Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Naturally Sourced CDK Inhibitors and Current Trends in Structure-Based Synthetic Anticancer Drug Design by Crystallography

Author(s): Sisir Nandi*, Rishita Dey, Sudatta Dey, Asmita Samadder and Anil Kumar Saxena*

Volume 22, Issue 3, 2022

Published on: 08 September, 2021

Page: [485 - 498] Pages: 14

DOI: 10.2174/1871520621666210908101751

Price: $65

Abstract

Cyclin-Dependent Kinases (CDKs) are the chief regulators in cell proliferation; the kinase activities are largely regulated by their interactions with CDK Inhibitors (CKIs) and Cyclins. The association of different CDKs with CDKIs and Cyclins at the cell-cycle checkpoints of different stages of mitotic cell cycle function act more likely as the molecular switches that regulate different transcriptional events required for progression through the cell cycle. A fine balance in response to extracellular and intracellular signals is highly maintained in the orchestrated function of CDKs along with Cyclins and CDKIs for normal cell proliferation. This fine-tuning in mitotic cell cycle progression sometimes gets lost due to dysregulation of CDKs. The aberrant functioning of the CDKIs is therefore studied for its contributions as a vital hallmark of cancers. It has attracted our focus to maneuver cancer therapy. Hence, several synthetic CDKIs and their crystallography-based drug design have been explained to understand their mode of action with CDKs. Since most of the synthetic drugs function by inhibiting the CDK4/6 kinases by competitively binding to their ATP binding cleft, these synthetic drugs are reported to attack the normal, healthy growing cells adjacent to the cancer cells leading to the decrease in the life span of the cancer patients. The quest for traditional natural medicines may have a great impact on the treatment of cancer. Therefore, in the present studies, a search for naturally sourced CDK inhibitors has been briefly focused. Additionally, some synthetic crystallography-based drug design has been explained to elucidate different avenues to develop better anticancer chemotherapeutics, converting natural scaffolds into inhibitors of the CDK mediated abnormal signal transduction with lesser side effects.

Keywords: Abnormal signaling, cancer, natural CDK inhibitors, crystallography, structure-based drug design, anticancer drug design.

Graphical Abstract

[1]
Nandi, S.; Bagchi, M.C. EGFR, FGFR and PDGFR: emerging targets for anticancer drug design. J. Cancer Res. Updates, 2016, 5, 99-108.
[http://dx.doi.org/10.6000/1929-2279.2016.05.03.3]
[2]
Waters, A.M.; Der, C.J. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med., 2018, 8(9)a031435
[http://dx.doi.org/10.1101/cshperspect.a031435] [PMID: 29229669]
[3]
Rimawi, M.F.; Schiff, R.; Osborne, C.K. Targeting HER2 for the treatment of breast cancer. Annu. Rev. Med., 2015, 66, 111-128.
[http://dx.doi.org/10.1146/annurev-med-042513-015127] [PMID: 25587647]
[4]
Park, M-T.; Lee, S-J. Cell cycle and cancer. J. Biochem. Mol. Biol., 2003, 36(1), 60-65.
[PMID: 12542976]
[5]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed; Garland Science: New York, 2002.
[6]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098-a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[7]
Wodarz, D.; Newell, A.C.; Komarova, N.L. Passenger mutations can accelerate tumour suppressor gene inactivation in cancer evolution. J. R. Soc. Interface, 2018, 15(143)20170967
[http://dx.doi.org/10.1098/rsif.2017.0967] [PMID: 29875280]
[8]
Mair, B.; Konopka, T.; Kerzendorfer, C.; Sleiman, K.; Salic, S.; Serra, V.; Muellner, M.K.; Theodorou, V.; Nijman, S.M.B. Gain- and loss-of-function mutations in the breast cancer gene GATA3 result in differential drug sensitivity. PLoS Genet., 2016, 12(9)e1006279
[http://dx.doi.org/10.1371/journal.pgen.1006279] [PMID: 27588951]
[9]
Roy, D.M.; Walsh, L.A.; Chan, T.A. Driver mutations of cancer epigenomes. Protein Cell, 2014, 5(4), 265-296.
[http://dx.doi.org/10.1007/s13238-014-0031-6] [PMID: 24622842]
[10]
Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res., 2012, 72(10), 2457-2467.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
[11]
Quinlan, M.P.; Settleman, J. Isoform-specific ras functions in development and cancer. Future Oncol., 2009, 5(1), 105-116.
[http://dx.doi.org/10.2217/14796694.5.1.105] [PMID: 19243303]
[12]
Li, L.; Zhao, G-D.; Shi, Z.; Qi, L-L.; Zhou, L-Y.; Fu, Z-X. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol. Lett., 2016, 12(5), 3045-3050.
[http://dx.doi.org/10.3892/ol.2016.5110] [PMID: 27899961]
[13]
Chang, F.; Steelman, L.S.; Lee, J.T.; Shelton, J.G.; Navolanic, P.M.; Blalock, W.L.; Franklin, R.A.; McCubrey, J.A. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003, 17(7), 1263-1293.
[http://dx.doi.org/10.1038/sj.leu.2402945] [PMID: 12835716]
[14]
Gabay, M.; Li, Y.; Felsher, D.W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med., 2014, 4(6), a014241-a014241.
[http://dx.doi.org/10.1101/cshperspect.a014241] [PMID: 24890832]
[15]
Levine, M.S.; Holland, A.J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev., 2018, 32(9-10), 620-638.
[http://dx.doi.org/10.1101/gad.314351.118] [PMID: 29802124]
[16]
Hunter, T.; Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994, 79(4), 573-582.
[http://dx.doi.org/10.1016/0092-8674(94)90543-6] [PMID: 7954824]
[17]
Chotiner, J.Y.; Wolgemuth, D.J.; Wang, P.J. Functions of cyclins and CDKs in mammalian gametogenesis. Biol. Reprod., 2019, 101(3), 591-601.
[http://dx.doi.org/10.1093/biolre/ioz070] [PMID: 31078132]
[18]
Kamb, A. Cell-cycle regulators and cancer. Trends Genet., 1995, 11(4), 136-140.
[http://dx.doi.org/10.1016/S0168-9525(00)89027-7] [PMID: 7732591]
[19]
Risal, S.; Adhikari, D.; Liu, K. Animal models for studying the in vivo functions of cell cycle CDKs. Methods Mol. Biol., 2016, 1336, 155-166.
[http://dx.doi.org/10.1007/978-1-4939-2926-9_13] [PMID: 26231715]
[20]
Morgan, D.O. Principles of CDK regulation. Nature, 1995, 374(6518), 131-134.
[http://dx.doi.org/10.1038/374131a0] [PMID: 7877684]
[21]
Pines, J. Cyclins: wheels within wheels. Cell Growth Differ., 1991, 2(6), 305-310.
[PMID: 1648379]
[22]
Heichman, K.A.; Roberts, J.M. Rules to replicate by. Cell, 1994, 79(4), 557-562.
[http://dx.doi.org/10.1016/0092-8674(94)90541-X] [PMID: 7954822]
[23]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[24]
Sherr, C.J.; Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev., 1995, 9(10), 1149-1163.
[http://dx.doi.org/10.1101/gad.9.10.1149] [PMID: 7758941]
[25]
Sherr, C.J.; Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev., 1999, 13(12), 1501-1512.
[http://dx.doi.org/10.1101/gad.13.12.1501] [PMID: 10385618]
[26]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[27]
Galaktionov, K.; Chen, X.; Beach, D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature, 1996, 382(6591), 511-517.
[http://dx.doi.org/10.1038/382511a0] [PMID: 8700224]
[28]
Nilsson, I.; Hoffmann, I. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res., 2000, 4, 107-114.
[http://dx.doi.org/10.1007/978-1-4615-4253-7_10] [PMID: 10740819]
[29]
Bretones, G.; Delgado, M.D.; León, J. Myc and cell cycle control. Biochim. Biophys. Acta, 2015, 1849(5), 506-516.
[http://dx.doi.org/10.1016/j.bbagrm.2014.03.013] [PMID: 24704206]
[30]
el-Deiry, W.S.; Tokino, T.; Velculescu, V.E.; Levy, D.B.; Parsons, R.; Trent, J.M.; Lin, D.; Mercer, W.E.; Kinzler, K.W.; Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell, 1993, 75(4), 817-825.
[http://dx.doi.org/10.1016/0092-8674(93)90500-P] [PMID: 8242752]
[31]
Ko, L.J.; Prives, C. p53: puzzle and paradigm. Genes Dev., 1996, 10(9), 1054-1072.
[http://dx.doi.org/10.1101/gad.10.9.1054] [PMID: 8654922]
[32]
Gartel, A.L.; Tyner, A.L. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther., 2002, 1(8), 639-649.
[PMID: 12479224]
[33]
Easton, J.; Wei, T.; Lahti, J.M.; Kidd, V.J. Disruption of the cyclin D/cyclin-dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma. Cancer Res., 1998, 58(12), 2624-2632.
[PMID: 9635589]
[34]
Wölfel, T.; Hauer, M.; Schneider, J.; Serrano, M.; Wölfel, C.; Klehmann-Hieb, E.; De Plaen, E.; Hankeln, T.; Meyer zum Büschenfelde, K.H.; Beach, D.A. p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science, 1995, 269(5228), 1281-1284.
[http://dx.doi.org/10.1126/science.7652577] [PMID: 7652577]
[35]
Canavese, M.; Santo, L.; Raje, N. Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol. Ther., 2012, 13(7), 451-457.
[http://dx.doi.org/10.4161/cbt.19589] [PMID: 22361734]
[36]
Motokura, T.; Bloom, T.; Kim, H.G.; Jüppner, H.; Ruderman, J.V.; Kronenberg, H.M.; Arnold, A. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature, 1991, 350(6318), 512-515.
[http://dx.doi.org/10.1038/350512a0] [PMID: 1826542]
[37]
Li, Y.; Wei, J.; Xu, C.; Zhao, Z.; You, T. Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PLoS One, 2014, 9(4)e94508
[http://dx.doi.org/10.1371/journal.pone.0094508] [PMID: 24728073]
[38]
Comstock, C.E.S.; Revelo, M.P.; Buncher, C.R.; Knudsen, K.E. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br. J. Cancer, 2007, 96(6), 970-979.
[http://dx.doi.org/10.1038/sj.bjc.6603615] [PMID: 17375037]
[39]
Casimiro, M.C.; Crosariol, M.; Loro, E.; Li, Z.; Pestell, R.G. Cyclins and cell cycle control in cancer and disease. Genes Cancer, 2012, 3(11-12), 649-657.
[http://dx.doi.org/10.1177/1947601913479022] [PMID: 23634253]
[40]
Sherr, C.J.; McCormick, F. The RB and p53 pathways in cancer. Cancer Cell, 2002, 2(2), 103-112.
[http://dx.doi.org/10.1016/S1535-6108(02)00102-2] [PMID: 12204530]
[41]
Israels, E.D.; Israels, L.G. The cell cycle. Oncologist, 2000, 5(6), 510-513.
[http://dx.doi.org/10.1634/theoncologist.5-6-510] [PMID: 11110604]
[42]
Miller, C.; Koeffler, H.P. P53 mutations in human cancer. Leukemia, 1993, 7(Suppl. 2), S18-S21.
[PMID: 8361226]
[43]
Greenblatt, M.S.; Bennett, W.P.; Hollstein, M.; Harris, C.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res., 1994, 54(18), 4855-4878.
[PMID: 8069852]
[44]
Nataraj, A.J.; Trent, J.C., II; Ananthaswamy, H.N. p53 gene mutations and photocarcinogenesis. Photochem. Photobiol., 1995, 62(2), 218-230.
[http://dx.doi.org/10.1111/j.1751-1097.1995.tb05262.x] [PMID: 7480131]
[45]
Bueso-Ramos, C.E.; Manshouri, T.; Haidar, M.A.; Huh, Y.O.; Keating, M.J.; Albitar, M. Multiple patterns of MDM-2 deregulation in human leukemias: implications in leukemogenesis and prognosis. Leuk. Lymphoma, 1995, 17(1-2), 13-18.
[http://dx.doi.org/10.3109/10428199509051698] [PMID: 7773150]
[46]
Bueso-Ramos, C.E.; Manshouri, T.; Haidar, M.A.; Yang, Y.; McCown, P.; Ordonez, N.; Glassman, A.; Sneige, N.; Albitar, M. Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res. Treat., 1996, 37(2), 179-188.
[http://dx.doi.org/10.1007/BF01806499] [PMID: 8750585]
[47]
Møller, M.B.; Ino, Y.; Gerdes, A-M.; Skjødt, K.; Louis, D.N.; Pedersen, N.T. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma. Leukemia, 1999, 13(3), 453-459.
[http://dx.doi.org/10.1038/sj.leu.2401315] [PMID: 10086736]
[48]
Wakasugi, E.; Kobayashi, T.; Tamaki, Y.; Ito, Y.; Miyashiro, I.; Komoike, Y.; Takeda, T.; Shin, E.; Takatsuka, Y.; Kikkawa, N.; Monden, T.; Monden, M. p21(Waf1/Cip1) and p53 protein expression in breast cancer. Am. J. Clin. Pathol., 1997, 107(6), 684-691.
[http://dx.doi.org/10.1093/ajcp/107.6.684] [PMID: 9169666]
[49]
Senderowicz, A.M. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs, 1999, 17(3), 313-320.
[http://dx.doi.org/10.1023/A:1006353008903] [PMID: 10665481]
[50]
Li, Y.; Chinni, S.R.; Senderowicz, A.M.; Sarkar, F.H. Induction of growth inhibition and apoptosis in prostate cancer cells by flavopiridol. Int. J. Oncol., 2000, 17(4), 755-759.
[http://dx.doi.org/10.3892/ijo.17.4.755] [PMID: 10995888]
[51]
Patel, V.; Senderowicz, A.M.; Pinto, D., Jr; Igishi, T.; Raffeld, M.; Quintanilla-Martinez, L.; Ensley, J.F.; Sausville, E.A.; Gutkind, J.S. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J. Clin. Invest., 1998, 102(9), 1674-1681.
[http://dx.doi.org/10.1172/JCI3661] [PMID: 9802881]
[52]
Sedlacek, H.H. Mechanisms of action of flavopiridol. Crit. Rev. Oncol. Hematol., 2001, 38(2), 139-170.
[http://dx.doi.org/10.1016/S1040-8428(00)00124-4] [PMID: 11311660]
[53]
Kaur, G.; Stetler-Stevenson, M.; Sebers, S.; Worland, P.; Sedlacek, H.; Myers, C.; Czech, J.; Naik, R.; Sausville, E. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J. Natl. Cancer Inst., 1992, 84(22), 1736-1740.
[http://dx.doi.org/10.1093/jnci/84.22.1736] [PMID: 1279187]
[54]
Carlson, B.A.; Dubay, M.M.; Sausville, E.A.; Brizuela, L.; Worland, P.J. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res., 1996, 56(13), 2973-2978.
[PMID: 8674031]
[55]
Losiewicz, M.D.; Carlson, B.A.; Kaur, G.; Sausville, E.A.; Worland, P.J. Potent inhibition of CDC2 kinase activity by the flavonoid L86-8275. Biochem. Biophys. Res. Commun., 1994, 201(2), 589-595.
[http://dx.doi.org/10.1006/bbrc.1994.1742] [PMID: 8002990]
[56]
Carlson, B.; Pearlstein, R.; Naik, R.; Sedlacek, H.; Sausville, E.; Worland, P. Inhibition of CDK2, CDK4 and CDK7 by flavopiridol and structural analogs. Proc. Annu. Meet. Am. Assoc. Cancer Res., 1996.
[57]
de Azevedo, W.F., Jr; Canduri, F.; da Silveira, N.J. Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. Biochem. Biophys. Res. Commun., 2002, 293(1), 566-571.
[http://dx.doi.org/10.1016/S0006-291X(02)00266-8] [PMID: 12054639]
[58]
Gali-Muhtasib, H. Cyclin-dependent kinase inhibitors from natural sources: recent advances and future prospects for cancer treatment. Adv. Phytomed., 2006, 2, 155-167.
[http://dx.doi.org/10.1016/S1572-557X(05)02009-X]
[59]
De Azevedo, W.F., Jr; Mueller-Dieckmann, H.J.; Schulze-Gahmen, U.; Worland, P.J.; Sausville, E.; Kim, S.H. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2735-2740.
[http://dx.doi.org/10.1073/pnas.93.7.2735] [PMID: 8610110]
[60]
Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchya, H.; Takahashi, Y.; Masuma, R. A new alkaloid AM-2282 of Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1977, 30(4), 275-282.
[http://dx.doi.org/10.7164/antibiotics.30.275] [PMID: 863788]
[61]
Tamaoki, T.; Nomoto, H.; Takahashi, I.; Kato, Y.; Morimoto, M.; Tomita, F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem. Biophys. Res. Commun., 1986, 135(2), 397-402.
[http://dx.doi.org/10.1016/0006-291X(86)90008-2] [PMID: 3457562]
[62]
Lawrie, A.M.; Noble, M.E.M.; Tunnah, P.; Brown, N.R.; Johnson, L.N.; Endicott, J.A. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat. Struct. Biol., 1997, 4(10), 796-801.
[http://dx.doi.org/10.1038/nsb1097-796] [PMID: 9334743]
[63]
Shimizu, T.; Takahashi, N.; Tachibana, K.; Takeda, K. Complex regulation of CDK2 and G1 arrest during neuronal differentiation of human prostatic cancer TSU-Prl cells by staurosporine. Anticancer Res., 2001, 21(2A), 893-898.
[PMID: 11396181]
[64]
Harmalkar, M.N.; Shirsat, N.V. Staurosporine-induced growth inhibition of glioma cells is accompanied by altered expression of cyclins, CDKs and CDK inhibitors. Neurochem. Res., 2006, 31(5), 685-692.
[http://dx.doi.org/10.1007/s11064-006-9068-0] [PMID: 16770740]
[65]
Han, R. Highlight on the studies of anticancer drugs derived from plants in China. Stem Cells, 1994, 12(1), 53-63.
[http://dx.doi.org/10.1002/stem.5530120110] [PMID: 8142920]
[66]
Hoessel, R.; Leclerc, S.; Endicott, J.A.; Nobel, M.E.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.; Niederberger, E.; Tang, W.; Eisenbrand, G.; Meijer, L. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol., 1999, 1(1), 60-67.
[http://dx.doi.org/10.1038/9035] [PMID: 10559866]
[67]
Liu, X.M.; Wang, L.G.; Li, H.Y.; Ji, X.J. Induction of differentiation and down-regulation of c-myb gene expression in ML-1 human myeloblastic leukemia cells by the clinically effective anti-leukemia agent meisoindigo. Biochem. Pharmacol., 1996, 51(11), 1545-1551.
[http://dx.doi.org/10.1016/0006-2952(96)00098-6] [PMID: 8630096]
[68]
Marko, D.; Schätzle, S.; Friedel, A.; Genzlinger, A.; Zankl, H.; Meijer, L.; Eisenbrand, G. Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br. J. Cancer, 2001, 84(2), 283-289.
[http://dx.doi.org/10.1054/bjoc.2000.1546] [PMID: 11161389]
[69]
Yan, L.; Lai, F.; Chen, X.; Xiao, Z. Discovery of novel indirubin-3′-monoxime derivatives as potent inhibitors against CDK2 and CDK9. Bioorg. Med. Chem. Lett., 2015, 25(11), 2447-2451.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.066] [PMID: 25908517]
[70]
Wan, Y.; Hur, W.; Cho, C.Y.; Liu, Y.; Adrian, F.J.; Lozach, O.; Bach, S.; Mayer, T.; Fabbro, D.; Meijer, L.; Gray, N.S. Synthesis and target identification of hymenialdisine analogs. Chem. Biol., 2004, 11(2), 247-259.
[http://dx.doi.org/10.1016/j.chembiol.2004.01.015] [PMID: 15123286]
[71]
Cimino, G.; De Rosa, S.; De Stefano, S.; Mazzarella, L.; Puliti, R.; Sodano, G. Isolation and x-ray crystal structure of a novel bromo compound from two marine sponges. Tetrahedron Lett., 1982, 23(7), 767-768.
[http://dx.doi.org/10.1016/S0040-4039(00)86943-9]
[72]
De Nanteuil, G.; Ahond, A.; Guilhem, J.; Poupat, C.; Tran Huu Dau, E.; Potier, P.; Pusset, M.; Pusset, J.; Laboute, P. Marine invertebrates from the New Caledonian lagoon. V. Isolation and identification of metabolites of a new species of sponge, Pseudaxinyssa cantharella. Tetrahedron Lett., 1985, 41, 6019-6033.
[http://dx.doi.org/10.1016/S0040-4020(01)91443-7]
[73]
Schmitz, F.J.; Gunasekera, S.P.; Lakshmi, V.; Tillekeratne, L.M. Marine natural products: pyrrololactams from several sponges. J. Nat. Prod., 1985, 48(1), 47-53.
[http://dx.doi.org/10.1021/np50037a008] [PMID: 2861253]
[74]
Pettit, G.R.; Herald, C.L.; Leet, J.E.; Gupta, R.; Schaufelberger, D.E.; Bates, R.B.; Clewlow, P.J.; Doubek, D.L.; Manfredi, K.P.; Rützler, K.; Schmidt, J.M.; Tackett, L.P.; Ward, F.B.; Bruck, M.; Camou, F. Antineoplastic agents. 168. Isolation and structure of axinohydantoin. Can. J. Chem., 1990, 68(9), 1621-1624.
[http://dx.doi.org/10.1139/v90-250]
[75]
Castedo, M.; Perfettini, J-L.; Roumier, T.; Kroemer, G. Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ., 2002, 9(12), 1287-1293.
[http://dx.doi.org/10.1038/sj.cdd.4401130] [PMID: 12478465]
[76]
Meijer, L.; Thunnissen, A-M.; White, A.W.; Garnier, M.; Nikolic, M.; Tsai, L-H.; Walter, J.; Cleverley, K.E.; Salinas, P.C.; Wu, Y-Z.; Biernat, J.; Mandelkow, E-M.; Kim, S-H.; Pettit, G.R. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol., 2000, 7(1), 51-63.
[http://dx.doi.org/10.1016/S1074-5521(00)00063-6] [PMID: 10662688]
[77]
Skropeta, D.; Pastro, N.; Zivanovic, A. Kinase inhibitors from marine sponges. Mar. Drugs, 2011, 9(10), 2131-2154.
[http://dx.doi.org/10.3390/md9102131] [PMID: 22073013]
[78]
Killday, K.B.; Yarwood, D.; Sills, M.A.; Murphy, P.T.; Hooper, J.N.; Wright, A.E. Microxine, a new cdc2 kinase inhibitor from the Australian marine sponge Microxina species. J. Nat. Prod., 2001, 64(4), 525-526.
[http://dx.doi.org/10.1021/np000546z] [PMID: 11325241]
[79]
Walker, S.R.; Carter, E.J.; Huff, B.C.; Morris, J.C. Variolins and related alkaloids. Chem. Rev., 2009, 109(7), 3080-3098.
[http://dx.doi.org/10.1021/cr900032s] [PMID: 19489543]
[80]
Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res., 1988, 48(3), 589-601.
[PMID: 3335022]
[81]
Simone, M.; Erba, E.; Damia, G.; Vikhanskaya, F.; Di Francesco, A.M.; Riccardi, R.; Bailly, C.; Cuevas, C.; Fernandez Sousa-Faro, J.M.; D’Incalci, M. Variolin B and its derivate deoxy-variolin B: new marine natural compounds with cyclin-dependent kinase inhibitor activity. Eur. J. Cancer, 2005, 41(15), 2366-2377.
[http://dx.doi.org/10.1016/j.ejca.2005.05.015] [PMID: 16181779]
[82]
Trimurtulu, G.; Faulkner, D.J.; Perry, N.B.; Ettouati, L.; Litaudon, M.; Blunt, J.W.; Munro, M.H.G.; Jameson, G.B. Alkaloids from the antarctic sponge Kirkpatrickia varialosa. Part 2: Variolin A and N(3′)-methyl tetrahydrovariolin B. Tetrahedron, 1994, 50(13), 3993-4000.
[http://dx.doi.org/10.1016/S0040-4020(01)89674-5]
[83]
Soni, R.; Muller, L.; Furet, P.; Schoepfer, J.; Stephan, C.; Zumstein-Mecker, S.; Fretz, H.; Chaudhuri, B. Inhibition of cyclin-dependent kinase 4 (Cdk4) by fascaplysin, a marine natural product. Biochem. Biophys. Res. Commun., 2000, 275(3), 877-884.
[http://dx.doi.org/10.1006/bbrc.2000.3349] [PMID: 10973815]
[84]
Lin, J.; Yan, X-J.; Chen, H-M. Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemother. Pharmacol., 2007, 59(4), 439-445.
[http://dx.doi.org/10.1007/s00280-006-0282-x] [PMID: 16816972]
[85]
Kobayashi, J.; Suzuki, M.; Tsuda, M. Konbu’acidin A, a new bromopyrrole alkaloid with cdk4 inhibitory activity from hymeniacidon sponge. Tetrahedron, 1997, 53(46), 15681-15684.
[http://dx.doi.org/10.1016/S0040-4020(97)10022-9]
[86]
Park, S.G.; Cheon, J.Y.; Lee, Y.H.; Park, J-S.; Lee, K.Y.; Leel, C.H.; Lee, S.K. A specific inhibitor of cyclin-dependent protein kinases, CDC2 and CDK2. Mol. Cells, 1996, 6(6), 679-683.
[87]
Kitagawa, M.; Okabe, T.; Ogino, H.; Matsumoto, H.; Suzuki-Takahashi, I.; Kokubo, T.; Higashi, H.; Saitoh, S.; Taya, Y.; Yasuda, H.; Ohba, Y.; Nishimura, S.; Tanaka, N.; Okuyama, A. Butyrolactone I, a selective inhibitor of CDK2 and CDC2 kinase. Oncogene, 1993, 8(9), 2425-2432.
[PMID: 8395680]
[88]
Kitagawa, M.; Higashi, H.; Takahashi, I.S.; Okabe, T.; Ogino, H.; Taya, Y.; Hishimura, S.; Okuyama, A. A cyclin-dependent kinase inhibitor, butyrolactone I, inhibits phosphorylation of RB protein and cell cycle progression. Oncogene, 1994, 9(9), 2549-2557.
[PMID: 8058318]
[89]
Bailon-Moscoso, N.; Cevallos-Solorzano, G.; Romero-Benavides, J.C.; Orellana, M.I.R. Natural compounds as modulators of cell cycle arrest: application for anticancer chemotherapies. Curr. Genomics, 2017, 18(2), 106-131.
[http://dx.doi.org/10.2174/1389202917666160808125645] [PMID: 28367072]
[90]
De Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human CDK2 complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-2), 518-526.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
[91]
Glab, N.; Labidi, B.; Qin, L-X.; Trehin, C.; Bergounioux, C.; Meijer, L. Olomoucine, an inhibitor of the CDC2/CDK2 kinases activity, blocks plant cells at the G1 to S and G2 to M cell cycle transitions. FEBS Lett., 1994, 353(2), 207-211.
[http://dx.doi.org/10.1016/0014-5793(94)01035-8] [PMID: 7523194]
[92]
Basati, G.; Saffari-Chaleshtori, J.; Abbaszadeh, S.; Asadi-Samani, M.; Ashrafi-Dehkordi, K. Molecular dynamics mechanisms of the inhibitory effects of abemaciclib, hymenialdisine, and indirubin on CDK-6. Curr. Drug Res. Rev., 2019, 11(2), 135-141.
[http://dx.doi.org/10.2174/2589977511666191018180001] [PMID: 31875784]
[93]
Jain, S.K.; Bharate, S.B.; Vishwakarma, R.A. Cyclin-dependent kinase inhibition by flavoalkaloids. Mini Rev. Med. Chem., 2012, 12(7), 632-649.
[http://dx.doi.org/10.2174/138955712800626683] [PMID: 22512551]
[94]
Xing, Z.; Zhang, Y.; Zhang, X.; Yang, Y.; Ma, Y.; Pang, D. Fangchinoline induces G1 arrest in breast cancer cells through cell-cycle regulation. Phytother. Res., 2013, 27(12), 1790-1794.
[http://dx.doi.org/10.1002/ptr.4936] [PMID: 23401195]
[95]
Birdsall, T.C.; Kelly, G.S. Berberine: therapeutic potential of an alkaloid found in several medicinal plants. Altern. Med. Rev., 1997, 2(2), 94-103.
[96]
Zhang, S.; Zhang, B.; Xing, K.; Zhang, X.; Tian, X.; Dai, W. Inhibitory effects of golden thread (Coptis chinensis) and berberine on Microcystis aeruginosa. Water Sci. Technol., 2010, 61(3), 763-769.
[http://dx.doi.org/10.2166/wst.2010.857] [PMID: 20150713]
[97]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20(9), 757-769.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[98]
Tang, J.; Feng, Y.; Tsao, S.; Wang, N.; Curtain, R.; Wang, Y. Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J. Ethnopharmacol., 2009, 126(1), 5-17.
[http://dx.doi.org/10.1016/j.jep.2009.08.009] [PMID: 19686830]
[99]
Kim, J.B.; Yu, J.H.; Ko, E.; Lee, K.W.; Song, A.K.; Park, S.Y.; Shin, I.; Han, W.; Noh, D.Y. The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest. Phytomedicine, 2010, 17(6), 436-440.
[http://dx.doi.org/10.1016/j.phymed.2009.08.012] [PMID: 19800775]
[100]
He, W.; Wang, B.; Zhuang, Y.; Shao, D.; Sun, K.; Chen, J. Berberine inhibits growth and induces G1 arrest and apoptosis in human cholangiocarcinoma QBC939 cells. J. Pharmacol. Sci., 2012, 119(4), 341-348.
[http://dx.doi.org/10.1254/jphs.12052FP] [PMID: 22850597]
[101]
Serafim, T.L.; Oliveira, P.J.; Sardao, V.A.; Perkins, E.; Parke, D.; Holy, J. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemother. Pharmacol., 2008, 61(6), 1007-1018.
[http://dx.doi.org/10.1007/s00280-007-0558-9] [PMID: 17661039]
[102]
Pinto-Garcia, L.; Efferth, T.; Torres, A.; Hoheisel, J.D.; Youns, M. Berberine inhibits cell growth and mediates caspase-independent cell death in human pancreatic cancer cells. Planta Med., 2010, 76(11), 1155-1161.
[http://dx.doi.org/10.1055/s-0030-1249931] [PMID: 20455200]
[103]
Fang, X-M.; Liu, B.; Liu, Y-B.; Wang, J-J.; Wen, J-K.; Li, B-H.; Han, M. Acetylbritannilactone suppresses growth via upregulation of krüppel-like transcription factor 4 expression in HT-29 colorectal cancer cells. Oncol. Rep., 2011, 26(5), 1181-1187.
[PMID: 21811764]
[104]
Liu, B.; Han, M.; Sun, R.H.; Wang, J.J.; Liu, Y.P.; Wen, J.K. Acetylbritannilactone induces G1 arrest and apoptosis in vascular smooth muscle cells. Int. J. Cardiol., 2011, 149(1), 30-38.
[http://dx.doi.org/10.1016/j.ijcard.2009.11.036] [PMID: 20060605]
[105]
Liu, B.; Zhou, Z.; Zhou, W.; Liu, J.; Zhang, Q.; Xia, J.; Liu, J.; Chen, N.; Li, M.; Zhu, R. Resveratrol inhibits proliferation in human colorectal carcinoma cells by inducing G1/S phase cell cycle arrest and apoptosis through caspase/cyclin CDK pathways. Mol. Med. Rep., 2014, 10(4), 1697-1702.
[http://dx.doi.org/10.3892/mmr.2014.2406] [PMID: 25050564]
[106]
Kuwajerwala, N.; Cifuentes, E.; Gautam, S.; Menon, M.; Barrack, E.R.; Reddy, G.P. Resveratrol induces prostate cancer cell entry into s phase and inhibits DNA synthesis. Cancer Res., 2002, 62(9), 2488-2492.
[PMID: 11980638]
[107]
Benitez, D.A.; Pozo-Guisado, E.; Alvarez-Barrientos, A.; Fernandez-Salguero, P.M.; Castellón, E.A. Mechanisms involved in resveratrol- induced apoptosis and cell cycle arrest in prostate cancerderived cell lines. J. Androl., 2007, 28(2), 282-293.
[http://dx.doi.org/10.2164/jandrol.106.000968] [PMID: 17050787]
[108]
Aggarwal, B.B.; Ichikawa, H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle, 2005, 4(9), 1201-1215.
[http://dx.doi.org/10.4161/cc.4.9.1993] [PMID: 16082211]
[109]
Cover, C.M.; Hsieh, S.J.; Tran, S.H.; Hallden, G.; Kim, G.S.; Bjeldanes, L.F.; Firestone, G.L. Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J. Biol. Chem., 1998, 273(7), 3838-3847.
[http://dx.doi.org/10.1074/jbc.273.7.3838] [PMID: 9461564]
[110]
Seo, B.R.; Lee, K.W.; Ha, J.; Park, H.J.; Choi, J.W.; Lee, K.T. Saucernetin-7 isolated from Saururus chinensis inhibits proliferation of human promyelocytic HL-60 leukemia cells via G0/G1 phase arrest and induction of differentiation. Carcinogenesis, 2004, 25(8), 1387-1394.
[http://dx.doi.org/10.1093/carcin/bgh143] [PMID: 15033903]
[111]
Lee, J.H.; Kang, G.H.; Kim, K.C.; Kim, K.M.; Park, D.I.; Choi, B.T.; Kang, H.S.; Lee, Y.T.; Choi, Y.H. Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Int. J. Oncol., 2002, 21(6), 1239-1244.
[http://dx.doi.org/10.3892/ijo.21.6.1239] [PMID: 12429973]
[112]
Meng, L-H.; Zhang, H.; Hayward, L.; Takemura, H.; Shao, R-G.; Pommier, Y. Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G1-S-specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Res., 2004, 64(24), 9086-9092.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0313] [PMID: 15604277]
[113]
Hogan, F.S.; Krishnegowda, N.K.; Mikhailova, M.; Kahlenberg, M.S. Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J. Surg. Res., 2007, 143(1), 58-65.
[http://dx.doi.org/10.1016/j.jss.2007.03.080] [PMID: 17950073]
[114]
Deep, G.; Singh, R.P.; Agarwal, C.; Kroll, D.J.; Agarwal, R. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene, 2006, 25(7), 1053-1069.
[http://dx.doi.org/10.1038/sj.onc.1209146] [PMID: 16205633]
[115]
Li, H.; Kapur, A.; Yang, J.X.; Srivastava, S.; McLeod, D.G.; Paredes-Guzman, J.F.; Daugsch, A.; Park, Y.K.; Rhim, J.S. Antiproliferation of human prostate cancer cells by ethanolic extracts of Brazilian propolis and its botanical origin. Int. J. Oncol., 2007, 31(3), 601-606.
[http://dx.doi.org/10.3892/ijo.31.3.601] [PMID: 17671687]
[116]
Lee, J.W.; Min, H.Y.; Han, A.R.; Chung, H.J.; Park, E.J.; Park, H.J.; Hong, J.Y.; Seo, E.K.; Lee, S.K. Growth inhibition and induction of G1 phase cell cycle arrest in human lung cancer cells by a phenylbutenoid dimer isolated from Zingiber cassumunar. Biol. Pharm. Bull., 2007, 30(8), 1561-1564.
[http://dx.doi.org/10.1248/bpb.30.1561] [PMID: 17666821]
[117]
Liu, W.; Kato, M.; Akhand, A.A.; Hayakawa, A.; Takemura, M.; Yoshida, S.; Suzuki, H.; Nakashima, I. The herbal medicine sho-saiko-to inhibits the growth of malignant melanoma cells by upregulating Fas-mediated apoptosis and arresting cell cycle through downregulation of cyclin dependent kinases. Int. J. Oncol., 1998, 12(6), 1321-1326.
[http://dx.doi.org/10.3892/ijo.12.6.1321] [PMID: 9592193]
[118]
Sui, C.G.; Meng, F.D.; Li, Y.; Jiang, Y.H. Antiproliferative activity of rosamultic acid is associated with induction of apoptosis, cell cycle arrest, inhibition of cell migration and caspase activation in human gastric cancer (SGC-7901) cells. Phytomedicine, 2015, 22(9), 796-806.
[http://dx.doi.org/10.1016/j.phymed.2015.05.004] [PMID: 26220626]
[119]
Lamartine-Hanemann, S.D.S.; Ferreira-Silva, G.Ã.; Horvath, R.O.; Soncini, R.; Caixeta, E.S.; Rocha-Sales, B.; Niero, E.L.; Machado-Santelli, G.M.; Dos Santos, M.H.; de Oliveira, J.C.; Miyazawa, M.; Ionta, M. A tetraprenylated benzophenone 7-epiclusianone induces cell cycle arrest at G1/S transition by modulating critical regulators of cell cycle in breast cancer cell lines. Toxicol. In Vitro, 2020, 68104927
[http://dx.doi.org/10.1016/j.tiv.2020.104927] [PMID: 32634469]
[120]
Ionta, M.; Ferreira-Silva, G.A.; Niero, E.L.; Costa, É.D.; Martens, A.A.; Rosa, W.; Soares, M.G.; Machado-Santelli, G.M.; Lago, J.H.G.; Santos, M.H. 7-epiclusianone, a benzophenone extracted from Garcinia brasiliensis (Clusiaceae), induces cell cycle arrest in G1/S transition in A549 cells. Molecules, 2015, 20(7), 12804-12816.
[http://dx.doi.org/10.3390/molecules200712804] [PMID: 26184153]
[121]
Malumbres, M.; Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer, 2001, 1(3), 222-231.
[http://dx.doi.org/10.1038/35106065] [PMID: 11902577]
[122]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[123]
Chen, D.; Sun, X.; Zhang, X.; Cao, J. Inhibition of the CDK4/6-cyclin D-Rb pathway by ribociclib augments chemotherapy and immunotherapy in renal cell carcinoma. BioMed Res. Int., 2020, 20209525207
[http://dx.doi.org/10.1155/2020/9525207] [PMID: 32626773]
[124]
Chen, P.; Lee, N.V.; Hu, W.; Xu, M.; Ferre, R.A.; Lam, H.; Bergqvist, S.; Solowiej, J.; Diehl, W.; He, Y.A.; Yu, X.; Nagata, A.; VanArsdale, T.; Murray, B.W. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther., 2016, 15(10), 2273-2281.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0300] [PMID: 27496135]
[125]
Corona, S.P.; Generali, D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2- advanced breast cancer. Drug Des. Devel. Ther., 2018, 12, 321-330.
[http://dx.doi.org/10.2147/DDDT.S137783] [PMID: 29497278]
[126]
Chen, F.; Liu, C.; Zhang, J.; Xu, W.; Zhang, Y. Progress of CDK4/6 inhibitor palbociclib in the treatment of cancer. Anticancer. Agents Med. Chem., 2018, 18(9), 1241-1251.
[http://dx.doi.org/10.2174/1871521409666170412123500] [PMID: 28403773]
[127]
Roskoski, R., Jr Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol. Res., 2016, 107, 249-275.
[http://dx.doi.org/10.1016/j.phrs.2016.03.012] [PMID: 26995305]
[128]
Heathcote, D.A.; Patel, H.; Kroll, S.H.B.; Hazel, P.; Periyasamy, M.; Alikian, M.; Kanneganti, S.K.; Jogalekar, A.S.; Scheiper, B.; Barbazanges, M.; Blum, A.; Brackow, J.; Siwicka, A.; Pace, R.D.M.; Fuchter, M.J.; Snyder, J.P.; Liotta, D.C.; Freemont, P.S.; Aboagye, E.O.; Coombes, R.C.; Barrett, A.G.M.; Ali, S. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. J. Med. Chem., 2010, 53(24), 8508-8522.
[http://dx.doi.org/10.1021/jm100732t] [PMID: 21080703]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy