chemistry. Curr. Green Chem., 2020, 7, 1-20.
[http://dx.doi.org/10.2174/2213346107999201111201105]
[52]
Brauch, S.; van Berkel, S.S.; Westermann, B. Higher-order multicomponent reactions: beyond four reactants. Chem. Soc. Rev., 2013, 42(12), 4948-4962.
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
[53]
Hirao, A.; Higashihara, T.; Inoue, K. Successive synthesis of well-defined asymmetric star-branched polymers up to seven-arm, seven-component abcdefg type by an iterative methodology based on living anionic polymerization. Macromol., 2008, 41, 3579-3587.
[http://dx.doi.org/10.1021/ma800146p]
[54]
Ito, S.; Goseki, R.; Ishizone, T.; Hirao, A. Successive synthesis of well-defined multiarmed miktoarm star polymers by iterative methodology using living anionic polymerization. Eur. Polym. J., 2013, 49, 2545-2566.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.05.014]
[55]
Contakes, S.M.; Klausmeyer, K.K.; Milberg, R.M.; Wilson, S.R.; Rauchfuss, T.B. The seven-component assembly of the bowl-shaped cages Cp*7Rh7(CN)122+ and Cp*7Rh3Ir4(CN)122+. Organometallics, 1998, 17, 3633-3635.
[http://dx.doi.org/10.1021/om9803772]
[56]
Mittal, N.; Saha, M.L.; Schmittel, M. A seven-component metallosupramolecular quadrilateral with four different orthogonal complexation vertices. Chem. Commun., 2015, 51(85), 15514-15517.
[http://dx.doi.org/10.1039/C5CC06324H] [PMID: 26346027]
[57]
Zhang, W.; Luo, Z.; Chen, C.H.T.; Curran, D.P. Solution-phase preparation of a 560-compound library of individual pure mappicine analogues by fluorous mixture synthesis. J. Am. Chem. Soc., 2002, 124(35), 10443-10450.
[http://dx.doi.org/10.1021/ja026947d] [PMID: 12197746]
[58]
Salahi, S.; Maghsoodlou, M.T.; Hazeri, N.; Lashkari, M.; Garcia-Granda, S.; Torre-Fernandez, L. An efficient green synthesis of dispirohydroquinolines via a diastereoselective one-pot eight-component reaction. Chin. J. Catal., 2015, 36, 1023-1028.
[http://dx.doi.org/10.1016/S1872-2067(15)60846-4]
[59]
Lewis, J.E.M.; Modicom, F.; Goldup, S.M. Efficient multicomponent active template synthesis of catenanes. J. Am. Chem. Soc., 2018, 140(14), 4787-4791.
[http://dx.doi.org/10.1021/jacs.8b01602] [PMID: 29558129]
[60]
Tominaga, M.; Hyodo, T.; Maekawa, Y.; Kawahata, M.; Yamaguchi, K. One‐step synthesis of cyclophanes as crystalline sponge and their [2]catenanes through SNA reactions. Chemistry, 2020, 26(23), 5157-5161.
[http://dx.doi.org/10.1002/chem.201905854] [PMID: 31994220]
[61]
Salahi, S.; Maghsoodlou, M.T.; Hazeri, N.; Lashkari, M.; Torbati, N.A.; Kazemian, M.A.; Garcia-Granda, S.; Torre-Fernandez, L. Brønsted acidic ionic liquid catalyzed synthesis of poly-substituted hydroquinolines through diastereoselective, one-pot and pseudo-eight-component reaction. J. Saudi Chem. Soc., 2016, 20, 349-356.
[http://dx.doi.org/10.1016/j.jscs.2014.11.002]
[62]
Pando, O.; Stark, S.; Denkert, A.; Porzel, A.; Preusentanz, R.; Wessjohann, L.A. The multiple multicomponent approach to natural product mimics: tubugis, N-substituted anticancer peptides with picomolar activity. J. Am. Chem. Soc., 2011, 133(20), 7692-7695.
[http://dx.doi.org/10.1021/ja2022027] [PMID: 21528905]
[63]
Li, Y.; Miao, J.; Liang, Y.; Chen, Z.; Zhang, Z.; Liang, F. Transition metal acetate promoted syntheses of some new N‐heterocycles by multicomponent reactions. J. Heterocycl. Chem., 2017, 54, 531-538.
[http://dx.doi.org/10.1002/jhet.2616]
[64]
Von Zezschwitz, P.; de Meijere, A. Metal catalyzed cascade reactions; Springer: Berlin, Heidelberg, 2006, pp. 49-89.
[http://dx.doi.org/10.1007/3418_009]
[65]
Shaabani, A.; Mahyari, M.; Seyyedhamzeh, M.; Keshipour, S.; Ng, S.W. A one-pot pseudo nine-component isocyanide-based reaction: Synthesis of a new class of zinc 1,5-disubstituted 1H-tetrazol-5-yl coordination complexes. Tetrahedron Lett., 2011, 52, 4388-4391.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.017]
[66]
Grigg, R.; Elboray, E.E.; Aly, M.F.; Abbas-Temirek, H.H. Exploiting adamantane as a versatile organic tecton: multicomponent catalytic cascade reactions. Chem. Commun., 2012, 48(94), 11504-11506.
[http://dx.doi.org/10.1039/c2cc35054h] [PMID: 22932860]
[67]
Kim, M.J.; Choi, M.Y.; Han, M.Y.; Choi, Y.K.; Lee, J.K.; Park, J. Asymmetric transformations of acyloxyphenyl ketones by enzyme-metal multicatalysis. J. Org. Chem., 2002, 67(26), 9481-9483.
[http://dx.doi.org/10.1021/jo026122m] [PMID: 12492361]
[68]
Zhang, Y.Y.; Gao, W.X.; Lin, L.; Jin, G.X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev., 2017, 344, 323-344.
[http://dx.doi.org/10.1016/j.ccr.2016.09.010]
[69]
Barreto, A.F.S.; Andrade, C.K.Z. Synthesis of (macro)heterocycles by consecutive/repetitive isocyanide-based multicomponent reactions. Beilstein J. Org. Chem., 2019, 15, 906-930.
[http://dx.doi.org/10.3762/bjoc.15.88] [PMID: 31164928]
[70]
Fang, L.; Olson, M.A.; Benítez, D.; Tkatchouk, E.; Goddard, W.A., III; Stoddart, J.F. Mechanically bonded macromolecules. Chem. Soc. Rev., 2010, 39(1), 17-29.
[http://dx.doi.org/10.1039/B917901A] [PMID: 20023833]
[71]
Goswami, A.; Schmittel, M. Heteroleptic copper phenanthroline complexes in motion: From stand-alone devices to multi-component machinery. Coord. Chem. Rev., 2018, 376, 478-505.
[http://dx.doi.org/10.1016/j.ccr.2018.08.011] [PMID: 32287354]
[72]
Rousseaux, S.A.; Gong, J.Q.; Haver, R.; Odell, B.; Claridge, T.D.; Herz, L.M.; Anderson, H.L. Self-assembly of russian doll concentric porphyrin nanorings. J. Am. Chem. Soc., 2015, 137(39), 12713-12718.
[http://dx.doi.org/10.1021/jacs.5b07956] [PMID: 26378660]
[73]
Leung, K.C.F.; Lau, K.N. Self-assembly and thermodynamic synthesis of rotaxane dendrimers and related structures. Polym. Chem., 2010, 1, 988-1000.
[http://dx.doi.org/10.1039/b9py00380k]
[74]
Simpkins, N.S.; Weske, D.F.; Male, L.; Coles, S.J.; Pitak, M.B. Synthesis of fumaramide derived [3]rotaxanes as potential precursors for molecular boxes. Chem. Commun., 2013, 49(44), 5010-5012.
[http://dx.doi.org/10.1039/c3cc42045k] [PMID: 23620239]
[75]
Paul, I.; Ghosh, A.; Bolte, M.; Schmittel, M. Remote control of the synthesis of a [2]rotaxane and its shuttling via metal‐ion translocation. ChemistryOpen, 2019, 8(11), 1355-1360.
[http://dx.doi.org/10.1002/open.201900293] [PMID: 31763127]
[76]
Saha, M.L.; Schmittel, M. From 3-fold completive self-sorting of a nine-component library to a seven-component scalene quadrilateral. J. Am. Chem. Soc., 2013, 135(47), 17743-17746.
[http://dx.doi.org/10.1021/ja410425k] [PMID: 24224927]
[77]
Schmittel, M. From self-sorted coordination libraries to networking nanoswitches for catalysis. Chem. Commun., 2015, 51(81), 14956-14968.
[http://dx.doi.org/10.1039/C5CC06605K] [PMID: 26390984]
[78]
Hartshorn, C.M.; Steel, P.J. Self-assembly and X-ray structure of a ten-component, three-dimensional metallosupramolecular cage. Chem. Commun., 1997, 541-542.
[http://dx.doi.org/10.1039/a608081b]
[79]
Fujita, M.; Yu, S.Y.; Kusukawa, T.; Funaki, H.; Ogura, K.; Yamaguchi, K. Self‐assembly of nanometer‐sized macrotricyclic complexes from ten small component molecules. Angew. Chem. Int. Ed. Engl., 1998, 37(15), 2082-2085.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2082:AID-ANIE2082>3.0.CO;2-0] [PMID: 29711041]
[80]
Vajpayee, V.; Kim, H.; Mishra, A.; Mukherjee, P.S.; Stang, P.J.; Lee, M.H.; Kim, H.K.; Chi, K.W. Self-assembled molecular squares containing metal-based donor: synthesis and application in the sensing of nitro-aromatics. Dalton Trans., 2011, 40(13), 3112-3115.
[http://dx.doi.org/10.1039/c0dt01481h] [PMID: 21321785]
[81]
Doemling, A.; Herdtweck, E.; Ugi, I. MCR V: The seven-component reaction. Acta Chem. Scand., 1998, 52, 107-113.
[http://dx.doi.org/10.3891/acta.chem.scand.52-0107]
[82]
Ugi, I.; Goebel, M.; Gruber, B.; Heilingbrunner, M.; Heiß, C.; Hörl, W.; Kern, O.; Starnecker, M.; Dömling, A. Molecular libraries in liquid phase via Ugi-MCR. Res. Chem. Intermed., 1996, 22, 625-644.
[http://dx.doi.org/10.1163/156856796X00115]
[83]
Ugi, I.K.; Ebert, B.; Hörl, W. Formation of 1,1′-iminodicarboxylic acid derivatives, 2,6-diketo-piperazine and dibenzodiazocine-2,6-dione by variations of multicomponent reactions. Chemosphere, 2001, 43(1), 75-81.
[http://dx.doi.org/10.1016/S0045-6535(00)00326-X] [PMID: 11233828]
[84]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[85]
Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2019, 23, 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532]
[86]
Cintas, P.; Tabasso, S.; Veselov, V.V.; Cravotto, G. Alternative reaction conditions: Enabling technologies in solvent-free protocols. Curr. Opin. Green Sustain. Chem., 2020, 21, 44-49.
[http://dx.doi.org/10.1016/j.cogsc.2019.11.007]
[87]
Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathé, D. New solvent-free organic synthesis using focused microwaves. Synthesis, 1998, 1213-1234.
[http://dx.doi.org/10.1055/s-1998-6083]
[88]
Lupacchini, M.; Mascitti, A.; Giachi, G.; Tonucci, L.; Alessandro, N.; Martinez, J.; Colacino, E. Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 2017, 73, 609-653.
[http://dx.doi.org/10.1016/j.tet.2016.12.014]
[89]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[90]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. ChemSusChem, 2014, 7(1), 24-44.
[http://dx.doi.org/10.1002/cssc.201300485]
[91]
Sarkar, A.; Santra, S.; Kundu, Sh.K.; Hajra, A.; Zyryanov, G.V.; Chupakhin, O.N.; Charushin, V.N.; Majee, A. A decade update on solvent and catalyst-free neat organic reactions: A step forward towards sustainability. Green Chem., 2016, 18, 4475-4525.
[http://dx.doi.org/10.1039/C6GC01279E]
[92]
Bodaghifard, M.A.; Faraki, Z.; Karimi, A.R. Mild synthesis of mono-, bis-and tris 1,2-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine derivatives using alkyl disulfamic acid functionalized magnetic nanoparticles. Curr. Org. Chem., 2016, 20, 1648-1654.
[http://dx.doi.org/10.2174/1385272820666160218233729]
[93]
Abdel-Mohsen, H.T.; Abood, A.; Flanagan, K.J.; Meindl, A.; Senge, M.O.; El Diwani, H.I. Synthesis, crystal structure, and ADME prediction studies of novel imidazopyrimidines as antibacterial and cytotoxic agents. Arch. Pharm. (Weinheim), 2020, 353(3)e1900271
[http://dx.doi.org/10.1002/ardp.201900271] [PMID: 31989670]
[94]
Sperry, J.; García-Álvarez, J. Organic reactions in green solvents. Molecules, 2016, 21(11), 1527.
[http://dx.doi.org/10.3390/molecules21111527] [PMID: 27854295]
[95]
Ranu, B.C.; Saha, A.; Dey, R. Using more environmentally friendly solvents and benign catalysts in performing conventional organic reactions. Curr. Opin. Drug Discov. Devel., 2010, 13(6), 658-668.
[PMID: 21061229]
[96]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[97]
Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer-comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
[98]
Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev., 2018, 118(2), 679-746.
[http://dx.doi.org/10.1021/acs.chemrev.7b00417] [PMID: 29218984]
[99]
Li, G.; Wang, B.; Resasco, D.E. Water-mediated heterogeneously catalyzed reactions. ACS Catal., 2020, 10, 1294-1309.
[http://dx.doi.org/10.1021/acscatal.9b04637]
[100]
Gawande, M.B.; Bonifácio, V.D.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[101]
Shaabani, A.; Khodkari, V.; Nazeri, M.T.; Ghasemi, S.; Mohammadian, R.; Shaabani, S. Vitamin C as a green and robust catalyst for the fast and efficient synthesis of valuable organic compounds via multi-component reactions in water. J. Iran. Chem. Soc., 2019, 16, 1793-1800.
[http://dx.doi.org/10.1007/s13738-019-01655-w]
[102]
Rahmati, A.; Khalesi, Z. A one-pot, three-component synthesis of spiro[indoline-isoxazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine]triones in water. Tetrahedron, 2012, 68, 8472-8479.
[http://dx.doi.org/10.1016/j.tet.2012.07.073]
[103]
Feng, H.; Shi, C.L.; Li, J. IOP conference series: Earth and environmental science; IOP Publishing, 2019.
[104]
Soares, M.I.L.; Brito, A.F.; Laranjo, M.; Paixão, J.A.; Botelho, M.F.; Pinho e Melo, T.M.V.D. Chiral 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles with anti-breast cancer properties. Eur. J. Med. Chem., 2013, 60, 254-262.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.036] [PMID: 23313634]
[105]
Khalili Foumeshi, M.; Haghi, R.; Beier, P.; Ziyaei Halimehjani, A. A convenient four-component reaction for the synthesis of dithiocarbamates starting from naphthols in water. J. Sulphur Chem, 2020, 41, 581-592.
[http://dx.doi.org/10.1080/17415993.2020.1778698]
[106]
Karimi, R.A.; Khodadadi, A. Multi-component synthesis of 6-alkoxy-2-amino-3,5-dicyanopyridines. Lett. Org. Chem., 2012, 9, 422-426.
[http://dx.doi.org/10.2174/157017812801322525]
[107]
Cocco, M.T.; Congiu, C.; Lilliu, V.; Onnis, V. Synthesis and antiproliferative activity of 2,6-dibenzylamino-3,5-dicyanopyridines on human cancer cell lines. Eur. J. Med. Chem., 2005, 40(12), 1365-1372.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.005] [PMID: 16137795]
[108]
Safaei, H.R.; Safaei, M.; Shekouhy, M. Sulfuric acid-modified poly(vinylpyrrolidone) ((PVP–SO3H)HSO4): A new highly efficient, bio-degradable and reusable polymeric catalyst for the synthesis of acridinedione derivatives. RSC Advances, 2015, 5, 6797-6806.
[http://dx.doi.org/10.1039/C4RA12219D]
[109]
Nazeri, M.T.; Mohammadian, R.; Farhid, H.; Shaabani, A.; Notash, B. An efficient pseudo-seven component reaction for the synthesis of fully-substituted furans containing pseudopeptide based on the union of multicomponent reactions. Tetrahedron Lett., 2020, 61, 151408-151409.
[http://dx.doi.org/10.1016/j.tetlet.2019.151408]
[110]
Banerjee, R.; Kumar, H.K.S.; Banerjee, M. Medicinal significance of furan derivatives: A review. Int. J. Res. Phytochem. Pharmacol., 2015, 5, 48-57.
[111]
Mojikhalifeh, S.; Hasaninejad, A. Highly efficient, catalyst-free, one-pot, pseudo-seven-component synthesis of novel poly-substituted pyrazolyl-1,2-diazepine derivatives. Org. Chem. Front., 2018, 5, 1516-1521.
[http://dx.doi.org/10.1039/C8QO00210J]
[112]
Sajadikhah, S.S.; Maghsoodlou, M.T. A simple and green approach for the synthesis of polyfunctionalized mono-and bis-dihydro-2-oxopyrroles catalyzed by trityl chloride. RSC Advances, 2014, 4, 43454-43459.
[http://dx.doi.org/10.1039/C4RA06923D]
[113]
Borthwick, A.D.; Crame, A.J.; Ertl, P.F.; Exall, A.M.; Haley, T.M.; Hart, G.J.; Mason, A.M.K.; Pennell, A.M.; Singh, O.M.P.; Weingarten, G.G.; Woolven, J.M. Design and synthesis of pyrrolidine-5,5-trans-lactams (5-oxohexahydropyrrolo[3,2-b]pyrroles) as novel mechanism-based inhibitors of human cytomegalovirus protease. 2. Potency and chirality. J. Med. Chem., 2002, 45(1), 1-18.
[http://dx.doi.org/10.1021/jm0102203] [PMID: 11754575]
[114]
Kawasuji, T.; Fuji, M.; Yoshinaga, T.; Sato, A.; Fujiwara, T.; Kiyama, R. 3-Hydroxy-1,5-dihydro-pyrrol-2-one derivatives as advanced inhibitors of HIV integrase. Bioorg. Med. Chem., 2007, 15(16), 5487-5492.
[http://dx.doi.org/10.1016/j.bmc.2007.05.052] [PMID: 17560110]
[115]
Li, B.; Lyle, M.P.; Chen, G.; Li, J.; Hu, K.; Tang, L.; Alaoui-Jamali, M.A.; Webster, J. Substituted 6-amino-4H-[1,2]dithiolo[4,3-b]pyrrol-5-ones: synthesis, structure-activity relationships, and cytotoxic activity on selected human cancer cell lines. Bioorg. Med. Chem., 2007, 15(13), 4601-4608.
[http://dx.doi.org/10.1016/j.bmc.2007.04.017] [PMID: 17467996]
[116]
Gholami, A.; Khabnadideh, S.; Ghasemi, Y.; Mirjalili, B.B.F.; Shahmoradi, R.; Zamani, L. TiCl4/nano-sawdust as an efficient biocatalyst for the synthesis of highly substituted dihydro- 2-oxopyrroles as antimicrobial agents. Br. J. Pharm. Res., 2017, 16, 1-14.
[http://dx.doi.org/10.9734/BJPR/2017/33030]
[117]
Sajadikhah, S.S.; Maghsoodlou, M.T.; Hazeri, N. A simple and efficient approach to one-pot synthesis of mono-and bis-N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates catalyzed by InCl3. Chin. Chem. Lett., 2014, 25, 58-60.
[http://dx.doi.org/10.1016/j.cclet.2013.10.010]
[118]
Zhang, J.N.; Yang, X.H.; Guo, W.J.; Wang, B.; Zhang, Z.H. Magnetic metal-organic framework CoFe2O4@SiO2@IRMOF-3 as an efficient catalyst for one-pot synthesis of functionalized dihydro-2-oxopyrroles. Synlett, 2017, 28, 734-740.
[http://dx.doi.org/10.1055/s-0036-1588924]
[119]
Sajadikhah, S.S.; Maghsoodlou, M.T.; Hazeri, N. Efficient and extremely facile one-pot four-component synthesis of mono and bis-N-aryl/alkyl-3-aminodihydropyrrol-2-one-4-carboxylates catalyzed by p-TsOH•H2O. Res. Chem. Intermed., 2015, 41, 2503-2511.
[http://dx.doi.org/10.1007/s11164-013-1364-0]
[120]
Sajadikhah, S.S.; Maghsoodlou, M.T.; Hazeri, N.; Mohamadian-Souri, S. ZrCl4 as an efficient catalyst for one-pot four-component synthesis of polysubstituted dihydropyrrol-2-ones. Res. Chem. Intermed., 2016, 42, 2805-2814.
[http://dx.doi.org/10.1007/s11164-015-2178-z]
[121]
Karamthulla, S.; Pal, S.; Khan, M.N.; Choudhury, L.H. Synthesis of pentasubstituted pyrroles via catalyst-free multicomponent reactions. Synlett, 2014, 25, 1926-1936.
[http://dx.doi.org/10.1055/s-0034-1378329]
[122]
Antonucci, T.; Warmus, J.S.; Hodges, J.C.; Nickell, D.G. Characterization of the antiviral activity of highly substituted pyrroles: A novel class of non-nucleoside HIV-1 reverse transcriptase inhibitor. Antivir. Chem. Chemother., 1995, 6, 98-108.
[http://dx.doi.org/10.1177/095632029500600204]
[123]
Qian, W.; Amegadzie, A.; Winternheimer, D.; Allen, J. One-pot synthesis of 3-triazolyl-2-iminochromenes via a catalytic three component cascade reaction. Org. Lett., 2013, 15(12), 2986-2989.
[http://dx.doi.org/10.1021/ol401151z] [PMID: 23751086]
[124]
Mohammadi, A.A.; Taheri, S.; Sadr, A.S.; Ghaderi, P.; Ahdenov, R. Synthesis and molecular docking studies of some new tetra-amide derivatives as new inhibitors of Maltase-Glucoamylase. J. Mol. Struct., 2019, 1180, 556-563.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.101]
[125]
Mokhtari, T.S.; Sheikhhosseini, E.; Amrollahi, M.A.; Sheibani, H. A convenient one-pot synthesis of novel tetraamides via 2-cyclopentylidenemalonic acid based Ugi-four component reaction. J. Saudi Chem. Soc., 2017, 21, 300-305.
[http://dx.doi.org/10.1016/j.jscs.2015.07.008]
[126]
Martino, L.; Basilissi, L.; Farina, H.; Ortenzi, M.A.; Zini, E.; Di Silvestro, G.; Scandol, M. Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures. Eur. Polym. J., 2014, 59, 69-77.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.07.012]
[127]
Madhavachary, R.; Wang, Q.; Dömling, A. With unprotected amino acids to tetrazolo peptidomimetics. Chem. Commun., 2017, 53(61), 8549-8552.
[http://dx.doi.org/10.1039/C7CC03370B] [PMID: 28707691]
[128]
Kutovaya, I.V.; Zarezin, D.P.; Shmatova, O.I.; Nenajdenko, V.G. Pseudo‐seven‐component double azido‐ugi reaction: An efficient synthesis of bistetrazole derivatives. Eur. J. Org. Chem., 2019, 2019, 3908-3915.
[http://dx.doi.org/10.1002/ejoc.201900662]
[129]
Brauch, S.; Gabriel, L.; Westermann, B. Seven-component reactions by sequential chemoselective Ugi-Mumm/Ugi-Smiles reactions. Chem. Commun., 2010, 46(19), 3387-3389.
[http://dx.doi.org/10.1039/b927388c] [PMID: 20358095]
[130]
Hassan, S.; Tschersich, R.; Müller, T.J.J. Three-component chemoenzymatic synthesis of amide ligated 1,2,3-triazoles. Tetrahedron Lett., 2013, 54, 4641-4644.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.051]
[131]
Gesse, P.; Müller, T.J.J. Consecutive five-component-Ugi-4CR-CAL B-catalyzed aminolysis sequence and concatenation with transition metal catalysis in a one-pot fashion to substituted triamides. Eur. J. Org. Chem., 2019, 2019, 2150-2157.
[http://dx.doi.org/10.1002/ejoc.201900198]
[132]
Merkt, F.K.; Müller, T.J.J. Synthesis and electronic properties of expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxalines with AIE characteristics. Sci. China Chem., 2018, 61, 909-924.
[http://dx.doi.org/10.1007/s11426-018-9295-4]
[133]
Merkt, F.K.; Höwedes, S.P.; Gers-Panther, C.F.; Gruber, I.; Janiak, C.; Müller, T.J.J. Three‐component activation/alkynylation/cycloconden-sation (AACC) synthesis of enhanced emission solvatochromic 3‐ethynylquinoxalines. Chemistry, 2018, 24(32), 8114-8125.
[http://dx.doi.org/10.1002/chem.201800079] [PMID: 29425410]
[134]
Merkt, F.K.; Müller, T.J.J. Solid state and aggregation induced emissive chromophores by multi‐component syntheses. Isr. J. Chem., 2018, 58, 889-900.
[http://dx.doi.org/10.1002/ijch.201800058]
[135]
Breuer, N.; Müller, T.J.J. Synthesis and electronic properties of 5,5″-diacceptor substituted terthiophenes. Dyes. Pigm, 2018, 149, 676-685.
[http://dx.doi.org/10.1016/j.dyepig.2017.11.038]
[136]
Alizadeh, A.; Rostamnia, S.; Zhu, L.G. A novel pseudo-seven-component diastereoselective synthesis of λ5-phosphanylidene bis(2,5-dioxotetrahydro-1H-pyrrole-3-carboxylates) via binucleophilic systems. Tetrahedron Lett., 2010, 51, 4750-4754.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.027]
[137]
Moosazadeh, E.; Sheikhhosseini, E.; Ghazanfari, D.; Soltaninejad, S. One‐pot synthesis of novel polysubstituted furopyran derivatives via pseudo seven‐component reaction (6 + 1) of isocyanides with bisarylidene Meldrum’s acid containing ether groups. J. Heterocycl. Chem., 2020, 57, 2271-2278.
[http://dx.doi.org/10.1002/jhet.3949]
[138]
Znabet, A.; Polak, M.M.; Janssen, E.; de Kanter, F.J.; Turner, N.J.; Orru, R.V.; Ruijter, E. A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem. Commun., 2010, 46(42), 7918-7920.
[http://dx.doi.org/10.1039/c0cc02823a] [PMID: 20856952]
[139]
Yip, Y.; Victor, F.; Lamar, J.; Johnson, R.; Wang, Q.M.; Glass, J.I.; Yumibe, N.; Wakulchik, M.; Munroe, J.; Chen, S-H. P4 and P1′ optimization of bicycloproline P2 bearing tetrapeptidyl α-ketoamides as HCV protease inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(19), 5007-5011.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.007] [PMID: 15341970]
[140]
Dhara, D.; Gayen, K.S.; Khamarui, S.; Pandit, P.; Ghosh, S.; Maiti, D.K. CeCl3•7H2O catalyzed C-C and C-N bond-forming cascade cyclization with subsequent side-chain functionalization and rearrangement: a domino approach to pentasubstituted pyrrole analogues. J. Org. Chem., 2012, 77(22), 10441-10449.
[http://dx.doi.org/10.1021/jo301796r] [PMID: 23113545]
[141]
Nadamani, M.P.; Mahmoodi, N.O.; Mamaghani, M.; Zanjanchi, M.A.; Nahzomi, H.T. Photochromic properties of novel one‐pot multicomponent synthesized tetraarylimidazoles. ChemistrySelect, 2019, 4, 8470-8476.
[http://dx.doi.org/10.1002/slct.201901755]
[142]
Almesåker, A.; Scott, J.L.; Spiccia, L.; Strauss, C.R. One-pot synthesis of tripodal tris (2-aminoethyl) amine derivatives from seven molecular components. Tetrahedron Lett., 2009, 50, 1847-1850.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.008]
[143]
Wender, P.A.; Gamber, G.G.; Hubbard, R.D.; Pham, S.M.; Zhang, L. Multicomponent cycloadditions: the four-component [5+1+2+1] cycloaddition of vinylcyclopropanes, alkynes, and CO. J. Am. Chem. Soc., 2005, 127(9), 2836-2837.
[http://dx.doi.org/10.1021/ja042728b] [PMID: 15740103]
[144]
Kraft, A. Synthesis and self‐association of first‐generation 1,3,4‐oxadiazole‐containing dendrimers. Liebigs Ann., 1997, 1997, 1463-1471.
[http://dx.doi.org/10.1002/jlac.199719970725]
[145]
Kraft, A. Self-association of a 1,3,4-oxadiazole-containing dendrimer. Chem. Commun., 1996, 77-79.
[http://dx.doi.org/10.1039/cc9960000077]
[146]
Osterod, F.; Kraft, A. Self-association of poly(aramide) dendrimers. Chem. Commun., 1997, 1435-1436.
[http://dx.doi.org/10.1039/a703072j]
[147]
Sakai, N.; Takahashi, N.; Inoda, D.; Ikeda, R.; Konakahara, T. Copper-catalyzed three- five- or seven-component coupling reactions: the selective synthesis of cyanomethylamines, N,N-bis(cyanomethyl) amines and N,N′-bis(cyanomethyl)methylenediamines based on a Strecker-type synthesis. Molecules, 2013, 18(10), 12488-12499.
[http://dx.doi.org/10.3390/molecules181012488] [PMID: 24152671]
[148]
Gültekin, Z.; Elboray, E.E.; Aly, M.F.; Abbas-Temirek, H.H.; Shepherd, H.J.; Grigg, R. Participation of compact planar 1,3,5-tri(buta-2,3-dien-1-yl)-1,3,5-triazinane-2,4,6-trione in Pd(0) catalysed seven component cascade reactions delivers novel tunable molecular architecture. Tetrahedron, 2014, 70, 4934-4941.
[http://dx.doi.org/10.1016/j.tet.2014.05.025]
[149]
Wachenfeldt, Hv.; Röse, P.; Paulsen, F.; Loganathan, N.; Strand, D. Catalytic three-component domino reaction for the preparation of trisubstituted oxazoles. Chemistry, 2013, 19(24), 7982-7988.
[http://dx.doi.org/10.1002/chem.201300019] [PMID: 23592540]
[150]
Nüske, H.; Bräse, S.; Kozhushkov, S.I.; Noltemeyer, M.; Es-Sayed, M.; De Meijere, A. A new highly efficient three-component domino Heck-Diels-Alder reaction with bicyclopropylidene: rapid access to spiro[2.5]oct-4-ene derivatives. Chemistry, 2002, 8(10), 2350-2369.
[PMID: 12012419]
[151]
de Meijere, A.; Nüske, H.; Es‐Sayed, M.; Labahn, T.; Schroen, M.; Bräse, S. Neue effiziente mehrkomponenten‐reaktionen unter C‐C‐verknüpfung zur kombinatorischen anwendung in flüssiger und an fester phase. Angew. Chem., 1999, 111, 3881-3884.
[http://dx.doi.org/10.1002/(SICI)1521-3757(19991216)111:24<3881:AID-ANGE3881>3.0.CO;2-G]
[152]
Götzinger, A.C.; Theßeling, F.A.; Hoppe, C.; Müller, T.J.J. One-pot coupling–coupling–cyclocondensation synthesis of fluorescent pyrazoles. J. Org. Chem., 2016, 81(21), 10328-10338.
[http://dx.doi.org/10.1021/acs.joc.6b01326] [PMID: 27403574]
[153]
Leonardi, M.; Villacampa, M.; Menéndez, J.C. High-speed vibration-milling-promoted synthesis of symmetrical frameworks containing two or three pyrrole units. Beilstein J. Org. Chem., 2017, 13, 1957-1962.
[http://dx.doi.org/10.3762/bjoc.13.190] [PMID: 29062414]
[154]
Liao, G.P.; Abdelraheem, E.M.; Neochoritis, C.G.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; McGowan, D.C.; Dömling, A. Versatile multicomponent reaction macrocycle synthesis using α-isocyano-ω-carboxylic acids. Org. Lett., 2015, 17(20), 4980-4983.
[http://dx.doi.org/10.1021/acs.orglett.5b02419] [PMID: 26439710]
[155]
Barluenga, J.; García-García, P.; Fernández-Rodríguez, M.A.; Rocaboy, C.; Aguilar, E.; Andina, F.; Merino, I. Up to seven-component adducts by unprecedented multiple alkyne and carbonyl insertions in the metal-carbon bond of chromium alkoxy alkynyl carbene complexes. Chemistry, 2007, 13(32), 9115-9126.
[http://dx.doi.org/10.1002/chem.200700776] [PMID: 17705201]
[156]
Furuyama, T.; Shimasaki, F.; Saikawa, N.; Maeda, H.; Segi, M. One-step synthesis of ball-shaped metal complexes with a main absorption band in the near-IR region. Sci. Rep., 2019, 9(1), 16528.
[http://dx.doi.org/10.1038/s41598-019-53014-7] [PMID: 31712715]
[157]
Leung, K.C.F.; Arico, F.; Cantrill, S.J.; Stoddart, J.F. Dynamic mechanically interlocked dendrimers: Amplification in dendritic dynamic combinatorial libraries. Macromolecules, 2007, 40, 3951-3959.
[http://dx.doi.org/10.1021/ma061707u]
[158]
Leung, K.C.F. Theoretical postulation of mass spectral quantity and distribution in competitive dynamic dendrimer mixtures. Macromol. Theory Simul., 2009, 18, 328-335.
[http://dx.doi.org/10.1002/mats.200900021]
[159]
Noori Sadeh, F.; Lashkari, M.; Hazeri, N.; Fatahpour, M.; Maghsoodlou, M.T. Synthesis of poly-substituted hydroquinolines employing lactic acid as a robust catalyst through the diastereoselective, one-pot eight-component reaction. Org. Chem. Res., 2019, 5, 233-240.
[http://dx.doi.org/10.22036/ORG.CHEM.2019.155887.1177]
[160]
Salahi, S.; Hazeri, N.; Maghsoodlou, M.T.; García-Granda, S.; Torre-Fernández, L. Stereoselective synthesis of 1′,5′,7′,8′-tetrahydro-2′H,4′H-dispiro[[1,3]dioxane-5,3′-quinoline-6′,5″-[1″,3″]dioxane]-4,4″,6,6″-tetrone derivatives in the presence of benzoic acid as an efficient catalyst via one-pot multicomponent reaction. J. Chem. Res., 2014, 38, 383-386.
[http://dx.doi.org/10.3184/174751914X14017157492019]
[161]
Salahi, S.; Hazeri, N.; Maghsoodlou, M.T.; Lashkari, M.; Torbati, N.A.; García-Granda, S.; Torre-Fernández, L. Salicylic acid as an efficient catalyst for the diastereoselective synthesis of dispirohydroquinolines via a one-pot domino eight-component reaction. J. Chil. Chem. Soc., 2018, 63, 4159-4164.
[http://dx.doi.org/10.4067/S0717-97072018000404159]
[162]
Fatahpour, M.; Lashkari, M.; Hazeri, N.; Noori Sadeh, F.; Maghsoodlou, M.T. Stereoselective synthesis of polysubstituted hydroquinolines in a one-pot, pseudo-eight-component strategy. Org. Prep. Proced. Int., 2019, 51, 576-582.
[http://dx.doi.org/10.1080/00304948.2019.1677992]
[163]
Hazeri, N.; Lashkari, M.; García-Granda, S.; Torre-Fernández, L. novel synthesis, molecular structure, and theoretical studies of dispiro compounds via pseudo-eight-component reaction. Aust. J. Chem., 2014, 67, 1656-1665.
[http://dx.doi.org/10.1071/CH13713]
[164]
Kumaravel, K.; Rajarathinam, B.; Vasuki, G. Water-triggered union of multi-component reactions towards the synthesis of a 4H-chromene hybrid scaffold. RSC Advances, 2020, 10, 29109-29113.
[http://dx.doi.org/10.1039/D0RA05105E]
[165]
Shinde, S.K.; Patil, M.U.; Damate, S.A.; Patil, S.S. Synergetic effects of naturally sourced metal oxides in organic synthesis: A greener approach for the synthesis of pyrano[2,3-c]pyrazoles and pyrazolyl-4H-chromenes. Res. Chem. Intermed., 2018, 44, 1775-1795.
[http://dx.doi.org/10.1007/s11164-017-3197-8]
[166]
Johnston, A.G.; Leigh, D.A.; Pritchard, R.J.; Deegan, M.D. Facile synthesis and solid‐state structure of a benzylic amide [2]catenane. Angew. Chem. Int. Ed. Engl., 1995, 34, 1209-1212.
[http://dx.doi.org/10.1002/anie.199512091]
[167]
Elders, N.; van der Born, D.; Hendrickx, L.J.D.; Timmer, B.J.J.; Krause, A.; Janssen, E.; de Kanter, F.J.J.; Ruijter, E.; Orru, R.V.A. The efficient one-pot reaction of up to eight components by the union of multicomponent reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(32), 5856-5859.
[http://dx.doi.org/10.1002/anie.200902683] [PMID: 19579257]
[168]
Barreto, Ade. F.; Vercillo, O.E.; Wessjohann, L.A.; Andrade, C.K. Consecutive isocyanide-based multicomponent reactions: synthesis of cyclic pentadepsipeptoids. Beilstein J. Org. Chem., 2014, 10, 1017-1022.
[http://dx.doi.org/10.3762/bjoc.10.101] [PMID: 24991252]
[169]
Vercillo, O.E.; Andrade, C.K.Z.; Wessjohann, L.A. Design and synthesis of cyclic RGD pentapeptoids by consecutive Ugi reactions. Org. Lett., 2008, 10(2), 205-208.
[http://dx.doi.org/10.1021/ol702521g] [PMID: 18088132]
[170]
Barreto, A.F.S.; Dos Santos, V.A.; Andrade, C.K.Z. Consecutive hydrazino-Ugi-azide reactions: synthesis of acylhydrazines bearing 1,5-disubstituted tetrazoles. Beilstein J. Org. Chem., 2017, 13, 2596-2602.
[http://dx.doi.org/10.3762/bjoc.13.256] [PMID: 29259669]
[171]
Karthikeyan, S.; Velavan, K.; Sathishkumar, R.; Varghese, B.; Manimaran, B. Self-assembly of manganese (I)-based molecular squares: Synthesis and spectroscopic and structural characterization. Organometallics, 2012, 31, 1953-1957.
[http://dx.doi.org/10.1021/om201244a]
[172]
Safaei-Ghomi, J.; Khojastehbakht-Koopaei, B.; Zahedi, S. Copper chromite nanoparticles as an efficient and recyclable catalyst for facile synthesis of 4,4′-(arylmethanediyl)bis(3-methyl-1H-pyrazol-5-ol) derivatives. Chem. Heterocycl. Compd., 2015, 51, 34-38.
[http://dx.doi.org/10.1007/s10593-015-1656-y]
[173]
Barreto, A.D.F.S.; Andrade, C.K.Z. Microwave-mediated synthesis of a cyclic heptapeptoid through consecutive Ugi reactions. Tetrahedron, 2018, 74(48), 6861-6865.
[http://dx.doi.org/10.1016/j.tet.2018.10.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy