Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Ag-catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review

Author(s): Roghayeh Hossein Nia, Manouchehr Mamaghani* and Fatemeh Tavakoli

Volume 19, Issue 4, 2022

Published on: 07 March, 2022

Page: [484 - 506] Pages: 23

DOI: 10.2174/1570179418666210910105744

Price: $65

Abstract

The investigation of the procedures for the multi-component synthesis of heterocycles has attracted the interest of organic and medicinal chemists. The use of heterogeneous catalysts, especially transition metal catalysts in organic synthesis, can provide a new, improved alternative to traditional methods in modern synthetic chemistry. The main focus is on the utilization of silver as a catalyst for the multi-component synthesis of heterocyclic compounds. The present review describes some important reported studies for the period of 2010 to 2020.

Conclusion: The present review addresses some of the important reported studies on multicomponent synthesis of heterocycles in the period of 2010-2020. These approaches were performed under classical and nonclassical conditions, using Ag salts, Ag NPs, Ag on the support, Ag as cocatalysts with other transition metals, ionic liquids, acidic or basic materials. Most of the reported reactions were performed under solvent-free conditions or in green solvents and the utilized catalysts were mostly recyclable. The main aim of the present review is to provide the organic chemists with the most appropriate procedures in the multi-component synthesis of desired heterocycles using silver catalysts.

Keywords: Multi-component reactions, heterocycles, transition metal catalyst, heterogeneous catalyst, Ag, Ag nanoparticles.

Graphical Abstract

[1]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[2]
Jung, H.H.; Floreancig, P.E. Gold-catalyzed synthesis of oxygen- and nitrogen-containing heterocycles from alkynyl ethers: Application to the total synthesis of andrachcinidine. J. Org. Chem., 2007, 72(19), 7359-7366.
[http://dx.doi.org/10.1021/jo071225w] [PMID: 17691845]
[3]
Martins, M.A.P.; Cunico, W.; Pereira, C.M.P.; Flores, A.F.C.; Bonacorso, H.G.; Zanatta, N. 4-Alkoxy-1, 1, 1-trichloro-3-alken-2-ones: preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1, 391-403.
[http://dx.doi.org/10.2174/1570179043366611]
[4]
Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
[5]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[6]
Orru, R.V.A.; de Greef, M. Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 10, 1471-1499.
[http://dx.doi.org/10.1055/s-2003-40507]
[7]
Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen-containing heterocycles. Synth. Commun., 2014, 44, 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
[8]
Reddy, C.R.; Reddy, M.D.; Dilipkumar, U. Total synthesis of a pyrrole lactone alkaloid, longanlactone. Eur. J. Org. Chem., 2014, 28, 6310-1313.
[http://dx.doi.org/10.1002/ejoc.201402563]
[9]
Xu, Q.; Kulkarni, A.A.; Sajith, A.M.; Hussein, D.; Brown, D.; Güner, O.F.; Reddy, M.D.; Watkins, E.B.; Lassègue, B.; Griendling, K.K.; Bowen, J.P. Design, synthesis, and biological evaluation of inhibitors of the NADPH oxidase, Nox4. Bioorg. Med. Chem., 2018, 26(5), 989-998.
[http://dx.doi.org/10.1016/j.bmc.2017.12.023] [PMID: 29426628]
[10]
Reddy, M.D.; Watkins, E.B. Palladium-catalyzed direct arylation of C(sp3)-H bonds of α-cyano aliphatic amides. J. Org. Chem., 2015, 80(22), 11447-11459.
[http://dx.doi.org/10.1021/acs.joc.5b02138] [PMID: 26513343]
[11]
Reddy, M.D.; Blanton, A.N.; Watkins, E.B. Palladium-catalyzed, N-(2-aminophenyl)acetamide-assisted ortho-arylation of substituted benzamides: application to the synthesis of urolithins B, M6, and M7. J. Org. Chem., 2017, 82(10), 5080-5095.
[http://dx.doi.org/10.1021/acs.joc.7b00256] [PMID: 28429590]
[12]
Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356), 737-738.
[http://dx.doi.org/10.1038/171737a0] [PMID: 13054692]
[13]
Hashmi, A.S.K.; Rudolph, M.; Bats, J.W.; Frey, W.; Rominger, F.; Oeser, T. Gold-catalyzed synthesis of chroman, dihydrobenzofuran, dihydroindole, and tetrahydroquinoline derivatives. Chemistry, 2008, 14(22), 6672-6678.
[http://dx.doi.org/10.1002/chem.200800210] [PMID: 18576410]
[14]
Hashmi, A.S.K.; Haufe, P.; Schmid, C.; Rivas Nass, A.; Frey, W. Asymmetric rhodium-catalyzed hydrogenation meets gold-catalyzed cyclization: Enantioselective synthesis of 8-hydroxytetrahydroisoquinolines. Chemistry, 2006, 12(20), 5376-5382.
[http://dx.doi.org/10.1002/chem.200600192] [PMID: 16683280]
[15]
Iwai, T.; Okochi, H.; Ito, H.; Sawamura, M. Construction of eight-membered carbocycles through gold catalysis with acetylene-tethered silyl enol ethers. Angew. Chem. Int. Ed. Engl., 2013, 52(15), 4239-4242.
[http://dx.doi.org/10.1002/anie.201300265] [PMID: 23460342]
[16]
Alberico, D.; Scott, M.E.; Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107(1), 174-238.
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
[17]
Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349]
[18]
Venkateshwarlu, R.; Chinnababu, B.; Ramulu, U.; Purushotham Reddy, K.; Damoder Reddy, M.; Sowjanya, P.; Venkateswara Rao, P.; Aravind, S. Synthesis and biological evaluation of (-)-kunstleramide and its derivatives. MedChemComm, 2016, 8(2), 394-404.
[http://dx.doi.org/10.1039/C6MD00606J] [PMID: 30108756]
[19]
Motati, D.R.; Uredi, D.; Watkins, E.B. The discovery and development of oxalamide and pyrrole small molecule inhibitors of gp120 and HIV entry - A review. Curr. Top. Med. Chem., 2019, 19(18), 1650-1675.
[http://dx.doi.org/10.2174/1568026619666190717163959] [PMID: 31424369]
[20]
Reddy, M.D.; Uredi, D.; Watkins, E.B. Chapter 4 - Metal-catalyzed, bidentate directing group-assisted CH functionalization: Application to the synthesis of complex natural products. Studies in Natural Products Chemistry., 2019, 63, 81-112.
[http://dx.doi.org/10.1016/B978-0-12-817901-7.00004-6]
[21]
Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem. Rev., 2006, 106(11), 4644-4680.
[http://dx.doi.org/10.1021/cr0683966] [PMID: 17091931]
[22]
Jiménez-González, L.; García-Muñoz, S.; Alvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Silver-catalyzed asymmetric synthesis of 2,3-dihydrobenzofurans: a new chiral synthesis of pterocarpans. Chemistry, 2006, 12(34), 8762-8769.
[http://dx.doi.org/10.1002/chem.200600332] [PMID: 16953512]
[23]
Li, Z.; He, C. Recent advances in silvercatalyzed nitrene, carbene, and silylenetransfer reactions. Eur. J. Org. Chem., 2006, 19, 4313-4322.
[http://dx.doi.org/10.1002/ejoc.200500602]
[24]
Dong, X-Y.; Gao, Z-W.; Yang, K-F.; Zhang, W-Q.; Xu, L-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol., 2015, 5, 2554-2574.
[http://dx.doi.org/10.1039/C5CY00285K]
[25]
Chopra, R.; Sharma, K.; Kumar, M.; Bhalla, V. Pentacenequinone-stabilized silver nanoparticles: a reusable catalyst for the Diels-Alder [4 + 2] cycloaddition reactions. J. Org. Chem., 2016, 81(3), 1039-1046.
[http://dx.doi.org/10.1021/acs.joc.5b02495] [PMID: 26756525]
[26]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[27]
Mamaghani, M.; Hossein Nia, R. Recent developments in the MCRs synthesis of pyridopyrimidines and spiro-pyridopyrimidines. J. Heterocycl. Chem., 2017, 54, 1700-1722.
[http://dx.doi.org/10.1002/jhet.2783]
[28]
Mamaghani, M.; Hossein Nia, R.; Tavakoli, F.; Jahanshahi, P. recent advances in the mcrs synthesis of chromenes: a review. Curr. Org. Chem., 2018, 22, 1-66.
[http://dx.doi.org/10.2174/1385272822666180530104302]
[29]
Mamaghani, M.; Hossein Nia, R. A review on the recent multi-component synthesis of pyranopyrazoles. Polycycl. Aromat. Compd., 2021, 41(2), 223-291.
[http://dx.doi.org/10.1080/10406638.2019.1584576]
[30]
Sreedevia, R.; Saranya, S.; Anilkuma, G. Recent trends in the silvercatalyzed synthesis of nitrogen heterocycles. Adv. Synth. Catal., 2019, 361, 4625-4644.
[http://dx.doi.org/10.1002/adsc.201900599]
[31]
Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N.K. Ag-mediated synthesis of six-membered N-heterocycles. Synth. Commun., 2020, 50, 753-795.
[http://dx.doi.org/10.1080/00397911.2019.1703196]
[32]
Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O-heterocycles. Synth. Commun., 2019, 40, 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525]
[33]
Muñoz, M.P. Silver and platinum-catalysed addition of O-H and N-H bonds to allenes. Chem. Soc. Rev., 2014, 43(9), 3164-3183.
[http://dx.doi.org/10.1039/c3cs60408j] [PMID: 24668233]
[34]
Naodovic, M.; Yamamoto, H. Asymmetric silver-catalyzed reactions. Chem. Rev., 2008, 108(8), 3132-3148.
[http://dx.doi.org/10.1021/cr068413r] [PMID: 18637695]
[35]
Alvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Silver-mediated synthesis of heterocycles. Chem. Rev., 2008, 108(8), 3174-3198.
[http://dx.doi.org/10.1021/cr078361l] [PMID: 18630971]
[36]
Halbes-Letinois, U.; Weibel, J-M.; Pale, P. The organic chemistry of silver acetylides. Chem. Soc. Rev., 2007, 36(5), 759-769.
[http://dx.doi.org/10.1039/b602151b] [PMID: 17471400]
[37]
Pellissier, H. Enantioselective silver-catalyzed transformations. Chem. Rev., 2016, 116(23), 14868-14917.
[http://dx.doi.org/10.1021/acs.chemrev.6b00639] [PMID: 27960274]
[38]
Dias, H.V.R.; Lovely, C.J. Carbonyl and olefin adducts of coinage metals supported by poly(pyrazolyl)borate and poly(pyrazolyl)alkane ligands and silver mediated atom transfer reactions. Chem. Rev., 2008, 108(8), 3223-3238.
[http://dx.doi.org/10.1021/cr078362d] [PMID: 18698738]
[39]
Alderson, J.M.; Corbin, J.R.; Schomaker, J.M. Tunable, chemo- and site-selective nitrene transfer reactions through the rational design of silver(I) catalysts. Acc. Chem. Res., 2017, 50(9), 2147-2158.
[http://dx.doi.org/10.1021/acs.accounts.7b00178] [PMID: 28787131]
[40]
Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M. Modified BINAP: the how and the why. Chem. Rev., 2005, 105(5), 1801-1836.
[http://dx.doi.org/10.1021/cr040652w] [PMID: 15884790]
[41]
Flores, J.A.; Komine, N.; Pal, K.; Pinter, B.; Pink, M.; Chen, Ch-H.; Caulton, K.G.; Mindiola, D.J. Silver(I)-catalyzed insertion of carbene into alkane C-H bonds and the origin of the special challenge of methane activation using DFT as a mechanistic probe. ACS Catal., 2012, 2, 2066-2078.
[http://dx.doi.org/10.1021/cs300256b]
[42]
Díaz-Requejo, M.M.; Pérez, P.J. Coinage metal catalyzed C-H bond functionalization of hydrocarbons. Chem. Rev., 2008, 108(8), 3379-3394.
[http://dx.doi.org/10.1021/cr078364y] [PMID: 18698739]
[43]
Wang, C.; Lai, J.; Chen, C.; Li, X.; Cao, H. Ag-catalyzed tandem three-component reaction toward the synthesis of multisubstituted imidazoles. J. Org. Chem., 2017, 82(24), 13740-13745.
[http://dx.doi.org/10.1021/acs.joc.7b02612] [PMID: 29161038]
[44]
Silver-promoted coupling of carbon dioxide, O-alkynylanilines and diaryliodonium salts: Straightforward access to 4-aryloxy-2-quinolinones. ChemistrySelect, 2017, 2, 4691-4695.
[http://dx.doi.org/10.1002/slct.201701045]
[45]
Song, Q-W.; Zhou, Z.H.; Wang, M-Y.; Zhang, K.; Liu, P.; Xun, J-Y.; He, L-N. Thermodynamically favorable synthesis of 2-oxazolidinones through silver-catalyzed reaction of propargylic alcohols, CO2, and 2-aminoethanols. ChemSusChem, 2016, 9(16), 2054-2058.
[http://dx.doi.org/10.1002/cssc.201600470] [PMID: 27380740]
[46]
Mohan, S.; Gopalakrishnan, B.; Babu, S.A. Multicomponent reaction comprising one-pot installation of bidentate directing group and Pd(II)-catalyzed direct β-arylation of C(sp3)H bond of aliphatic and alicyclic carboxamides. Tetrahedron, 2016, 72, 5853-5863.
[http://dx.doi.org/10.1016/j.tet.2016.08.010]
[47]
Mondal, A.; Mukhopadhyay, Ch. Silver-induced Cα(sp3)-H activation of benzylamines followed by [1,5]- versus [1,3]-rearrangement: A strategy towards the regioselective synthesis of spiro-dihydropyrroles. Eur. J. Org. Chem., 2017, 6299-6313.
[http://dx.doi.org/10.1002/ejoc.201701103]
[48]
Fang, G.; Wang, H.; Liu, Q.; Cong, X.; Bi, X. SilverPromoted [3+ 1+ 1] Annulation of Isocyanoacetates with Nitrosoarenes. Asian J. Org. Chem., 2018, 7, 1066-1070.
[http://dx.doi.org/10.1002/ajoc.201800172]
[49]
Hou, Y.; Zhou, Zh.; Liu, P.; Wang, J.; Hou, Q.; Wen, P.; Wang, H. A class of α-amino acids-derived multifunctional amidophosphane precatalysts: application to the highly enantio-and diastereoselective silver (I)-catalyzed 1,3-dipolar. Tetrahedron Asymmetry, 2017, 28, 930-938.
[http://dx.doi.org/10.1016/j.tetasy.2017.05.014]
[50]
Chen, Z.; Wu, J. Efficient generation of biologically active H-pyrazolo[5,1-a]isoquinolines via multicomponent reaction. Org. Lett., 2010, 12(21), 4856-4859.
[http://dx.doi.org/10.1021/ol101988q] [PMID: 20873765]
[51]
Rao, V.K.; Rao, M.S.; Jain, N.; Panwar, J.; Kumar, A. Silver triflate catalyzed synthesis of 3-aminoalkylated indoles and evaluation of their antibacterial activities. Org. Med. Chem. Lett., 2011, 1(1), 10-16.
[http://dx.doi.org/10.1186/2191-2858-1-10] [PMID: 22373086]
[52]
Li, S.; Luo, Y.; Wu, J. Three-component reaction of N-(2-alkynylbenzylidene)hydrazide, alkyne, with sulfonyl azide via a multicatalytic process: a novel and concise approach to 2-amino-H-pyrazolo[5,1-a]isoquinolines. Org. Lett., 2011, 13(16), 4312-4315.
[http://dx.doi.org/10.1021/ol201653j] [PMID: 21790168]
[53]
Markina, N.A.; Mancuso, R.; Neuenswander, B.; Lushington, G.H.; Larock, R.C. Solution-phase parallel synthesis of a diverse library of 1,2-dihydroisoquinolines. ACS Comb. Sci., 2011, 13(3), 265-271.
[http://dx.doi.org/10.1021/co1000794] [PMID: 21410207]
[54]
Pandit, R.P.; Lee, Y.R. Construction of multifunctionalized azopyrazoles by silver-catalyzed cascade reaction of diazo compounds. Adv. Synth. Catal., 2015, 357, 2657-2664.
[http://dx.doi.org/10.1002/adsc.201500197]
[55]
Pan, X.; Wang, H.; Xia, H-G.; Wu, J. An unexpected three-component reaction of 2-alkylenecyclobutanone, N′-(2-alkynylbenzylidene)hydrazide with water. RSC Advances, 2015, 5, 85225-85228.
[http://dx.doi.org/10.1039/C5RA17787A]
[56]
Hao, W-J.; Wu, Y-N.; Gao, Q.; Wang, Sh-L.; Tu, Sh-J.; Jiang, B. Dual cobalt(II)/silver catalysis: synthesis of aryliminated pyrrolo[2,3-b]indoles via multi-component bicyclization cascades. Tetrahedron Lett., 2016, 57, 4767-4769.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.046]
[57]
Xu, X.; Liu, W.; Wang, Zh.; Feng, Y.; Yan, Y.; Zhang, X. Silver-catalyzed one-step synthesis of multiply substituted quinolones. Tetrahedron Lett., 2016, 57, 226-229.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.028]
[58]
Sawant, D.M.; Sharma, S.; Pathare, R.S.; Joshi, G.; Kalra, S.; Sukanya, S.; Maurya, A.K.; Metre, R.K.; Agnihotri, V.K.; Khan, S.; Kumar, R.; Pardasani, R.T. Relay tricyclic Pd(ii)/Ag(i) catalysis: design of a four-component reaction driven by nitrene-transfer on isocyanide yields inhibitors of EGFR. Chem. Commun. (Camb.), 2018, 54(82), 11530-11533.
[http://dx.doi.org/10.1039/C8CC05845H] [PMID: 30137112]
[59]
Li, Y.; Zhang, Q.; Xu, X.; Zhang, X.; Yang, Y.; Yi, W. One-pot synthesis of 2, 4-disubstituted quinolines via silver-catalyzed three-component cascade annulation of amines, alkyne esters and terminal alkynes. Tetrahedron Lett., 2019, 60, 965-970.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.003]
[60]
Zaman, M.; Hasan, M.; Peshkov, A.; Hecke, K.V.; Eycken, E.V.V.; Pereshivko, O.P.; Peshkov, V.A. Silver(I) triflatecatalyzed protocol for the postUgi synthesis of spiroindolines. Adv. Synth. Catal., 2020, 362, 261-268.
[http://dx.doi.org/10.1002/adsc.201901064]
[61]
Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Silver-catalyzed tandem CC bond hydroazidation/radical addition/cyclization of biphenyl acetylene: One-pot synthesis of 6-methyl sulfonylated phenanthridines. Org. Lett., 2017, 19(15), 4026-4029.
[http://dx.doi.org/10.1021/acs.orglett.7b01771] [PMID: 28737404]
[62]
Hosseini Nasab, N.; Safari, J. An efficient protocol for the synthesis of spiroindenoquinoxaline derivatives using novel NiFe2O4/Ag3PO4 as a nano magnetically heterogeneous catalyst. Polyhedron, 2019, 164, 74-79.
[http://dx.doi.org/10.1016/j.poly.2019.02.032]
[63]
Roy, D.K.; Tamuli, K.J.; Bordoloi, M. Exploiting silver trifluoromethanesulfonate as efficient and reusable catalyst for the synthesis of dihydropyrimidine derivatives under different reaction environments. Heterocyclic Chem., 2019, 56(12), 1-11.
[64]
Jadhav, S.A.; Shioorkar, M.G.; Chavan, O.S.; Sarkate, A.P.; Shinde, D.B. Rapid an efficient one pot microwave assisted synthesis of 2- phenylimidazo[1,2-a]pyridines and 2-phenylimidazo[1,2-a]quinoline in Water-PEG-400. Synth. Commun., 2017, 47, 285-290.
[http://dx.doi.org/10.1080/00397911.2016.1262040]
[65]
Samzadeh-Kermani, A. Silver iodide catalyzed the three-component reaction between terminal alkynes, carbon disulfide, and aziridines. J. Sulfur Chem., 2019, 40, 554-564.
[http://dx.doi.org/10.1080/17415993.2019.1631316]
[66]
Kalam Khan, F.A.; Zaheer, Z.; Sangshetti, J.N.; Ahmed, R.Z. Facile one-pot synthesis, antibacterial activity and in silico ADME prediction of 1-substituted-1H-1,2,3,4-tetrazoles. Chem. Data Collect, 2018, 15-16, 107-114.
[http://dx.doi.org/10.1016/j.cdc.2018.05.001]
[67]
Li, J.; Liu, Y.; Li, Ch.; Jia, X. Silver hexafluoroantimonate-catalyzed three-component [2+2+1] cycloadditions of allenoates, dual activated olefins, and isocyanides. Adv. Synth. Catal., 2011, 353, 913-917.
[http://dx.doi.org/10.1002/adsc.201000795]
[68]
Lu, X.; Xin, X.; Wan, B. Silver-catalyzed [3+ 2+ 1] annulation of aryl amidines with benzyl isocyanide. Tetrahedron Lett., 2018, 59, 361-364.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.032]
[69]
Akhmetova, V.R.; Anpilogova, G.R. G.R. Khabibullina, Akhmadiev, N.S.; Ibragimov. A.G. One-Pot synthesis of bis-1,5,3- dithiazepanes and their sorption properties toward silver(I) and palladium(II). Russ. J. Appl. Chem., 2014, 87, 585-590.54R
[http://dx.doi.org/10.1134/S1070427214050085]
[70]
Leng, T.; Wu, G.; Zhou, Y-B.; Gao, W.; Ding, J.; Huang, X.; Liu, M.; Wu, H. Silver-catalyzed one-pot three-component selective synthesis of hydroxy selenides. Adv. Synth. Catal., 2018, 360, 4336-4340.
[http://dx.doi.org/10.1002/adsc.201800896]
[71]
Zhu, A.; Du, Ch.; Zhang, Y.; Li, L. Ionic liquid assisted silver-catalyzed one-pot A3-coupling reactions for the synthesis of propargylamines. J. Mol. Liq., 2019, 279, 289-293.
[http://dx.doi.org/10.1016/j.molliq.2019.01.142]
[72]
Li, Ch-J.; Bi, X. Silver catalysis in organic synthesis; Wiley-VCH Verlag GmbH & Co., 2019.
[73]
Safaei-Ghomi, J.; Ghasemzadeh, M.A. Silver iodide nanoparticle as an efficient and reusable catalyst for the one-pot synthesis of benzofurans under aqueous conditions. J. Chem. Sci., 2013, 125, 1003-1008.
[http://dx.doi.org/10.1007/s12039-013-0451-5]
[74]
Ghasemzadeh, M.A.; Safaei-Ghomi, J. An efficient, one-pot synthesis of polyfunctionalised dihydropyridines catalysed by AgI nanoparticles. J. Chem. Res., 2014, 313-316.
[http://dx.doi.org/10.3184/174751914X13976454726953]
[75]
Balwe, S.G.; Shinde, V.V.; Rokade, A.A.; Park, S.S.; Jeong, Y.T. Green synthesis and characterization of silver nanoparticles (Ag NPs) from extract of plant Radix Puerariae: An efficient and recyclable catalyst for the construction of pyrimido[1,2-b]indazole derivatives under solvent-free conditions. Catal. Commun., 2017, 99, 121-126.
[http://dx.doi.org/10.1016/j.catcom.2017.06.006]
[76]
Mahdjoub, S.; Boulcina, R.; Yildirim, M.; Lakehal, S.; Boulebd, H. Debache. A. A silver nanoparticles-catalyzed efficient three-component synthesis of polysubstituted 4H-chromenylphosphonates and their antioxidant activity. Synth. Commun., 2018, 48(18), 2366-2381.
[http://dx.doi.org/10.1080/00397911.2018.1484487]
[77]
Poola, S.; Gundluru, M.; Nadiveedhi, M.R.; Saddala, M.S.; Rao, P.T.S.R.K.; Cirandur, S.R. Nano silver particles catalyzed synthesis, molecular docking and bioactivity of α-thiazolyl aminomethylene bisphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195, 409-420.
[http://dx.doi.org/10.1080/10426507.2019.1700413]
[78]
Romanenko, V.D.; Kukhar, V.P. 1-Amino-1,1-bisphosphonates-fundamental syntheses and new developments. ARKIVOC, 2012, v, 127-166.
[http://dx.doi.org/10.3998/ark.5550190.0013.411]
[79]
Choi, M.; Kleitz, F.; Liu, D.; Lee, H.Y.; Ahn, W.S.; Ryoo, R. Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials. J. Am. Chem. Soc., 2005, 127(6), 1924-1932.
[http://dx.doi.org/10.1021/ja044907z] [PMID: 15701027]
[80]
Bhaumik, P.; Kane, T.; Dhepe, P.L. Silica and zirconia supported tungsten, molybdenum and gallium oxide catalysts for the synthesis of furfural. Catal. Sci. Technol., 2014, 4, 2904-2907.
[http://dx.doi.org/10.1039/C4CY00530A]
[81]
Walcarius, A. Electrochemical applications of silica-based organic-inorganic hybrid materials. Chem. Mater., 2001, 13, 3351-3372.
[http://dx.doi.org/10.1021/cm0110167]
[82]
Maddila, S.N.; Maddila, S.; Zyl, W.E.; Jonnalagadda, S.B. Ag/SiO2 as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones). Res. Chem. Intermed., 2016, 42, 2553-2566.
[http://dx.doi.org/10.1007/s11164-015-2167-2]
[83]
Shafiee, M.R.M.; Moloudi, R. Solvent-free preparation of 2,4,6-triaryl pyridines using silver(I) nitrate adsorbed on silica gel nanoparticles (AgNO3-Nano SiO2) as an efficient catalyst. Lett. Org. Chem., 2011, 8, 717-721.
[http://dx.doi.org/10.2174/157017811799304214]
[84]
Díez-González, S.; Marion, N.; Nolan, S.P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev., 2009, 109(8), 3612-3676.
[http://dx.doi.org/10.1021/cr900074m] [PMID: 19588961]
[85]
Arduengo, A.J.; Bertrand, G. Carbenes introduction. Chem. Rev., 2009, 109(8), 3209-3210.
[http://dx.doi.org/10.1021/cr900241h] [PMID: 19642638]
[86]
Kühl, O. Sterically induced differences in N-heterocyclic carbine transition metal complexes. Coord. Chem. Rev., 2009, 253, 2481-2492.
[http://dx.doi.org/10.1016/j.ccr.2009.07.019]
[87]
Mercs, L.; Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev., 2010, 39(6), 1903-1912.
[http://dx.doi.org/10.1039/b902238b] [PMID: 20502793]
[88]
Cao, J.; Xu, G.; Li, P.; Tao, M.; Zhang, W. Polyacrylonitrile fiber supported N-heterocyclic carbene Ag(I) as efficient catalysts for three-component coupling and intramolecular 1,3-dipolar cycloaddition reactions under flow conditions. ACS Sustain. Chem.& Eng., 2017, 5, 3438-3447.
[http://dx.doi.org/10.1021/acssuschemeng.7b00103]
[89]
Kankala, Sh.; Pagadala, R.; Maddila, S.; Vasam, Ch.S.; Jonnalagadda, S.B. Silver(i)-N-heterocyclic carbene catalyzed multi-component reactions: a facile synthesis of multisubstituted pyridines. RSC Advances, 2015, 5, 105446-105452.
[http://dx.doi.org/10.1039/C5RA16582B]
[90]
Liu, Y-F.; Wang, Z.; Shi, J-W.; Chen, B-L.; Zhao, Z.G.; Chen, Z.Zh-G. Zhao, Chen, Z. NHC-Ag(I) catalyzed three component 1,3-dipolar cycloaddition to provide polysubstituted dihydro-/tetrahydrofurans. J. Org. Chem., 2015, 80(24), 12733-12739.
[http://dx.doi.org/10.1021/acs.joc.5b02422] [PMID: 26599304]
[91]
Sadeghi, B. Synthesis of Kaolin/Ag nanocomposite as an efficient and versatile reagent for the synthesis of 1,8- dioxooctahydroxanthene derivatives. SYNTH. REACT. INORG. M., 2014, 44, 424-428.
[92]
Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev., 2010, 39(11), 4146-4157.
[http://dx.doi.org/10.1039/c002690p] [PMID: 20623061]
[93]
Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem., 2011, 21, 3455-3461.
[http://dx.doi.org/10.1039/C0JM01859G]
[94]
Zhao, G.; Wen, T.; Chen, C.; Wang, X. Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Advances, 2012, 2, 9286-9303.
[http://dx.doi.org/10.1039/c2ra20990j]
[95]
Farjami, E.; Rottmayer, M.A.; Deiner, L.J. Evidence for oxygen reduction reaction activity of a Ni (OH)2/graphene oxide catalyst. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 15501-15508.
[http://dx.doi.org/10.1039/c3ta13351f]
[96]
Nie, R.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon, 2012, 50, 586-596.
[http://dx.doi.org/10.1016/j.carbon.2011.09.017]
[97]
Zheng, Y.; Wang, A. Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J. Mater. Chem., 2012, 22, 16552-16559.
[http://dx.doi.org/10.1039/c2jm32774k]
[98]
Wang, P.; Liu, Z-G.; Chen, X.; Meng, F-L.; Liu, J-H.; Huang, X-J. UV irradiation synthesis of an Au-graphene nanocomposite with enhanced electrochemical sensing properties. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 9189-9195.
[http://dx.doi.org/10.1039/c3ta11155e]
[99]
Ran, X.; Sun, H.; Pu, F.; Ren, J.; Qu, X. Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chem. Commun. (Camb.), 2013, 49(11), 1079-1081.
[http://dx.doi.org/10.1039/c2cc38403e] [PMID: 23282794]
[100]
Dandia, A.; Sharma, A.; Parewa, V.; Kumawat, B.; Rathore, K.S.; Sharma, A. Amidic C-N bond cleavage of isatin: Chemoselective synthesis of pyrrolo[2,3,4-kl]acridin-1-ones using Ag NPs decorated rGO composite as an efficient and recoverable catalyst under microwave irradiation. RSC Advances, 2015, 5, 91888-91902.
[http://dx.doi.org/10.1039/C5RA11747J]
[101]
Fatahpour, M.; Noori Sadeh, F.; Hazeri, N.; Maghsoodlou, M.T.; Hadavi, M.S.; Mahnaei, S. Ag/TiO2 nano-thin films as robust heterogeneous catalyst for one-pot, multi-component synthesis of bis (pyrazol-5-ol) and dihydropyrano[2,3-c]pyrazole analogs. J. Saudi Chem. Soc., 2017, 21, 998-1006.
[http://dx.doi.org/10.1016/j.jscs.2017.05.009]
[102]
Borah, S.J.; Das, D.K. Modified montmorillonite clay stabilized silver nanoparticles: An active heterogeneous catalytic system for the synthesis of propargylamines. Catal. Lett., 2016, 146, 656-665.
[http://dx.doi.org/10.1007/s10562-015-1679-0]
[103]
Maleki, A.; Movahed, H.; Ravaghi, P. Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohydr. Polym., 2017, 156, 259-267.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.002] [PMID: 27842821]
[104]
Maleki, A.; Ravaghi, P.; Aghaei, M.; Movahed, H. A novel magnetically recyclable silver-loaded cellulosebased bionanocomposite catalyst for green synthesis of tetrazolo[1,5-a]pyrimidines. Res. Chem. Intermed., 2017, 43, 5485-5494.
[http://dx.doi.org/10.1007/s11164-017-2941-4]
[105]
Madhavan, S.; Okamoto, S. Silica-supported silver as a green and sustainable catalyst for the [3+2]-cycloaddition reaction of azomethine ylides with 2hydroxychalcone derivatives. ChemCatChem, 2018, 10, 2014-2018.
[http://dx.doi.org/10.1002/cctc.201702035]
[106]
Gajengi, A.L.; Fernandes, C.S.; Bhanage, B.M. Synthesis of Cu2O/Ag nanocomposite and their catalytic applicationfor the one-pot synthesis of substituted pyrroles. Mol. Cat, 2018, 451, 13-19.
[http://dx.doi.org/10.1016/j.mcat.2017.10.010]
[107]
Mirhashemi, F.; Amrollahi, M.A. Decoration of β-CD on Fe3O4@Ag core-shell nanoparticles as a new magnetically recoverable and reusable catalyst for the synthesis of 3,4-dihydropyrimidinones and 2,4-dihydropyrano[2,3-c]pyrazoles in H2O. Inorg. Chim. Acta, 2019, 486, 568-575.
[http://dx.doi.org/10.1016/j.ica.2018.11.009]
[108]
Ghiassi, S.; Mokhtary, M.; Sedaghat, S.; Kefayati, H. Preparation, and antibacterial activity of chloroacetic acid immobilized on chitosan coated iron oxide decorated silver nanoparticles as an efficient catalyst for the synthesis of hexahydroquinoline-3-carboxamides. J. Inorg. Organomet. Polym. Mater., 2019, 29, 1972-1982.
[http://dx.doi.org/10.1007/s10904-019-01156-6]
[109]
Verma, D.; Sharma, V.; Jain, Sh.; Okram, G.S. Ultrasound-assisted synthesis of 1, 8-dioxodecahydroacridine derivatives in presence of Ag doped CdS nanocatalyst. J. Dispers. Sci. Technol., 2020, 41, 1145-1158.
[http://dx.doi.org/10.1080/01932691.2019.1614460]
[110]
Rai, R.K.; Tyagi, D.; Gupta, K.; Singh, S.K. Activated nanostructured bimetallic catalysts for C-C coupling reactions: recent progress. Catal. Sci. Technol., 2016, 6, 3341-3361.
[http://dx.doi.org/10.1039/C5CY02225H]
[111]
Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 2012, 41(24), 8099-8139.
[http://dx.doi.org/10.1039/c2cs35296f] [PMID: 23093051]
[112]
Notar Francesco, I. FontaineVive, F.; Antoniotti, S. Synergy in the catalytic activity of bimetallic nanoparticles and new synthetic methods for the preparation of fine chemicals. ChemCatChem, 2014, 6, 2784-2791.
[http://dx.doi.org/10.1002/cctc.201402252]
[113]
Singh, A.K.; Xu, Q. Synergistic Catalysis over bimetallic alloy nanoparticles. ChemCatChem, 2013, 5, 652-676.
[http://dx.doi.org/10.1002/cctc.201200591]
[114]
Toshima, N.; Yonezawa, T. Bimetallic nanoparticles novel materials for chemical and physical applications. New J. Chem., 1998, 22, 1179-1201.
[http://dx.doi.org/10.1039/a805753b]
[115]
RodríguezGómez, A.; Platero, F.; Caballero, A.; Colón, G. Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Mol. Catal., 2018, 445, 142-151.
[http://dx.doi.org/10.1016/j.mcat.2017.10.034]
[116]
Gaudin, P.; Dorge, S.; Nouali, H.; Kehrli, D.; Michelin, L.; Josien, L.; Fioux, P.; Vidal, L.; Soulard, M.; Vierling, M. Synthesis of Cu-Ce/KIT-6 materials for SOx removal. Appl. Catal. A Gen., 2015, 504, 110-118.
[http://dx.doi.org/10.1016/j.apcata.2014.11.024]
[117]
Tavakoli, F.; Mamaghani, M.; Sheykhan, M. Introduction of Ag/CuO/MCM‐48 as an efficient catalyst for the one‐pot synthesis of novel pyran‐pyrrole hybrids. Appl. Organometal. Chem. 2019. e5083.
[http://dx.doi.org/10.1002/aoc.5083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy